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Abstract. In this paper, we present a detailed study of the following
difference equation

xn+1 =
αn

1 + xnxn−1
, n ∈ N0,

where the sequence (αn)n≥0 is positive, real, periodic with period two

and the initial values x−1, x0 are nonnegative real numbers. By this

study, we determine global behavior of positive solutions of the above

mentioned equation. We also give closed forms of its general solution.
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1 Introduction

Over the last two decades, many studies on nonlinear difference equa-
tions have been published (see, e.g., [5, 8, 9, 10, 11, 16, 17, 21, 22, 23, 25,
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2 A. YILDIRIM AND D. T. TOLLU

26, 27, 28, 29, 30, 31, 32, 33, 34, 35] and the references therein). These
equations play an important role in applications since they often arise
as mathematical model of a problem (see, e.g., [1, 23]).

The solvability of nonlinear difference equations has been studied for
the last fifteen years. As with differential equations, the solvability is a
fundamental problem of the theory of difference equations. This prob-
lem is actually older (see, e.g., [1, 4, 20, 24]). The following difference
equation

yn+1 =
a+ byn
c+ dyn

, n ∈ N0, (1)

where the parameters a, b, c, d and the initial value y0 are real or complex
numbers such that ad 6= bc, d 6= 0 and y0 6= −c/d, is a prototype for
solvable difference equations. This equation is named bilinear difference
equation or linear fractional difference equation. By taking b = 0 in
Equation (1), we have the following equation

yn+1 =
a

c+ dyn
, n ∈ N0. (2)

Equation (2) can be reduced to the equation

xn+1 =
α

1 + xn
, n ∈ N0,

where α = ad
c2

, by change of variables yn = c
dxn. Equation (2) can be

extended as the following

yn+1 =
a

c+ dynyn−1
, n ∈ N0, (3)

where the parameters a, c, d is positive real number and the initial values
y−1, y0 are nonnegative real numbers such that the solution ( yn)n≥−1

exists. If c and d are positive, then Equation (3) can be also reduced to
the equation

xn+1 =
α

1 + xnxn−1
, n ∈ N0, (4)

where α =
√

d
c
a
c , by change of variables yn =

√
c
dxn, which posed

by Amleh et al. [3]. They conjectured that every positive solution of
Equation (4) has a finite limit. But they can only confirmed it when
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0 < α ≤ 2 (for equations associated with (4), see, e.g., [6, 22]). Then,
Drymonis et al. [7] showed that every positive solution of the following
difference equation

xn+1 =
αn

1 + xnxn−1
, n ∈ N0, (5)

where

αn =

{
a, if n is even
b, if n is odd

and a > 0, b > 0, a 6= b

and the initial values x−1, x0 are nonnegative real numbers, converges
to a prime period two sequence.

In this paper, we handle Equation (5) and determine global behavior
of positive solutions of Equation (5) by giving a closed form solution.
That is, we here use an advanced method which is different than the
method given in [7]. When ( αn)n≥0 is a constant sequence, we exactly
confirm Conjecture 2.2. given for Equation (5) in [3].

Before our discussion, we present some definitions and the known
results which will be used in this study. For the theory of difference
equations, one can refer to the monograph of Kocic and Ladas [18].

2 Preliminaries

Consider the following system{
un+1 = f (un, vn) ,
vn+1 = g (un, vn) ,

n ∈ N0. (6)

Let ‖·‖ be the norm of vector (u, v) ∈ R2. Then, we present the following
definition and some useful lemmas which will serve to analyze equation
(5).

Definition 2.1. [18] The equilibrium point (ū, v̄) is said to be:
(i) stable if given ε > 0 and N > 0 there exists δ > 0 such that

‖(u0, v0)− (ū, v̄)‖ < δ implies that ‖(un, vn)− (ū, v̄)‖ < ε for all n > N ,
and unstable if it is not stable;

(ii) attracting if there exists η > 0 such that ‖(u0, v0)− (ū, v̄)‖ < η
implies that limn→∞ (un, vn) = (ū, v̄)
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(iii) asymptotically stable if it is stable and attracting.
(iv) globally asymptotically stable if (i) and (ii) with η =∞ hold.

We quote the following lemma from [19].

Lemma 2.2. Let F = (f, g) be a continuously differentiable function
defined on an open set D ∈ R2.

(a) If the eigenvalues of the Jacobian matrix JF ((ū, v̄)), that is, both
roots of its characteristic equation

λ2 − TrJF ((ū, v̄))λ+DetJF ((ū, v̄)) = 0, (7)

lie inside the unit disk, then the equilibrium point (ū, v̄) of (6) is locally
asymptotically stable.

(b) A necessary and sufficient condition for both roots of equation
(7) to lie inside the unit disk is

|TrJF ((ū, v̄))| < 1 +DetJF ((ū, v̄)) < 2.

The following lemma shows that all solutions of (5) are bounded. In
[7], this result was obtained for the case the sequence (αn)n≥0 is periodic
with period p. But, we present it in the case p = 2 for the completeness.

Lemma 2.3. Assume that (αn)n≥0 is a periodic sequence of prime pe-
riod 2. Then, every solution of Equation (5) is bounded.

Proof. From (5), we have

xn+1 =
αn

1 + xnxn−1
≤ αn (8)

for every n ≥ 0. Hence we see that x2n+1 ≤ a and x2n+2 ≤ b for every
n ≥ 0. Also, from (5) and (8), we have

xn+1 =
αn

1 + xnxn−1
≥ αn

1 + ab

for every n ≥ 1. Hence we see that x2n+1 ≥ a
1+ab and x2n+2 ≥ b

1+ab for
every n ≥ 1. Consequently, we have

a

1 + ab
≤ x2n+1 ≤ a,

b

1 + ab
≤ x2n+2 ≤ b (9)

for every n ≥ 0. �
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Lemma 2.4. [22] Consider the cubic equation

P (z) = z3 − αz2 − βz − γ = 0. (10)

Equation (10) has the discriminant

∆ = −α2β2 − 4β3 + 4α3γ + 27γ2 + 18αβγ.

Then, the following statements are true;
(i) If ∆ < 0, then the polynomial P has three distinct real zeros ρ1,

ρ2, ρ3.
(ii) If ∆ = 0, then there are two subcases:

(a) if β = −α2

3 and γ = α3

27 , then the polynomial P has the triple root
ρ = α

3 ,

(b) if β 6= −α2

3 or γ 6= α3

27 , then the polynomial P has the double root
r and the simple root ρ.

(iii) If ∆ > 0, then the polynomial P has one real root p and two
complex roots re±iθ, θ ∈ (0, π).

3 Main Results

In this section, we prove our main results.
It is clear that Equation (5) can be written as follows:

x2n+1 =
a

1 + x2nx2n−1
, x2n+2 =

b

1 + x2n+1x2n
. (11)

To conduct a stability analysis, we set

x2n−1 = un and x2n = vn, n ∈ N0. (12)

Then (11) can be written in the form{
un+1 = a

1+unvn

vn+1 = b(1+unvn)
1+unvn+avn

, n ∈ N0. (13)

That is, since system (13) is equivalent to Equation (5), we simultane-
ously study the system.
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3.1 Locally asymptotically stability

In this subsection, we study locally asymptotically stability of the unique
positive equilibrium (ū, v̄) =

(
ū, ba ū

)
of system (13).

Lemma 3.1. System (13) has the unique positive equilibrium point on(
a

1+ab , a
)
×
(

b
1+ab , b

)
.

Proof. Equilibrium points of system (13) is solutions of the algebraic
system

ū =
a

1 + ūv̄
, v̄ =

b (1 + ūv̄)

1 + ūv̄ + av̄
. (14)

From (14), we see that

v̄ =
b

a
ū (15)

which implies

ū3 +
a

b
ū− a2

b
= 0.

Now, we consider the polynomial

P (ū) = ū3 +
a

b
ū− a2

b
. (16)

From (9), (12) and (16), we have

P (a) = a3 > 0

and

P

(
a

1 + ab

)
=
−a2

b

ab
(

(1 + ab)2 − 1
)

(1 + ab)3 < 0.

Also, since

P ′ (ū) = 3ū2 +
a

b
> 0

the polynomial P (ū) has the unique zero on
(

a
1+ab , a

)
. On the other

hand, by taking into account (15), we have

b

a
ū = v̄ ∈

(
b

a

a

1 + ab
,
b

a
a

)
=

(
b

1 + ab
, b

)
.
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Hence, system (13) has the unique positive equilibrium point on(
a

1 + ab
, a

)
×
(

b

1 + ab
, b

)
such that (ū, v̄) =

(
ū, ba ū

)
. �

Theorem 3.2. The unique equilibrium (ū, v̄) =
(
ū, ba ū

)
of system (13)

is locally asymptotically stable.

Proof. We define the map

F :

(
a

1 + ab
, a

)
×
(

b

1 + ab
, b

)
→
(

a

1 + ab
, a

)
×
(

b

1 + ab
, b

)
associated to system (13), i.e.

F

(
x
y

)
=

(
a

1+xy
b(1+xy)

1+xy+ay

)
.

The Jacobian matrix of F evaluated at
(
ū, ba ū

)
is

JF (ū, v̄) =

(
−bū3
a2

−ū3
a

b3ū6

a5
−bū4
a3

)

and its characteristic equation associated with
(
ū, ba ū

)
is

λ2 +
a4bū3 + a3bū4

a6
λ+

ab2ū7 + b3ū9

a6
= 0. (17)

Therefore, from (17) and Lemma 2.2-(b), we have the inequalities∣∣∣∣a4bū3 + a3bū4

a6

∣∣∣∣ < 1 +
ab2ū7 + b3ū9

a6
< 2

from which it follows that

(a− ū)2 + ū2 > 0 and 8ab+ 1 > 0

which always hold. So, the proof is complete. �
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Theorem 3.3. System (13) does not have positive periodic solutions
with prime period two.

Proof. First, we suppose that system (13) has positive periodic solu-
tions with prime period two as follows:

{. . . , (φ1, ψ1) , (φ2, ψ2) , . . .} ,

where φ1 6= φ2 and ψ1 6= ψ2. Then, we have{
φ1 = a

1+φ2ψ2
, ψ1 = b(1+φ2ψ2)

1+φ2ψ2+aψ2
,

φ2 = a
1+φ1ψ1

, ψ2 = b(1+φ1ψ1)
1+φ1ψ1+aψ1

(18)

from which it follows that

ψ1 =
b

1 + φ1ψ2
, ψ2 =

b

1 + φ2ψ1
. (19)

From the first two equations of (18) and (19), we have

φ1φ2 (ψ2 − ψ1) + φ1 − φ2 = 0, ψ1ψ2 (φ1 − φ2) + ψ1 − ψ2 = 0. (20)

(20) implies φ1φ2ψ1ψ2 = −1 which is a contradiction. So, the proof is
completed. �

3.2 Closed form solution of Equation (5)

In this subsection, we obtain a closed form solution of Equation (5). By
applying the change of variables

xn =
zn−1

zn
(21)

to Equation (5), we have third order linear equation

zn+1 −
1

αn
zn −

1

αn
zn−2 = 0, n ∈ N0, (22)

where z0 = 1, z−1 = x0, z−2 = x0x−1. We write Equation (22) as the
following

z2n+1 −
1

a
z2n −

1

a
z2n−2 = 0 (23)
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and

z2n+2 −
1

b
z2n+1 −

1

b
z2n−1 = 0

from which it follows that

z2n+4 −
1

ab
z2n+2 −

2

ab
z2n −

1

ab
z2n−2 = 0 (24)

for every n ∈ N0. Equation (24) has the characteristic equation

P1 (λ) = λ6 − 1

ab
λ4 − 2

ab
λ2 − 1

ab
= 0.

Let

Q (λ) = λ3 − 1√
ab
λ2 − 1√

ab
and R (λ) = λ3 +

1√
ab
λ2 +

1√
ab
. (25)

Then, P1 (λ) = Q (λ)R (λ). Note also that the polynomials Q and R
satisfy the relation Q (−λ) = −R (λ). That is, if λ is any zero of the
polynomial R, then −λ is a zero of the polynomial Q. On the other
hand, we consider the linear equation

wn+1 −
1

ab
wn −

2

ab
wn−1 −

1

ab
wn−2 = 0 (26)

whose characteristic equation is

P1 (
√
µ) = µ3 − 1

ab
µ2 − 2

ab
µ− 1

ab
= 0.

We see from Lemma 2.4 that the equation P1

(√
µ
)

= 0 has one real
root and two complex roots denoted by p2 and r2e±i2θ, θ ∈ (0, π),
respectively. These notations are valid, since µ = λ2. Also, note that
since ab > 0 and µ3 = 1

ab (µ+ 1)2, the unique real root of P1

(√
µ
)

= 0
is positive. So, we have the general solution of (26) as follows:

wn−1 = C1p
2n + r2n (C2 cos 2nθ + C3 sin 2nθ) , n ≥ −1,

where C1, C2 and C3 are arbitrary constats. A solution of Equation
(24) satisfies Equation (26), that is wn−1 = z2n, and so we can write the
general solution of Equation (24) as follows:

z2n = C1p
2n + r2n (C2 cos 2nθ + C3 sin 2nθ) , n ≥ −1, (27)
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where

C1 =
p2

ab

(
abr4 + 1

)
x0x−1 + ax0 − 2abr2 cos 2θ + 1

p4 + r4 − 2p2r2 cos 2θ
,

C2 =
−p2

((
abr4 + 1

)
x0x−1 + ax0

)
+ abp4 + abr4 − p2

ab (p4 + r4 − 2p2r2 cos 2θ)
,

C3 =

(
cos (2 t) abp2r4 − abp4r2 − cos (2 t) p2 + r2

)
x0x−1

ab sin 2θ (p4 + r4 − 2p2r2 cos 2θ)

−
(
− cos (2 t) ap2 + ar2

)
x0

ab sin 2θ (p4 + r4 − 2p2r2 cos 2θ)

−cos (2 t) abp4 − cos (2 t) abr4 − cos (2 t) p2 + r2

ab sin 2θ (p4 + r4 − 2p2r2 cos 2θ)
.

On the other hand, by (23) and some operations, for every n ≥ −1, we
have

z2n+1 =
1

a
z2n +

1

a
z2n−2

= C1
p2 + 1

a
p2n−2 +

r2n

a

(
C ′2 cos 2nθ + C ′3 sin 2nθ

)
, (28)

where

C ′2 = C2 +
C2 cos 2θ − C3 sin 2θ

r2
and C ′3 = C3 +

C3 cos 2θ + C2 sin 2θ

r2
.

Also, the relations P1 (λ) = Q (λ)R (λ) and Q (−λ) = −R (λ) imply
that if p is a root of Q (λ), then −p is a root of R (λ). Hence, p satisfies
the relation

p2 + 1

a
=

√
b

a
p3.

From this and (28), it follows that

z2n+1 = C1

√
b

a
p2n+1 +

r2n

a

(
C ′2 cos 2nθ + C ′3 sin 2nθ

)
, n ≥ −1, (29)

where

C ′2 = C2 +
C2 cos 2θ − C3 sin 2θ

r2
and C ′3 = C3 +

C3 cos 2θ + C2 sin 2θ

r2
.
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Therefore, from (21), (27) and (29), we have the closed form solution of
Equation (5) as follows:

x2n =
C1

√
b
ap

2n−1 + r2n−2

a (C ′2 cos (2n− 2) θ + C ′3 sin (2n− 2) θ)

C1p2n + r2n (C2 cos 2nθ + C3 sin 2nθ)
(30)

and

x2n+1 =
C1p

2n + r2n (C2 cos 2nθ + C3 sin 2nθ)

C1

√
b
ap

2n+1 + r2n

a (C ′2 cos 2nθ + C ′3 sin 2nθ)
, (31)

where

C1 =
p2

ab

(
abr4 + 1

)
x0x−1 + ax0 − 2abr2 cos 2θ + 1

p4 + r4 − 2p2r2 cos 2θ
,

C2 =
−p2

((
abr4 + 1

)
x0x−1 + ax0

)
+ abp4 + abr4 − p2

ab (p4 + r4 − 2p2r2 cos 2θ)
,

C3 =

(
cos (2 t) abp2r4 − abp4r2 − cos (2 t) p2 + r2

)
x0x−1

ab sin 2θ (p4 + r4 − 2p2r2 cos 2θ)

−
(
− cos (2 t) ap2 + ar2

)
x0

ab sin 2θ (p4 + r4 − 2p2r2 cos 2θ)

−cos (2 t) abp4 − cos (2 t) abr4 − cos (2 t) p2 + r2

ab sin 2θ (p4 + r4 − 2p2r2 cos 2θ)
.

and

C ′2 = C2 +
C2 cos 2θ − C3 sin 2θ

r2
and C ′3 = C3 +

C3 cos 2θ + C2 sin 2θ

r2
.

for every n ≥ −1.

3.3 Globally asymptotically stability

In this subsection, we study globally asymptotically stability of the
unique positive equilibrium (ū, v̄) =

(
ū, ba ū

)
of system (13).

Lemma 3.4. Consider the cubic polynomial S (λ) = λ3−cλ2−c. Then,
zeros of the polynomial S satisfy the relation |σ| = ρ√

1+ρ2
, where ρ is the

unique real zero of the polynomial S and σ is one of complex conjugate
ones.
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Proof. Suppose that

S (λ) = (λ− ρ)
(
λ2 − c1λ− c2

)
,

where

c1 =
−ρ

1 + ρ2
and c2 =

−ρ2

1 + ρ2
.

Then, σ is one of complex conjugate zeros of the quadratic polynomial
λ2−c1λ−c2. Therefore, the proof follows from absolute value of σ. �

It is clear from Lemma 3.4 that |σ| = ρ√
1+ρ2

< ρ.

Theorem 3.5. The unique equilibrium (ū, v̄) =
(
ū, ba ū

)
of system (13)

is globally asymptotically stable.

Proof. We know from Theorem 3.2 that the unique equilibrium (ū, v̄) =(
ū, ba ū

)
of system (13) is locally asymptotically stable. Hence, it is

enough to show that

lim
n→∞

un = ū and lim
n→∞

vn = v̄.

or
lim
n→∞

x2n = v̄ and lim
n→∞

x2n+1 = ū

by taking into account (12). We also know that ū is the unique real zero
of the polinomial P in (16). On the other hand, p is the unique real zero
of the polinomial Q in (25). We claim that the zeros of the polinomials
P and Q are of the relation √

a

b

1

p
= ū. (32)

That is, we have

P

(√
a

b

1

p

)
=

(√
a

b

1

p

)3

+
a

b

√
a

b

1

p
− a2

b

= −a
2

b

1

p3

(
p3 − 1√

ab
p2 − 1√

ab

)
= −a

2

b

1

p3
Q (p)

= 0.
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By taking limits of (30) and (31) as n→∞, by using (32) and the result
of Lemma 3.4, we have

lim
n→∞

x2n = lim
n→∞

C1

√
b
a
p2n−1 + r2n−2

a
(C′2 cos (2n− 2) θ + C′3 sin (2n− 2) θ)

C1p2n + r2n (C2 cos 2nθ + C3 sin 2nθ)

= lim
n→∞

p2n−1

p2n

C1

√
b
a

+
(

r
p

)2n−1
1
ar

(C′2 cos (2n− 2) θ + C′3 sin (2n− 2) θ)

C1 +
(

r
p

)2n
(C2 cos 2nθ + C3 sin 2nθ)

=

√
b

a

1

p

=
b

a
ū

= v̄

and

lim
n→∞

x2n+1 = lim
n→∞

C1p
2n + r2n (C2 cos 2nθ + C3 sin 2nθ)

C1

√
b
ap

2n+1 + r2n

a (C ′2 cos 2nθ + C ′3 sin 2nθ)

= lim
n→∞

p2n

p2n+1

C1 +
(

r
p

)2n
(C2 cos 2nθ + C3 sin 2nθ)

C1

√
b
a +

(
r
p

)2n+1
1
ar (C ′2 cos 2nθ + C ′3 sin 2nθ)

=

√
a

b

1

p
= ū.

So, the proof is completed. �

Theorem 3.6. Equation (5) has positive periodic solutions with prime
period two which is given by{

. . . , ū,
b

a
ū, ū,

b

a
ū, . . .

}
. (33)

Proof. First, we suppose that Equation (5) has positive periodic solu-
tions with prime period two as follows:

{. . . , φ, ψ, φ, ψ, ...}

From (11), we have

φ =
a

1 + φψ
, ψ =

b

1 + φψ
(34)
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from which it follows that

ψ =
b

a
φ. (35)

By using (34) and (35), we have

P (φ) = φ3 +
a

b
φ− a2

b
= 0,

which has the unique real root φ = ū. Hence, the result follows by (35).
�

The following corollary is a straightforward result of Theorem 3.5

Corollary 3.7. Every positive solution of Equation (5) tends to its pe-
riodic solution with prime period two which is given by (33).

3.4 More on Equation (4)

In this subsection, we confirm Conjecture 2.2. given in [3]. We know
from [3] that Equation (4) has a unique equilibrium x̄ which is the unique
positive root of the cubic

P2 (x̄) = x̄3 + x̄− α = 0

and x̄ is locally asymptotically stable for all values of the parameter α.

Theorem 3.8. Every positive solution of Equation (4) tends to a finite
limit.

Proof. By applying the change of variables (21) to Equation (4), we
have third order linear equation

zn+1 −
1

α
zn −

1

α
zn−2 = 0, n ∈ N0. (36)

Equation (36) has the characteristic equation

P3 (λ) = λ3 − 1

α
λ2 − 1

α
= 0,

which has one real root and two complex roots denoted by p̂ and r̂e±iθ,
θ ∈ (0, π), respectively. Hence, Equation (36) has the general solution

zn = Ĉ1p̂
n + r̂n

(
Ĉ2 cosnθ + Ĉ3 sinnθ

)
, n ≥ −2, (37)
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where Ĉ1, Ĉ2 and Ĉ3 are arbitrary constats. From (21) and (37), it
follows that

xn =
Ĉ1p̂

n−1 + r̂n−1
(
Ĉ2 cos (n− 1) θ + Ĉ3 sin (n− 1) θ

)
Ĉ1p̂n + r̂n

(
Ĉ2 cosnθ + Ĉ3 sinnθ

) , n ≥ −1,

(38)
which is the general solution of Equation (4). We claim that the zeros
x̄ and p̂ of the polinomials P2 and P3 are of the relation

1

p̂
= x̄. (39)

That is, we have

P2 (x̄) = x̄3 + x̄− α

=
1

p̂3
+

1

p̂
− α

= − α
p̂3

(
− 1

α
− 1

α
p̂2 + p̂3

)
= − α

p̂3
P3 (p̂)

= 0.

Consequently, from (38), (39) and Lemma 3.4, we have

lim
n→∞

xn = lim
n→∞

Ĉ1p̂
n−1 + r̂n−1

(
Ĉ2 cos (n− 1) θ + Ĉ3 sin (n− 1) θ

)
Ĉ1p̂n + r̂n

(
Ĉ2 cosnθ + Ĉ3 sinnθ

)
= lim

n→∞

p̂n−1

p̂n

Ĉ1 +
(

r̂
p̂

)n−1 (
Ĉ2 cos (n− 1) θ + Ĉ3 sin (n− 1) θ

)
Ĉ1 +

(
r̂
p̂

)n (
Ĉ2 cosnθ + Ĉ3 sinnθ

)
=

1

p̂
= x̄.

�
The following corollary is a straightforward result of that x̄ is locally

asymptotically stable and Theorem 3.8.

Corollary 3.9. The unique equilibrium x̄ of Equation (4) is globally
asymptotically stable for all positive values of the parameter α.
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4 Numerical Examples

In this section, we give some numerical examples to support our theo-
retical results.

Example 4.1. In Figure 1-3, we illustrate the solutions which corre-
sponds to some special values of the initial conditions u0, v0 and the
parameters a, b of (13).

Figure 1: a = 13,
b = 5.

Figure 2: a = 8, b =
7.

Figure 3: a = 0.8,
b = 25.

Example 4.2. In Figure 4-6, we illustrate the solutions which corre-
sponds to some special values of the initial conditions x−1, x0 and the
parameters a, b of (5).

Figure 4: a = 3, b =
5.

Figure 5: a = 7, b =
4.

Figure 6: a = 13,
b = 15.
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Example 4.3. In Figure 7-9, we illustrate the solutions which corre-
sponds to some special values of the initial conditions x−1, x0 and the
parameter α of (4).

Figure 7: α = 5. Figure 8: α = 15. Figure 9: α = 25.

5 Conclusion

In this study we mainly show that every positive solution of Equation (5)
tends to a two periodic solution of the equation. To conduct a stability
analysis, we handle system (13) which is equivalent to Equation (5)
and so show that the unique positive equilibrium point of system (13)
is globally asymptotically stable. Finally, we confirm Conjecture 2.2.
given in [3].
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[18] V.L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference
Equations of Higher Order with Applications, Dordrecht, Boston,
London: Kluwer Academic Publishers; 1993.
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