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Abstract. In this paper, a class of non-linear Integro-differential equa-
tions is considered in a bounded domain Ω with a smooth boundary ∂Ω
as follows:

utt +M(‖Dmu‖2
2)(−∆)mu(t)

+

∫ t

0

g(t− s)(−∆)mu(s)ds+ |ut|α−1ut = |u|p−1u.

The asymptotic behavior of solutions is discussed by some conditions
on g. Decay estimates of the energy function of solutions are also given.
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1. Introduction

Consider the initial boundary value problem for a higher-order integro-
differential equation:


utt +M(‖Dmu‖22)(−∆)mu(t) +

∫ t

0
g(t− s)(−∆)mu(s)ds

+|ut|α−1ut = |u|p−1u, t > 0
∂iu
∂νi = 0, i = 0, 1, 2, ...,m− 1, x ∈ ∂Ω, t > 0
u(x, 0) = u0, ut(x, 0) = u1 x ∈ Ω,

(1)
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where p > 1,m > 1, α > 1, Ω is a bounded domain of Rn, n > 1, with
the smooth boundary ∂Ω, so that, divergence theorem can be applied,
ν is unit outward normal on ∂Ω, and ∂iu

∂νi denotes the i−order normal
derivation of u, and D denotes the gradient operator, that is Du =
(ux1 , ux2 , ..., uxn), and:

Dm =

m︷ ︸︸ ︷
∇.∇. · · · .∇ .

Before further progress, without the viscoelastic term, that is g = 0, for
the case that m=1 and M being not a constant function, equation(1) is
Kirchhoff equation which has been introduced in order to describe the
nonlinear vibrations of an elastic string. Kirchhoff ([6]) was the first one
to study the oscillations a stretched string and plates. In this case, the
existence and nonexistence of solutions were discussed by many authors
([3,9,13]).
With g 6= 0, in the case of M = 1, equation (1) becomes a semilinear
viscoelastic equation. Cavalcanti el.al ([2]) treated equation (1) with
damping term a(x)ut; here a(x) may be null on apart of boundary. By
assuming the kernel g in the memory term decays exponentially, they
obtained an exponentially decay rate. On the other hand, Jiang and
Rivera ([4]) proved, in the framework of nonlinear viscoelasticity, the
exponential decay of the energy provided that the kernel g decays ex-
ponentially without imposing damping term. In the case M is not a
constant function, equation (1) is a model in which describe the motion
of deformable solids as hereditary effect is incorporated. This equation
was first studied by Torrejon and Young ([12]) who proved the existence
of weakly asymptotic stable solution for large analytical datum. Later,
Rivera ([6]) showed the existence of global solutions for small datum and
the total energy decays to zero exponentially under some restrictions.
Recently, Wu and Tsai ([11]) discussed the global as well as energy decay
of equation(1). In that paper, the following assumption on the negative
kernel g′(t) 6 0, for all t > 0 for some r > o, which motivated the present
researcher to consider the problem of how to obtain the energy decay of
the solutions when the above assumption is replaced by g′(t) 6 0, for all
t > 0.
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In this paper, the global solution and the energy decays exponentially
and polynomially under some conditions on g were established. The con-
tent of this paper is organized as follows: In Section 2, some important
Lemmas and assumptions which will be used later and the state the lo-
cal existence Theorem 2.1. are given. In Section 3, the results of global
existence and decay property of the solutions of equation(1) are given
by Theorem 3.1.

2. Preliminary Notes

In this section, the material needed for proving the main result is intro-
duced. The standard Lebesgue space Lp(Ω) and Sobolev space Hm(Ω)
are used with their usual scalar products and norms. Meanwhile,

Hm
0 (Ω) = {u ∈ Hm(Ω) :

∂iu

∂νi
= 0, i = 0, 1, 2, ...,m− 1}

is defined and the following abbreviations are introduced:
‖.‖Hm = ‖.‖Hm(Ω), ‖.‖Hm

0
= ‖.‖Hm

0 (Ω), ‖.‖2 = ‖.‖L2(Ω), ‖.‖p = ‖.‖Lp(Ω)

for any real number p > 1.
It is assumed that:

(A1) M(s) is positive C1−function for s > 0 and M(s) = m0 + sq for
m0 > 0, q > 1 and s > 0.

(A2) g ∈ C1([0,∞)) is a bounded function satisfying:

m0 −
∫ t

0
g(s) = l > 0, ∀t > 0,

and there exist positive constants ξ1 and ξ2 such that:

−ξ1g(t) 6 g′(t) 6 −ξ2g(t). (2)

(A3) 1 < p <∞ for n 6 2m, 1 < p < 2m
n−2m for n > 2m.
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It is necessary to state that the local existence theorem for equation(1)
will be established by combining the arguments of [3] and [12].

Theorem 2.1. Assume that M(s),g(x) and p satisfy (A1), (A2) and
(A3) respectively. Then for any given (u0, u1) ∈ (Hm

0 (Ω) ∩H2m(Ω)) ×
Hm

0 (Ω), the problem (1) has a unique local solution satisfying:

u ∈ C([0, T ];Hm
0 (Ω)), ut ∈ C([0, T ];L2(Ω)) ∩ L2(Ω× (0, T )),

utt ∈ L∞((0, T );L2(Ω)).

Lemma 2.2.(Sobolev-Poincare inequality [1]). If p satisfies (A3) for all
u ∈ Hm

0 (Ω), then Hm
0 (Ω) −→ Lp(Ω), ‖u‖p+1 6 B‖Dmu‖2, where B is

the optimal constant of the Sobolev embeding.

Lemma 2.3. ([7]) Let φ(t) be a nonincreasing and nonnegative function
defined on [0, T ], T > 1, satisfying:

φ1+r(t) 6 k0(φ(t)− φ(t+ 1)),

for t ∈ [0, T ], k0 > 1 and r > 0. Then we have for each t ∈ [0, T ],{
φ(t) 6 φ(0)ek(t−1)+ , r = 0
φ(t) 6 (φ−r(0) + k0r

−1(t− 1)+)
−1
r , r > 0

where (t − 1)+ = max{t − 1, 0} and k = ln( k0
k0−1). Furthermore, the

energy function E(t) of the problem (1) is defined by:

E(t) = 1
2(m0 −

∫ t
0 g(s)ds)‖D

mu(t)‖2
2 + 1

2(goDmu)(t)

+ 1
2(q+1)‖D

mu(t)‖2(q+1)
2 + 1

2‖ut‖2
2 − 1

p+1‖u‖
p+1
p+1,

(3)

where (goDmu)(t) =
∫ t
0 g(t− s)‖Dmu(s)−Dmu(t)‖2

2ds.

Lemma 2.4. Assume that (A1),(A2) and (A3) hold and let u be the
solution of problem (1). Then E(t) decreases, in other words:

E′(t) =
1
2
(g′oDmu)(t)− 1

2
g(t)‖Dmu(t)‖2

2 − ‖ut‖α+1
α+1 6 0,
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furthermore, for all t > 0,

E(t) 6 E(0). (4)

Proof. By multiplying equation(1) by ut and integrating the result over
Ω, the following result is obtained:

1
2

d
dt‖ut‖2

2 +M(‖Dmu(t))‖2
2

∫
Ω(−∆)mu(t)utdx+ ‖ut‖α+1

α+1

+
∫ t
0 g(t− s)

∫
Ω(−∆)mu(s)utdxds = d

dt
1

p+1‖u‖
p+1
p+1,

(5)

for any regular solution, this result remains valid for weak solutions by
a simple density argument. After being integrated m times by parts for
the second term on the left side of (4) and noting ∂iu

∂νi = 0, the following
identity will be obtained:∫

Ω[(−∆)mu(t)]utdx = (−1)m
∫
ΩD

2muutdx =
∫
ΩD

mu(t).Dmut(t)dx

= 1
2

d
dt‖D

mu(t)‖2
2.

(6)
Inserting (6) in (5) and applying (A1), result in:

d
dt

{
1

2(q+1)‖D
mu(t))‖2(q+1)

2 + m0
2 ‖D

mu(t))‖2
2 + 1

2‖ut‖2
2 − 1

p+1‖u‖
p+1
p+1

}
=
∫ t
0 g(t− s)

∫
ΩD

mut.D
mu(s)dxds− ‖ut‖α+1

α+1,
(7)

Also: ∫ t
0 g(t− s)

∫
ΩD

mut.D
mu(s)dxds

=
∫ t
0 g(t− s)

∫
ΩD

mut.[Dmu(s)−Dmu(t)]dxds

+
∫ t
0 g(t− s)ds

∫
ΩD

mut.D
mu(t)dx

= −1
2

∫ t
0 g(t− s) d

dt

∫
Ω |D

mu(s)−Dmu(t)|2dxds

+
∫ t
0 g(s)ds

d
dt

1
2(
∫
Ω |D

mu(t)|2dx)ds.
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But,

= − 1
2

d
dt

[ ∫ t

0
g(t− s)

∫
Ω
|Dmu(s)−Dmu(t)|2dxds

]
+ d

dt
1
2

[ ∫ t

0
g(s)

∫
Ω
|Dmu(t)|2dxds

]
+ 1

2

∫ t

0
g′(t− s)

∫
Ω
|Dmu(s)−Dmu(t)|2dxds− 1

2g(t)
∫
Ω
|Dmu(t)|2dx.

(8)

Then, (8) is inserted in (7) to get:

d
dt

{
1
2 (m0 −

∫ t

0
g(s)ds)‖Dmu(t))‖22 + 1

2(q+1)‖D
mu(t))‖2(q+1)

2

+ 1
2 (goDm)u(t) + 1

2‖ut‖22 − 1
p+1‖u‖

p+1
p+1

}
= −‖ut‖α+1

α+1 + 1
2

∫ t

0
g′(t− s)‖Dmu(s)−Dmu(t)‖22ds− 1

2‖D
mu(t)‖22.

(9)

Using the definition of E(t), the proof is completed. �

3. The Main Result

In this section, the main result is proved.

Theorem 3.1. (Global existence and energy decay) Let the assumptions
of Theorem 2.1. hold and 1 6 α 6 n+2

n−2 . If the initial datum satisfies,

‖u0‖p+1 < λ0 = l
1

p−1B
−2
p−1 , E(0) < E0 =

p− 1
2(p+ 1)

λp+1
0 , (10)

where B is the optimal constant of the Sobolev embedding(Sobolev-Poincare
inequality ). Then the cauchy problem (1) has a unique global solution.
Moreovere,

E(t) 6 E(0)e−k(t−1)+ , t > 0, α = 1, (11)

E(t) 6 (E
α−1

2 (0) +
α− 1

2
c−1
12 (t− 1)+)

−2
α−1 t > 0, α > 1, (12)

where k = ln( 3c10
3c10−1) and c10 and c12 are given in (41)and (44) respec-

tively.
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Proof. By decreasing of energy E(t), one obtains:

E(t) 6 E(0) < E0 =
p− 1

2(p+ 1)
λp+1

0 . (13)

Therefore the following inequality is claimed:

‖u(., t)‖p+1 < λ0, ∀t > 0. (14)

Suppose (14) is not true, by continuity of ‖u(., t)‖p+1-norm; then there
exist a t0 such that ‖u(., t0)‖p+1 = λ0. Using Sobolev-Poincare inequal-
ity the following relation can be presented:

E(t) >
1
2
lB−2‖u(t)‖2

p+1 −
1

p+ 1
‖u(t)‖p+1

p+1 ∀t > 0. (15)

Then,
E(t0) > 1

2 lB
−2‖u(t0)‖2

p+1 − 1
p+1‖u(t0)‖

p+1
p+1

= p−1
2(p+1)λ

p+1
0 = E0,

(16)

in which (16) contradicts with (13).
On the other hand for all t > 0,

l‖Dmu(t)‖2
2 = 2E(t)− ‖ut‖2

2 − 1
q+1‖D

mu(t)‖2(q+1)
2

+ 2
p+1‖u(t)‖

p+1
p+1 + (goDmu)(t)

6 p−1
p+1 l

p+1
p−1B

−2(p+1)
p−1 + 2

p+1 l
p+1
p−1B

−2(p+1)
p−1

= λp+1
0 .

(17)

By continuation argument and (17), the local solution constructed by
Theorem 2.1. will be exist globally. Furthermore, the large time behav-
ior of equation(1) is considered.
According to (17), the initial condition and Sobolev-Poincare inequality,
the following relation can be concluded:

l‖Dmu(t)‖2
2 < 2E(t) + 2

p+1B
p+1‖Dmu(t)‖p+1

2

< 2E(t) + 2
p+1 l‖D

mu(t)‖2
2,

(18)
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and consequently:

‖Dmu(t)‖2
2 < (

2(p+ 1)
l(p− 1)

E(0))
1
2 . (19)

The parameter β is defined as follows:

0 6 β =
Bp+1

l
(
2(p+ 1)
l(p− 1)

E(0))
p−1
2 < 1. (20)

From (19), (20) and Sobolev-Poincar inequality, the following can be
received:

‖u(t)‖p+1
p+1 < βl‖Dmu(t)‖2

2

< l‖Dmu(t)‖2
2.

(21)

Therefore, if I(t) is defined as follows:

I(t) = l‖Dmu(t)‖2
2 + ‖Dmu(t)‖2(q+1)

2 + (goDmu)(t)− ‖u(t)‖p+1
p+1, (22)

then, by considering (21), the following can be presented:

I(t) > l(1− β)‖Dmu(t)‖2
2 > 0. (23)

Now, F (t) is set as follows:

Fα+1(t) = −1
2

∫ t+1
t

∫ t
0 g

′(t− s)‖Dmu(s)−Dmu(t)‖2
2dsdt

+
∫ t+1
t ‖ut(t)‖α+1

α+1dt+ 1
2

∫ t+1
t g(t)‖Dmu(t)‖2

2dt.

(24)

Thanks to mean value Theorem and Holder inequality,

1
4‖ut(t1)‖2

2 + 1
4‖ut(t2)‖2

2 6
∫ t+1
t ‖ut(t)‖2

2dt

|Ω|
α−1
α+1 (

∫ t+1
t ‖ut(t)‖α+1

α+1dt)
2

α+1 ,

(25)

holds for some t1 ∈ [t, t+ 1
4 ] and t2 ∈ [t+ 3

4 , t+ 1].
Hence, by (24), the following is presented:

‖ut(ti)‖2
2 6 cF 2(t), i = 1, 2, (26)
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where c = 4|Ω|
2(α−1)

(α+1)2 .
Afterwards, multiplying equation(1) by u and integrating it over Ω ×
[t1, t2] the following identity is presented:∫ t2

t1
[l‖Dmu(t)‖2

2 + ‖Dmu(t)‖2(q+1)
2 − ‖u(t)‖p+1

p+1]dt

= −
∫ t2
t1

∫
Ω u(t)utt(t)dxdt−

∫ t2
t1

∫
Ω u(t)|ut(t)|α−1ut(t)dxdt

+
∫ t2
t1

∫
Ω

∫ t
0 g(t− s)Dmu(t).[Dmu(s)−Dmu(t)]dsdxdt.

(27)

Then, using (22), the following is obtained:∫ t2
t1
I(t)dt

= −
∫ t2
t1

∫
Ω u(t)utt(t)dxdt−

∫ t2
t1

∫
Ω u(t)|ut(t)|α−1ut(t)dxdt

+
∫ t2
t1

(goDm)u(t)dt

+
∫ t2
t1

∫
Ω

∫ t
0 g(t− s)Dmu(t).[Dmu(s)−Dmu(t)]dsdxdt.

(28)

Note that by integrating by parts and Holder inequality, the following
inequality is achieved:

−
∫ t2

t1

∫
Ω
u(t)utt(t)dxdt 6

2∑
i=1

‖ut(ti)‖2
2 +

∫ t2

t1

∫
Ω
u2

t (t)dxdt. (29)

Also the following relation is obtained by considering Young inequality:∫ t2
t1

∫
Ω

∫ t
0 g(t− s)Dmu(t).[Dmu(s)−Dmu(t)]dsdxdt

6 δ
∫ t2
t1

∫ t
0 g(t− s)‖Dmu(t)‖2

2dsdt+ 1
4δ

∫ t2
t1

(goDm)u(t)dt,
(30)

where δ is some positive constant to be chosen later.
By using (18) and Sobolev-Poincare inequality, the following result is
concluded:

‖u(ti)‖p+1 6 c1 sup
t16s6t2

E
1
2 (s), (31)
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where c1 = (2(p+1)
l(p−1) )

1
2 .

Then, by (26) and (29)-(31), the following relation is deduced:∫ t2
t1
I(t)dt 6 c2F (t) supt16s6t2 E

1
2 (s) + cF 2(t)

+
∫ t2
t1

∫
Ω |u(t)||ut(t)|αdxdt+ ( 1

4δ + 1)
∫ t2
t1

(goDmu)(t)dt

+δ
∫ t2
t1

∫ t
0 g(t− s)‖Dmu(t)‖2

2dsdt,

(32)
where c2 =

√
2c1c.

On the other hand, the following inequality is obtained from (2) and
(24):∫ t2

t1

(goDmu)(t)dt 6 − 1
ξ2

∫ t2

t1

(g′oDmu)(t)dt 6
2
ξ2
Fα+1(t). (33)

The following relation is achieved by considering (2) and (23):∫ t2
t1

∫ t
0 g(t− s)‖Dmu(t)‖2

2dsdt 6 1
ξ1

∫ t2
t1

∫ t
0 g

′(t− s)‖Dmu(t)‖2
2dsdt

6 1
ξ1

∫ t2
t1
g(0)‖Dmu(t)‖2

2dt

6 g(0)
(1−β)lξ1

∫ t2
t1
I(t)dt.

(34)
Hence, by choosing δ such that δg(0)

(1−β)lξ1
= 1

2 and by using (32)-(34), the
following is obtained:∫ t2

t1
I(t)dt 6 2c2F (t) supt16s6t2 E

1
2 (s) + 2cF 2(t)

c3F
α+1(t) +

∫ t2
t1

∫
Ω |u(t)||ut(t)|αdxdt,

(35)

where c3 = (1 + g(0)
(1−β)lξ1

) 1
ξ2

.
By using Holder inequality and Sobolev-Poincare inequality, the follow-
ing is resulted:∫ t2

t1

∫
Ω |u(t)||ut(t)|αdxdt 6 B

∫ t2
t1
‖ut(t)‖α

α+1‖Dmu(t)‖2dt

6 c1 supt16s6t2 E
1
2 (s)Fα(t).

(36)
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By putting (36) into (35) and due to decreasing of energy E(t), it can
be concluded that:∫ t2

t1

I(t)dt 6 c4(F (t)E
1
2 (t) + Fα(t)E

1
2 (t) + F 2(t) + Fα+1(t)), (37)

where c4 = max{c, c1, c2, c3}.
Moreover, from (3), (22) and (23), it is seen that:

E(t) 6
1
2
‖ut‖2

2 + c5l‖Dmu(t)‖2
2 + c5(goDmu)(t) + c6I(t), (38)

where c5 = 1
2 −

1
p+1 and c6 = ( 1

p+1 + 1
2(q+1)).

By integrating (38) over (t1, t2) also using (23), (26) and (33), the fol-
lowing is achieved:∫ t2

t1

E(t)dt 6
c

2
F 2(t) + c7

∫ t2

t1

I(t)dt+ c8F
α+1(t), (39)

where c7 = c6 + c5
1−β and c8 = 2c5

ξ2
.

On the other hand, from the nonincreasing of E(t) one obtain:∫ t2

t1

E(t)dt >
1
2
E(t2).

Therefore, from (39),

E(t) = E(t2)− 1
2

∫ t2
t

∫ t
0 g

′(t− s)‖Dmu(s)−Dmu(t)‖2
2dsdt∫ t2

t ‖ut(t)‖α+1
α+1dt+ 1

2

∫ t2
t g(t)‖Dmu(t)‖2

2dt

6 2
∫ t2
t1
E(t)dt+ Fα+1(t)

6 c9(F (t)E
1
2 (t) + Fα(t)E

1
2 (t) + F 2(t) + Fα+1(t)),

(40)

where c9 = max{c+ 2c7c4, 2c7c4, 1 + 2c8 + c7c4}.
After that, by Young inequality, the following inequality is achieved:

E(t) 6 c10(F 2(t) + F 2α(t) + Fα+1(t)), (41)
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where c10 = | 2c9
1−c9

|.
If α = 1 in (41), then

E(t) 6 3c10(F 2(t)) = 3c10(E(t)− E(t+ 1)), (42)

therefore (11) follows from (42) and Lemma 2.3.
If α > 1, since:

Fα+1(t) = E(t)− E(t+ 1) 6 E(0),

then, the following relation is obtained:

E(t) 6 c10(1 + F 2(α−1)(t) + Fα−1(t))F 2(t)

6 c10(1 + (E(0))
2(α−1)

α+1 (t) + (E(0))
α−1
α+1 (t))F 2(t)

6 c11F
2(t),

(43)

where c11 = (1 + (E0)
2(α−1)

α+1 (t) + (E0)
α−1
α+1 (t)).

Thus, (43) implies (44) as follows:

E
α+1

2 (t) 6 c
α+1

2
11 Fα+1(t) = c12(E(t)− E(t+ 1)), (44)

where c12 = c
α+1

2
11 .

Hence,(12)follows from (44) and Lemma 2.3. This finishes the proof. �

4. Conclusion

In this paper, a difference inequality [Lemma 2.3.] for a class of Integro-
Diferential equations with nonlinear damping has been applied. The
main goal of this work is estimating general decay energy of these equa-
tions. The mentioned target is satisfied by the propose method. Also,
the asymptotic behavior of solutions is discussed.
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