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Abstract. Solving optimal control problems (OCP) with analytical
methods has usually been difficult or not cost-effective. Therefore, solv-
ing these problems requires numerical methods. There are, of course,
many ways to solve these problems. One of the methods available
to solve OCP is a forward-backward sweep method (FBSM). In this
method, the state variable is solved in a forward and co-state variable
by a backward method where an explicit Runge–Kutta method (ERK)
is often used to solve differential equations arising from OCP. In this pa-
per, instead of the ERK method, three hybrid methods based on ERK
method of order 3 and 4 are proposed for the numerical approximation
of the OCP. Truncation errors and stability analysis of the presented
methods are illustrated. Finally, numerical results of the four opti-
mal control problems obtained by new methods, which shows that new
methods give us more detailed results, are compared with those of ERK
approaches of orders 3 and 4 for solving OCP.
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1 Introduction

Optimal control (OC) is an effective tool for using physical, economic,
enginering, biological and other science models. Richard Bellman and
Pontryagin in the 1950s were the first for solving OC problems with
numerical techniques. Numerical methods can be applied to solve OC
problems to three categories: 1-direct methods 2-indirect methods 3-
dynamic programming. In recent years, numerical solution of fractional
OC problems is also one of the topics of OC that many articles have been
published in the context [24, 25, 26, 36]. Indirect approaches according
to the pontryagin’s maximum principles (PMP). In these methods, the
OC problem becomes a two-point boundary value problem(TPBVP).
Forward-backward sweep method(FBSM) is one of the indirect methods
for solving OCP. In the second decade of 21th century, many people
have used the pontryagin’s maximum principles(PMP) in their articles
[11, 15, 21, 27, 37]. In 2007 S. Lenhart and J.T. Workman first intro-
duced the FBSM method in their book ”optimal control applied to bio-
logical models”. They used FBSM methodology for a variety of optimal
control problems [19]. M.Siliva and colleagues in 2009 have been sug-
gested and evaluated some methods for the segmentation of skin lesions
for analyzing dermoscopic images. They conclude the FBSM methodol-
ogy was the best fully automatic approach, with resultss just a bit worse
than adaptive snake methodology (AS) and expectation-maximization
level set methodology (EM-LS) [34]. Convergence of the FBSM method-
ology was proven by M. Mcasey and his colleaguess in 2012 [22]. D.P.
Moule and colleagues in 2015 utilized the FBSM methodology to solve
an OCP about a tuberculosis pattern with undetected instances in the
country of Cameroon. They were able to reduce 80% this type of tuber-
culosis in the past ten years by combining education and chemotherapy
[23]. G.R. Rose in 2015 in his thesis showed that the FBSM method
is more accurate than direct shooting method and matlab optimization
[31]. M. Sana and colleagues in 2015 applied FBSM method with trape-
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zoidal and Euler methods and compared with Range-Kutta(RK) method
of rank 4 and concluded that RK and trapezoidal methods for OCPs have
the same functional performance, but better than the Euler method and
with increasing steplength, the Euler method differnces with the rest
of the methods [21, 33]. M.Lhous and colleagues in 2017 provided dis-
crete mathematical pattern and OC of the marital condition. They used
the pontryagin’s maximum principles (PMP) and FBSM method. They
made aware of the people of the benefits of marriage and disadvantages
of divorce and they could reduce the amount of divorce in community
[20]. N.D. Bianca and colleagues in 2018 have compared direct and indi-
rect methodologies about minimum time OCPs. They selected the PINS
numerical solver from the direct method and the next-generation of gen-
eral purpose optimal control software (GPOPS-2) numerical solver from
the indirect method, and compared them. They concluded that the cal-
culation time in PINS is shorter and the calculation accuracy is higher.
While GPOPS-2 is stronger and much more accurate [3]. M.Q. Duran
and colleagues in 2019 provided an improved FBSM-based method for
reconfiguration of unbalanced distribution networks [6]. Y. Kongjeen
and colleagues in 2019 have provided an improved FBSM to analyze
microgrid-load-flow, as mathematical models are different electric vehi-
cle load [17]. NH. Sweilam and colleagues in 2019 introduced, different
numerical techniques for solving OCP and tried to achieve the best ac-
curacy for the OCP. The goal is to reduce the size of tumor-cells until
the end of the treatment procedure. They claim that direct method can
be used to get better results than indirect method and it is easy to im-
plement [35]. S. Ouali and A. Cherkaoui in 2020 presented a modified
FBSM power flow methodology according to a novel network informa-
tion organization in the systems of radial distribution [28]. Chronic heart
disease (CHD) is one of the greatest defies currently. I. Ameen and col-
leagues in 2020 proposed a mathematical model to study the connection
between fish consumption and (CHD). They use the improved FBSM
based on the predictor-corrector method. They concluded consumption
of fish reduces the risk of hear disease (CHD) and reduces its mortality
[1]. A. Kouider and colleagues in 2020 proposed a mathematical mod-
eling for describing the dynamics of transmission of the novel corona
virus (COVID-19), between potential people and infected people with-
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out symptoms. They proposed an optimal technique by carrying out a
wareness campaigns about people with pratical measures for reduction
of spread of the COVID-19-virus, and discernment and surveillance of
airports space and the quarantine of infected cases. They used the pon-
tryagin’s maximum principles(PMP) to characterize and solve the OCs
[18]. In 2020, A. Bhih and colleagues introduced a new model for spread-
ing rumors in social networks And introduced three types of controls to
minimize the number of fake pages, the number of publisher users and
related costs; theoretically. They used the FBSM method to solve their
own OCP [2].
The goal of this work is to illustrate details of a new single step explicit
Rung-Kutta (ERK) type method according to off-step-points for the nu-
merical solution of OCPs. For mildly stiff and stiff problems of ODEs
which may be appeared in OCP, we need to use numerical methods with
wide stability regions and domains as well as good accuracy. In this
research, we illustrate three implicit hybrid methods of orders 3 and 4
and then convert them into explicit methods using explicit Runge-Kutta
methodologies of third and fourth orders as a predictor of the scheme.
The stability and order of truncation error of the methods discussed in-
dicating that novel strategies have wide stability regains by which more
accurate results can be obtained compared to the FBSM based explicit
Runge-Kutta methodologies of third and fourth orders.
This work is arranged as follows: Some basics about optimal control
prblem, and Pontryagin Maximum Principle are presented in Section 2
and in Section 3 the FBSM method is introduced. In section 4 hybrid
methods of orders 3 and 4 is described and their orders of truncation
errors discussed. In Section 5, stability of the presented methods is ana-
lyzed. In section 6 convergence of FBSM and new methods are proven.
Numerical results for solving some OCPs presented in Section 7. Finally,
the conclusion is presented in Section 8.

2 Optimal control (OC) problems

In an OC problem, there is an objective function J in terms of the state
variables x ∈ X and the control variables u ∈ U . Solve an OCP, that
is, obtain a piecewise continuous function u(t) with t0 ≤ t ≤ tf and the
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state variable x(t), Which minimize the objective function J(x, u). For
more explanation we need a few definitions.

2.1 Basic optimal control problems

Definition 2.1 (Bolza problem). Let us study the optimization of func-
tional

J(x, u) =

∫ te

t0

f(t, x(t), u(t))dt (1)

By adding a payoff term to problem (1), the Bolza problem is obtained:

J(x, u) = h(t1, x(t1)) +

∫ te

t0

f(t, x(t), u(t))dt

Definition 2.2 (OC problem, in Lagrangian form, in general). The OC
problem define as:

max
u

J(x, u) =

∫ te

t0

f(t, x(t), u(t))dt (2)

x′(t) = g(t, x(t), u(t))

x(t0) = x0

Note that min{j} = −max{−j}.

2.2 Pontryagin Maximum Principle

The Pontryagin’s maximum principle is a good tool for solving OC prob-
lems, especially when the state variable is constrained. Indirect numer-
ical approaches to solve OCP, are based on this principle.

Definition 2.3 (Hamiltonian). Let have optimal control problem (2),
then the

H(t, x, u, λ) = f(t, x, u) + λg(t, x, u) (3)

is supposed to be the hamiltonian function, and the λ is supposed adjoint
variable.
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Theorem 2.4 (Pontryagin’s Maximum principle in the OC problem
(2)). Let u∗ and x∗ be the optimal pair for (OCP ) (2), thus one can find
a piecewise differentiable adjoint variable λ as

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u(t), λ(t))

in any controlers u(t) at every time t, in which H shows Hamiltonian
(3), also

λ′(t) = −∂H(t, x∗(t), u∗(t), λ(t))

∂x

λ(tf ) = 0.

Proof. We refer the reader to [19]. �
The condition of λ(tf ) = 0 called the transversality condition,and

The condition ∂H
∂u = 0 at u∗ for each t is called the optimality condition.

Theorem 2.5. When all the controls of problem (2) be lebesgue inte-
grable functions and t0 ≤ t ≤ te in R . Consider that f(t, x, u) is concave
in u and there are variables d1, d2, d3 > 0, d4 and b > 1 as

g(t, x, u) = a(t, x) + b(t, x)u,

|g(t, x, u)|d1(1 + |x|+ |u|),
|g(t, x0, u)− g(t, x, u)| ≤ d2|x1 − x2|(1 + |u|),

f(t, x, u) ≤ d3|u|b − d4,

for any t with t0 ≤ t ≤ te , x1, x2, u in R. Thus the optimal pair (x∗, u∗)
can be found that, maximizing J , with J(x∗, u∗) finite.

Proof. We refer the reader to [19]. �

3 Forward-backward sweep method (FBSM)

Consider the OC problem (2). To solve such problems numerically, an
algorithm is developed that produces an approximation for the piecewise
continiuous control u∗. In this algorithm, the time interval [t0, t1] is bro-
ken into pieces with specific points of interest t0 = b1, b2, ..., bN , bN+1 =
t1; these points will usually be equally spaced. The approximation will
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be a vector −→u = (u1, u2, ..., uN+1), where ui ≈ u(bi). any solution to the
above OC problem should satisfies:

x′(t) = g(t, x(t), u(t)), x(t0) = x0,

λ′ = −∂H
∂x

, λ(t1) = 0,

∂H

∂u
= 0 at u∗.

The third equation, the optimality conditions can usally be retouched to
find a showing of u∗ in terms of t, x, and λ. Then the first two equations
form a problem of two point boundary values. The generalized problem
can be solved by using indirect methods which are numerical techniques
to solve them. The forward-backward sweep methodology (FBSM) is one
of these methods. In [22], convergence analysis of the FBSM has been
done. In fact, by using FBSM, the differential equations arising from
the maximum principle are numerically solved. Euler, Trapezoidal and
Runge-Kutta methods can be used for the numerical solution of OCP
by using FBSM where we are faced with initial value problems(IVPS)
arising from the state and adjoint equations. A straightforward algo-
rithm for this method is as follows. Let −→x = (x1, x2, ..., xN+1) and
−→
λ = (λ1, λ2, ..., λN+1) are the vector approximations for the state and
adjoint.

1. Guess an initial value for −→u in the given time interval.

2. Obtain the −→x by solving forward in time, the differential equation
system, using the initial condition x(t0) = x1 = a and the value
−→u .

3. Obtain the
−→
λ , by solving backward in time, of the differential

equation system, using the transfer condition λN+1 = λ(te) = 0.

4. Obtain the updated value −→u by substituting the new values −→x
and
−→
λ .

5. Test convergence. In the case that, the difference between the val-
ues of the variables of latest iteration, and the previous iteration,
was too small, select these values as the answer. If there is a bigger
difference, go back to step 2.
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4 Hybrid methods and order of truncation er-
rors

To obtains the numerical answer of initial-valued-problems (IVPs), in
the following form

x′ = f(t, x), x ∈ Rn, x(t0) = x0, t0 ≤ t ≤ t1, (4)

where f : [t0, t1]×Rn → Rn, one can use an explicit or implicit method.
Methods based of off-step points, such as backward differential for-
ward (BDF), hybrid backward differential forward (HBDF), new class
of HBDFs and class−2 + 1 hybrid BDF-like schemes have wide stability
regions and higher order compared to some Runge-Kutta method and
implicit BDF methods [7, 8, 9, 10, 16]. Let us consider the IVP of the
form (4). Linear k-step methods of the

xn+1 = α1xn+α2xn−1+...+αkxn−k+1+h{β0fn+1+β1fn+...+βkfn−k+1}
(5)

has 2k + 1 arbitrary parameter and we can write it as

ρ(E)xn−k+1 − hσ(E)fn−k+1 = 0

in which E is the shift operator as E(x(t)) = x(t + h), with the step
length h and ρ and σ are first and second characteristic polynomials
defined by

ρ(ξ) = ξk − α1ξ
k−1 − α2ξ

k−2 − ...− αk,
σ(ξ) = β0ξ

k + β1ξ
k−1 + ...+ βk.

To increase the order of k-step methods of the form (5), at several points
between tn and tn+1, we use a linear combination of the slopes, where
tn+1 = tn + h and h is the step length on [t0, t1]. Then, the modified
form of (5) with m slops is given by

xn+1 =
k∑
j=1

αjxn−j+1 + h
k∑
j=0

βjfn−j+1 + h
m∑
j=1

γjfn−θj+1 (6)

where αj , βj , γj and θj are 2k + 2m + 1 arbitrary parameters [16].
Methods of the form (6) with m off-step points are called hybrid methods
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where 0 < θj < 1, j = 1, 2, ...,m. In this work, we set β0 = 0, k = 1
and m = 1. Hence, we write (6) as

xn+1 = α1xn + h{β0fn+1 + β1fn}+ hγ1fn−θ1+1

where α1, β0, β1, γ1 and θ1 are arbitrary parameters and θ1 6= 0 or 1.
Expanding terms yn+1, fn+1, fn−θ1+1 in Taylor’s series about tn, we can
obtain a family of third order methods if the equations

α1 = 1,
β1 + β0 + γ1 = 1,
β0 + (1− θ1)γ1 = 1

2 ,
1
2β0 + 1

2(1− θ1)2γ1 = 1
6 .

are satisfied where the principal provision of the truncation error will be

1

4!
c4h

4x(4)(tn) + o(h5), c4 = 1− 4β2 − 4γ1(1− θ1)3.

For more details, one can see the [16].
Consider the following three cases:

1. β1 = 0, α1 = 1, β0 = 1
4 , γ1 = 3

4 , θ1 = 2
3 , c4 = −1

9 ,

2. β1 = 1
4 , α1 = 1, β0 = 0, γ1 = 3

4 , θ1 = 1
3 , c4 = 1

9 ,

3. β1 = 1
6 , α1 = 1, β0 = 1

6 , γ1 = 2
3 , θ1 = 1

2 , c4 = 0.

Gives us the following methodologies of third and fourth orders, respec-
tively (Method1, Method2 and Method3 in this work):

xn+1 = xn +
h

4
{fn+1 + 3fn+ 1

3
}, (7)

xn+1 = xn +
h

4
{fn + 3fn+ 2

3
}, (8)

xn+1 = xn +
h

4
{fn+1 + 4fn+ 1

2
+ fn}, (9)

where fn+1 = f(tn, xn+1), fn+m = f(tn+mh, xn+m) and fn = f(tn, xn)
for m = 1

3 ,
2
3 and 1

2 . Note that, xn+1, xn+m and xn are numerical
approximations according to the exact values of the solution x(t) at
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tn+1 = tn + h, tn+m = tn + mh, for m = 1
3 ,

2
3 and 1

2 respectively. In
order to convert methods (7)–(9) into explicit methods at each step, we
predict the values of xn+1 and xn+m used on the right hand side of the
new methods using fourth or third order explicit Runge-Kutta method
as follows, respectively:

xn+1 = xn + h
6 (k1 + 2k2 + 2k3 + k4),

k1 = f(tn, xn),
k2 = f(tn + 1

2h, xn + 1
2k1h),

k3 = f(tn + 1
2h, xn + 1

2k2h),
k4 = f(tn + h, xn + k3h).

or
xn+1 = xn + h

6 (k1 + 4k2 + k3),
k1 = f(tn, xn),
k2 = f(tn + 1

2h, xn + 1
2k1h),

k3 = f(tn + h, xn − k1h+ 2k2h).

(10)

In general, we rewrite methods (7)–(9) using RK4 method as a predictor
as follows:

−
xn+1 = xn + h

6 (k1 + 2k2 + 2k3 + k4), (11)

−
xn+m = xn + mh

6 (k1 + 2k2m + 2k3m + k4m),m = 1
3 ,

2
3 or 1

2 , (12)

xn+1 = xn + h{β0
−
fn+1 + γ1

−
fn+m + β1fn}, (13)

where

k1 = f(tn, xn),
k2m = f(tn +mh, xn +mk1h),
k3m = f(tn +mh, xn +mk2h),
k4m = f(tn +mh, xn +mk3h),

and fn+1 = f(tn, xn+1), fn+m = f(tn + mh, xn+m), fn = f(tn, xn).
Now, suppose that the order of stage equation (10) is p1, p1 = 4, as
like as (11). Thus, the difference of exact and numerical answer at
t = tn+m = tn +mh, m = 1

3 ,
2
3 ,

1
2 and 1 is

y(tn+m)− yn+m = Cmh
p1y(p1)(tn) +O(hp1+1) (14)
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where Cm is the error constant of the methodology (11) or (13) with
corresponding m which can take only one of the values 1

3 ,
2
3 ,

1
2 , together

with the value 1 related to methods (10) and (11) respectively. The
difference operator associated to methodology (12), of the pth order
(p = 3 or 4), can be written as

y(tn+1)− yn+1 = Chpy(p)(tn) +O(hp+1) (15)

which C is the error constant of the methodology (13). Therefore, we
obtain a theorem as:

Theorem 4.1. Suppose that

1. the Equation (11) be of order p1,

2. the Equation(12) be of order p1 too,

3. the Equation (13) be of order p,

thus, the order of (11) –(12) is p.

Proof. Suppose that m can only take one of the values 1
3 ,

2
3 or 1

2 and
yn is exact. From (15) and (13) one can write

y(tn+1)− yn+1 = hβm[f(tn+m, y(tn+m))− f(tn+m, yn+m)]

+ hβ1[f(tn+1, y(tn+1))− f(tn+1, yn+1)] + Chpy(p)(tn) +O(hp+1).

Considering properties of the IVPs of the form (4), for some values such
as ηm and η1 belong to intervals (yn+m, y(tn+m)) and (yn+1, y(tn+1))
respectively, we can write

f(tn+m, y(tn+m))− f(tn+m, yn+m) = ∂f
∂y (tn+m, ηn+m)(y(tn+m)− yn+m),

f(tn+1, y(tn+1))− f(tn+1, yn+1) = ∂f
∂y (tn+1, ηn+1)(y(tn+1)− yn+1).

Therefore, by using (14), we have

y(tn+1)− yn+1 = hβm

[
∂f
∂y (tn+m, ηn+m)(y(tn+m)− yn+m)

]
+ hβ1

[
∂f
∂y (tn+1, ηn+1)(y(tn+1)− yn+1)

]
+ Chpy(p)(tn) +O(hp+1).
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Applying equation (13) to this gives us

y(tn+1)− yn+1 = hβm

[
∂f
∂y (tn+m, ηn+m)Cmh

p1y(p1)(tn) +O(hp1+1)
]

+ hβ1

[
∂f
∂y (tn+1, ηn+1)C1h

p1y(p1)(tn) +O(hp1+1)
]

+ Chpy(p)(tn) +O(hp+1)

= hp
{
βm

[
∂f
∂y (tn+m, ηn+m)Cmh

p1−p+1y(p1)(tn)
]}

+ hpβ1

{[
∂f
∂y (tn+1, ηn+1)C1h

p1−p+1y(p1)(tn)
]

+ Cy(p)(tn)
}

+O(hp+1)

where p1 ≥ p. Thus, it can be concluded that the methodology (11)–(13)
is of order p and so the proof is completed. �
By following the same way as presented above, it can be proved that
the methods (7) –(9) using RK3 method as a predictor (Runge-kutta of
order 3) of the form

−
xn+1 = xn + h

6 (k1 + 4k2 + k3),

−
xn+m = xn + mh

6 (k1 + 2k2m + 2k3m), m = 1
3 ,

2
3 or 1

2 ,

xn+1 = xn + h{β1
−
fn+1 + γ1

−
fn+m + β0fn},

where

k1 = f(tn, xn),
k2m = f(tn +mh, xn +mk1h),
k3m = f(tn +mh, xn +mk2h),

and
fn+1 = f(tn, xn+1), fn+m = f(tn +mh, xn+m), fn = f(tn, xn).

5 Stability analysis of the new methods

Now we want to examine the stability analysis of new methods. We
consider Dahlquist test problem x′ = λx to investigate the stability
region of the methods presented in this study. Using the Dahlquist
test problem to the methods (11)–(13) inserting p1 = 4, the following
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equations can be obtained:

−
xn+1 =

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!
+

(h̄)4

4!

)
xn, (16)

−
xn+m =

(
1 +

mh̄

1!
+

(mh̄)2

2!
+

(mh̄)3

3!
+

(mh̄)4

4!

)
xn, m = 1

3 ,
2
3 or 1

2 ,

(17)

xn+1 = xn + h{β0
−
fn+1 + γ1

−
fn+m + β1fn}, (18)

where h̄ = hλ. By substituting (16) and (17) into (18), the following
equation is obtained:

xn+1 = xn + h

{
β0

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!

(h̄)4

4!

)
xn

}
(19)

+ h

{
γ1

(
1 +

mh̄

1!
+

(mh̄)2

2!
+

(mh̄)3

3!
+

(mh̄)4

4!

)
xn + β1xn

}
.

By inserting xn = rn into (19) and dividing by rn we can obtain:

rn+1 = rn
{

1 + h̄(β0 + β1 + γ1) + (β0 + γ1m)h̄2 +
(β0 + γ1m

2)h̄3

2

}
+rn

{
(β0 + γ1m

3)h̄4

6
+

(β0 + γ1m
4)h̄5

24

}
⇒ r = 1+h̄(β0+β1+γ1)+(β0+γ1m)h̄2+

(β0 + γ1m
2)h̄3

2
+

(β0 + γ1m
3)h̄4

6

+
(β0 + γ1m

4)h̄5

24
.

which is the stability polynomial of the methods (11) – (13) for m =
1
3 ,

2
3 or 1

2 where p1 = 4. By following the same way for p1 = 3, we can
obtain:

−
xn+1 =

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!

)
xn, (20)

−
xn+m =

(
1 +

mh̄

1!
+

(mh̄)2

2!
+

(mh̄)3

3!

)
xn, m = 1

3 ,
2
3 , or 1

2 , (21)

xn+1 = xn + h{β0
−
fn+1 + γ1

−
fn+m + β1fn}, (22)
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where h̄ = hλ. By substituting (20) and (21) into (22), the following
equation is obtained:

xn+1 = xn + h

{
β0

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!

(h̄)4

4!

)
xn

}
+h

{
γ1

(
1 +

mh̄

1!
+

(mh̄)2

2!
+

(mh̄)3

3!
+

)
xn + β1xn

}
.

By inserting xn = rn into (19) and dividing by rn we can obtain:

rn+1 = rn
{

1 + h̄(β0 + β1 + γ1) + (β0 + γ1m)h̄2
}

+rn
{

(β0 + γ1m
2)h̄3

2
+

(β0 + γ1m
3)h̄4

6

}
⇒ r = 1 + h̄(β0 + β1 + γ1) + (β0 + γ1m)h̄2

+
(β0 + γ1m

2)h̄3

2
+

(β0 + γ1m
3)h̄4

6
.
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Figure 1: (a) Stability region of rk3 and Method1 where p1 = 3. (b) Stability
region of rk4 and Method 1 where p1 = 4.

We show the stability of the Method1, where p1 = 3 in Figure 1
and compared Runge- Kutta of Rank 3 method. It can be seen that
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the stability zone of the proposed scheme is larger than the stability
region of the rk3 scheme. Furthermore, this proves the efficiency of the
propsed method. We show the stability of the Method1, where p1 = 4.
in Figure 1 and We compared Runge- Kutta of Rank 4 methods. It
can be seen that the stability zone of the proposed scheme is larger
than the stability region of the rk4 scheme. Furthermore, this proves
the efficiency of the proposed method. We show the stability of the
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Figure 2: (a) Stability region of rk3 and Method2 where p1 = 3. (b) Stability
region of rk4 and Method2 where p1 = 4.

Method2, where p1 = 3 in Figure 2 and compared Runge- Kutta of
rank 3 methods. One can observe the stability region in the current
scheme is larger than the stability region of the rk4 and rk3 methods.
Furthermore, this proves the efficiency of the propsed method, and we
show the stability of the Method2 where p1 = 4 in Figure1 and compared
Runge- Kutta of rank 4 method. One can observe that the stability
region of the propsed methodology is larger than the stability region of
the rk4 and rk3 methods.In aditional, this proves the efficiency of the
propsed method. We show the stability of the Method3, where p1 = 3
in Figure 3 and compared Runge-Kutta of rank 3 method. One can
observe that the stability region of the new scheme is larger, and this
proves the efficiency of the new method, and we show the stability of
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Figure 3: (a) Stability region of rk3 and Method3 where p1 = 3. (b) Stability
region of rk4 and Method3 where p1 = 4.

the Method3 where p1 = 4 in Figure 3 and compared Runge- Kutta of
rank 4 method. One can observe that the stability region of the new
scheme is larger.

6 Convergence

6.1 Convergence of FBSMs

In simpler terms, solving the OC problem with the FBSM method is
actually finding (x(t), λ(t), u(t)) as

x′(t) = g(t, x(t), u(t)), x(t0) = x0,

λ′(t) = p1(t, x(t), u(t)) + λ(t)p2(t, x(t), u(t)), λ(tN ) = 0,

u(t) = p3(t, x(t), u(t)).

Here x0 ∈ Rn and t0 < tN are given real numbers. To prove the con-
vergence of the FBSM method, it is necessary to have the following
conditions.
(B) The functions g, p1, p2 and p3 are Lipschitz-continuous based on
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their 2nd and 3th arguments, with Lipschitz-constants Lg, Lp1 ,

|g(t, x1, u1)− g(t, x2, u2)| ≤ Lg(|x1 − x2|+ |u1 − u2|).

Moreover, Λ = ‖λ‖∞ and H = ‖p2‖∞ <∞.

Theorem 6.1. Under the assumptions (B), if

c0 ≡Lp3 {[exp(Lg(tN − t0))− 1]}+ Lp3 {(Lp1 + ΛLp2)

1

H
[exp(H(tN − t0))− 1][exp(Lg(tN − t0)) + 1]

}
< 1,

then one has convergence: as k →∞,

max
t0≤t≤tN

|x(t)− x(k)(t)|+ max
t0≤t≤tN

|λ(t)− λ(k)(t)|

+ max
t0≤t≤tN

|u(t)− u(k)(t)| → 0.

Proof. We refer the reader to [22]. �

6.2 Convergence of the proposed method

One important property of numerical methods related to truncation er-
rors is convergence. In this section, after mentioning a few definitions,
we prove that our proposed method is convergent.

Definition 6.2. linear Mulistep Methods are generally described as
follows:

k∑
j=1

αjyn+j = h

k∑
j=1

βjfn+j LMM.

Definition 6.3. The first characteristic polynomial of LMM methods
is defined as follows:

ρ(ξ) = α1ξ
1 + α2ξ

2 + ...+ αkξ
k.

Definition 6.4. The second characteristic polynomial of LMM meth-
ods is defined as follows:

σ(ξ) = β1ξ
1 + β2ξ

2 + ...+ αkξ
k.
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Definition 6.5. If the method at least rank one, then it is compatible,
or in other word:

ρ(1) = 0, ρ′(1) = σ(1).

Definition 6.6. A polynomial applies to the root condition, when if
any roots satisfies |r| ≤ 1 and then satisfies |r| = 1 are simple.

Definition 6.7. Every LMM is called zero-stable ,when the polynomial
of its first characteristic ρ(r) applies to the root condition.

Theorem 6.8 (Dalquist ). Every LMM is convergent, if and only if, at
the same time, it be consistent and zero-stable.

Proof. We refer the reader to [14]. �

Remark 6.9. Because the methods presented in this article are consis-
tent and zero stable. therefor, according to Theorem 6.8 the proposed
method is covergent.

7 Numerical results using FBSM and new meth-
ods

One of The important cases of OC is the problem of linear regulators.
In this part of the article we state its general state and solve an example
in this field with new methods and compare its numerical results with
FBSM method. Let E,P(t) and S(t) be nonnegative and symmetric
definite matrices. A linear regulator problem with linear state space is
called and its cost function is as follows:

F (u) =
1

2
xT (tf )Ex(t1) +

1

2

∫ tf

t0

[xtP (t)x(t) + uT (t)S(t)u(t)]dt.

Example 7.2 is related to the effect of Medicine on Cancerous Cells,
Example 7.3. the general form is a Linear-Qudratic Models and Example
7.4 is a nonlinear Model and Related to the OC of rubella.

Example 7.1. (linear regulator problem)
Let we have the following OC problem [22]:

minu
1
2

∫ 1
0 x(t)2 + u(t)2dt

st. x′(t) = −x(t) + u(t), x(0) = 1.
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The Pontryagin’s Maximum-Principle can be utilized to construction of
any analytic answer

H(t, x, u, λ) =
1

2
(x(t)2 + u(t)2) + λ(−x(t) + u(t)),

∂H

∂u
= 0 at u∗ ⇒ u∗ + λ = 0⇒ u∗ = −λ,

λ′ = −∂H
∂x

= −x+ λ, λ(1) = 0.

And by the state equation, one gets a linear differential-algebric system
as follows.

x′(t) = −x(t) + u(t), x(0) = 1

λ′(t) = λ(t)− x(t), λ(1) = 0

u(t) = −λ(t).

The solution is

x∗(t) =

√
2 cosh(

√
2(t− 1))− sinh(

√
2(t− 1))√

2 cosh(
√

2) + sinh(
√

2)
and

u∗(t) =
sinh(

√
2(t− 1))√

2 cosh(
√

2) + sinh(
√

2)
.

The optimal condition of the performance index is J = .1929092981
and The final condition of the state is x(1) = .2819695346. The last
condition of the control is 0 and the initial condition of the co state
is λ(0) = .3858185962. Matlab implementation of the new methods of
Example 7.1 was determined as follows. The results are shown in
Figure4 with h = 1

10 and in Tables 1- 4. These results show that the
new methods are more accurate than the FBSM method under the 4th
and 3th order Runge-Kutta. To avoid increasing the number of pages of
the article, the Figure of method 1 has been selected and drawn as an
example. The Figure of the other methods is similar to method 1.
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Figure 4: (a) The optimal state and control in Example 7.1 (Rk4). (b) The
optimal state and control values in Example 7.1 (Method1, where p1 = 4).

Table 1: End Error of control values in Example 7.1 where p1 = 4, t =
.9.

N FBSM rk4 Method1 Method2 Method3

10 3.5468e-5 1.5003e-5 1.1891e-5 9.1624e-6
30 1.4072e-5 8.5749e-6 1.1443e-5 9.1645e-6
100 1.9391e-5 1.8900e-5 1.9155e-5 1.8955e-5
500 3.3824e-8 1.4209e-8 2.4338e-8 1.6390e-8

Table 2: End Error of control values in Example 7.1 where p1 = 3, t =
.9.

N FBSM rk3 Method1 Method2 Method3

10 3.3172e-5 9.2263e-6 3.2725e-5 9.1004e-6
30 1.3993e-5 9.1904e-6 6.1536e-6 9.1953e-6
100 1.9381e-5 1.8955e-5 1.8683e-5 1.8955e-5
500 3.3821e-8 1.6389e-8 5.4958e-9 1.6390e-8
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Table 3: The Error of estimate of the value of the objective Japprox in
Example 7.1 where p1 = 4.

N eta FBSM rk4 Method1 Method2 Method3

10 0.001 1.4263e-3 1.3302e-3 1.4070e-3 1.3407e-3
30 0.001 1.5403e-4 1.4361e-4 1.5190e-4 1.4477e-4
100 0.001 6.0107e-5 5.9178e-5 5.9915e-5 5.9281e-5
500 0.000001 5.6024-7 5.2301e-7 5.5246e-7 5.2715e-7

Table 4: The Error of estimate of the value of the objective Japprox in
Example 7.1 where p1 = 3.

N eta FBSM rk3 Method1 Method2 Method3

10 0.001 1.4158e-3 1.3414e-3 1.2875e-3 1.3410e-3
30 0.001 1.5366e-4 1.4478e-4 1.3897e-4 1.4477e-4
100 0.001 6.0098e-5 5.9281e-5 5.8764e-5 5.9281e-5
500 0.000001 5.6017e-7 5.2715e-7 5.0646e-7 5.2715e-7

7.1 Application of the proposed method in Effect of drug
on cancer cells

Example 7.2. In general, suppose the following set-up,

max
u

[
φ(x(t1)) +

∫ t1

t0

f(t, x(t), u(t))dt

]

subject to x′ = g(t, x(t), u(t)), x(t0) = x0.

Suppose x(t) is the number of tumor cells at moment t (with exponential
growth rate α ), and u(t) the drug concentration. We want to minimize
the number of tumor cells at the end of the treatment period and mini-
mize the harmful influence of drug accumulation in the body. Therefore,
the problem is as follows, which is solved by another method in reference
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[19].

min
u

x(T ) +

∫ T

0
u(t)2dt

subject to x′(t) = αx(t)− u(t), x(0) = x0 > 0

Notice that φ(s) = s here, so that φ′(s) = 1. First, one constructs the
Hamiltonian and then calculate the necessary conditions:

H = u2 + λ(αx− u),
∂H

∂u
= 2u− λ = 0 at u∗⇒ u∗ =

λ

2
,

λ′ = −∂H
∂x

= −αλ⇒ λ = ce−αt λ(T ) = 1⇒ λ(t) = eα(T−t)

⇒ u∗(t) =
eα(T−t)

2
,

x′ = αx− u = αx− u = αx− eα(T−t)

2
, x(0) = x0.

⇒ x∗(t) = x0e
αt + eαT

e−αt − eαt

4α
.

The optimal value of the objective functional is J = 4.0391717218591.
The final value of the state is x(1) = 6.8928734478762e − 1. The final
value of the control is 0, the final value of the controller is 0 and the
estimate of value of control with new methods and FBSM methods is
3.7252e− 9.
The numerical answer of this OCP related to x (t) , and u(t) are ob-
tained and their results have been plotted in Figure 5 with α = 2, h =
1
30 and the results are indicated in Tables 5-6. These results show that
the new methods are more accurate than the Runge-Kutta of rank 4
method.

As clearly seen in Section b of Figure 5. The curves of the control
variables and the state of the FBSM method under the Runge-Kutta
order of 4 times N equals 30 are very different from the real answer.
While the control curves and the state of our proposed method for each
N are exactly the same as the real answer. To avoid increasing the
number of pages of the article, the Figure of method 1 has been selected
and drawn as an example. The Figure of the other methods is similar
to method 1.
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Figure 5: (a) The optimal state and control values of Example 7.2 (Method1,
where p1 = 4). (b) The optimal state and control values of Example 7.2 (rk4).

Table 5: End Error of control values in Example 7.2 where (Alpha =
2, eta = .000001, t = .5, p1 = 4).

N FBSM rk4 Method1 Method2 Method3

10 1.0071e-2 3.3690e-5 3.3693e-5 3.3692e-5
30 4.0578e-3 5.4275e-6 5.4278e-6 5.4276e-6
100 2.0338e-3 1.3668e-6 1.3669e-6 1.3668e-6
500 1.0181e-3 3.4961e-7 3.4961e-7 3.4961e-7

Table 6: The Error of estimate of the value of the performance index
Japprox in Example 7.2 where p1 = 4, eta = 0.000001.

N FBSM rk4 Method1 Method2 Method3

200 5.1952e-4 1.4077e-4 1.1992e-4 1.3230e-4
500 8.7354e-5 2.5344e-5 2.1874e-5 2.3861e-5
1000 2.2999e-5 7.3634e-6 6.4948e-6 6.9919e-6
2000 6.0393e-6 2.1111e-6 1.8945e-6 2.0189e-6
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Example 7.3. (linear-quadratic prblem) Suppose the following OC
problem [29]:

minu
∫ 1
0

5
8x(t)2 + 1

2x(t)u(t) + 1
2u(t)2dt

subject to x′(t) = 1
2x(t) + u(t), x(0) = 1.

To solve the above Example, using the FBSM and new methods, we
should use the Pontryagin’s Theorem as below

H(t, x, u, λ) =
5

8
x(t)2 +

1

2
x(t)u(t) +

1

2
u(t)2 + λ(

1

2
x(t) + u(t)),

∂H

∂u
= 0 at u∗ ⇒ u∗ = −λ− 1

2
x,

λ′ = −∂H
∂x

= −10

8
x− 1

2
u− 1

2
λ, λ(1) = 0.

Analytical solutions which are as follows [29]:

u∗(t) = − (tanh(1−t)+.5) cosh(1−t)
cosh(1) , x∗(t) = cosh(1−t)

cosh(1)

The state variable at the end point is x(1) = 6.4805427366388e−1. The
control variable at the end point is u(1) = −3.24027136831e−1 and the
optimal value of the objective functional is J = 0.3807970779. Matlab
implementation of the three methods of Example 7.3 was determined as
follows. The results are shown in Figure 7 with h = 1

10 and in Tables
7-11.These results show that the new methods are more accurate than
the Runge-Kutta of rank 3 and 4.

Table 7: End Error of state values in Example 7.3 where p1 = 4.

h FBSM rk4 Method1 Method2 Method3

1
10 1.0965e-2 3.4143e-3 3.4818e-4 4.0739e-4
1

100 1.2195e-3 3.5529e-4 4.2119e-5 4.2737e-5
1

200 6.1325e-4 1.7793e-4 2.1162e-5 2.1317e-5
1

300 4.0959e-4 1.1866e-4 1.4106e-5 1.4175e-5
1

600 2.0514e-4 5.9314e-5 7.0160e-6 7.0333e-6
1

1000 1.2313e-4 3.5554e-5 4.1705e-6 4.1767e-6

The numerical results of Table 7 show our proposed methodology
is two digits more precise than the fbsm technique under the 4th order
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Figure 6: (a) The optimal state and control values of Example 7.3(Rk4). (b) The
optimal state and control of Example 7.3 (Method1, where p1 = 4).

Table 8: End Error of state values in Example 7.3 where p1 = 3.

h FBSM Rk3 Method1 Method2 Method3

1
10 1.0936e-2 5.2716e-4 2.3723e-4 7.5223e-5
1

100 1.2194e-4 8.0464e-5 2.4718e-6 8.9277e-7
1

200 6.1325e-4 4.0935e-5 5.3996e-7 1.4577e-7
1

300 4.0959e-4 2.7422e-5 1.8050e-7 5.3951e-9
1

600 2.0514e-4 1.3741e-5 3.5639e-8 7.9314e-8
1

1000 1.2313e-4 8.2219e-6 8.1824e-8 9.7573e-8

Runge-Kutta. It can be seen from Table 7 that the values of the state
variable at the end point, our proposed method, for the state p = 3, in
most cases 4 digits are more accurate than the FBSM method under the
3th order Runge-Kutta. Also, the numerical results of Table 9 show that
the values of the control variable of our proposed method are two digits
more accurate than the fbsm method under the 4th order Runge-Kutta.
And our proposed method for p = 3, according to Table 7, is three digits
more accurate than fbsm method under the 3th order Runge-Kutta. The
numerical results of Table 11 indicate that the approximate value of the
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Table 9: End Error of control values in Example 7.3 where p1 = 4.

h FBSM rk4 Method1 Method2 Method3

1
10 5.4830e-3 1.7074e-3 1.7442e-4 2.0403e-4
1

100 6.1008e-4 1.7796e-4 2.1387e-5 2.1696e-5
1

200 3.0695e-4 8.9291e-5 1.0909e-5 1.0986e-5
1

300 2.0512e-4 5.9656e-5 7.3809e-6 7.4154e-6
1

600 1.0289e-4 2.9983e-5 3.8358e-6 3.8444e-6
1

1000 6.1896e-5 1.8104e-5 2.4130e-6 2.4161e-6

Table 10: End Error of control values in Example 7.3 where p1 = 3.

h FBSM Rk3 Method1 Method2 Method3

1
10 5.4687e-3 2.6391e-4 1.1895e-4 3.7945e-5
1

100 6.1007e-4 4.0560e-5 1.5637e-6 7.7423e-7
1

200 3.0695e-4 2.0795e-5 5.9778e-7 4.0069e-7
1

300 2.0512e-4 1.4039e-5 4.1804e-7 3.3049e-7
1

600 1.0289e-4 7.1985e-6 3.0997e-7 2.8809e-7
1

1000 6.1896e-5 4.4387e-6 2.8687e-7 2.7900e-7

Table 11: The Error of estimate of the value of the objective Japprox
in Example 7.3 where p1 = 4, eta = 0.000001.

N FBSM rk4 Method1 Method2 Method3

10 2.7744e-3 1.2701e-3 1.2787e-3 1.3057e-3
100 4.1164e-4 1.2104e-5 1.1972e-5 1.2255e-5
200 2.0993e-4 2.7470e-6 2.7112e-6 2.7821e-6
300 1.4107e-4 8.9264e-7 8.7624e-7 9.0777e-7
600 7.0732e-5 3.4405e-7 3.4002e-7 3.4791e-7
1000 4.2459e-5 2.0901e-7 2.0761e-7 2.1045e-7

performance index in our proposed method, three digits, is calculated
better than FBSM method under the 4th order Runge-Kutta. To avoid
increasing the number of pages of the article, the Figure of Method1
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has been selected and drawn as an example. The Figure of the other
methods is similar to Method1.

7.2 Application of the proposed method in controlling
Rubella

Rubella is a viral disease also called german measles or three-day measles
because the patients fever goes away after 3 days. Rubella can occure
at any age, but it is a relatively common disease in children and if it
occurs during pregnancy, it can have irreversible consequences for the
baby and the mother. The rubella virus is transmitted through contact
with throat and masal secretions. or through the secretions of infected
person’s respiratory system. The incubation period of this disease is 14
to 27 days. The initial symptoms of the disease begin about ten days
to two weeks after the virus enters the body. some of these symptoms
include: Mild fever up to 9 degrees celsius, nasal stasis and runy nose,
headache, conjunctivitis and joint pain, especially in young women and
so on. So we have provided an OC problem for the study and control of
rubella and we consider vaccination process as a control measure.

Example 7.4. Suppose using a vaccination process (u) as a value of
control the disease. Let x1 represent the talented people, x2 the ratio
of the population that is in the reproductive period, x3 the number of
people with the disease, and x4 has the role of keeping people constant.
Control problem can be defined as [30].

minu
∫ 3
0 (Ax3 + u2)2dt

subject to

x1
′

= a− a(px2 + qx2)− ax1 − αx1x3 − ux1,,
x2
′

= apx2 + αx1x3 − (e+ a)x2,

x3
′

= ex2 − (g + a)x3,

x4
′

= a− ax4.

That its initial conditions x1(0) = 5.55e−2, x2(0) = 0.3e−3, x3(0) =
0.00041, x4(0) = 1 and the parameters a = 1.2e−2, p = 0.65, q = 0.65,
α = 527.59, e = 36.5, g = 30.417 and A = 100.
Let −→x (t) = (x1(t), x2(t), x3(t), x4(t))

and
−→
λ (t) = (λ1(t), λ2(t), λ3(t), λ4(t)), the Hamiltonian of this problem
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can be written as

H(t,−→x (t), u(t),
−→
λ (t)) = Ax3+u

2+λ1(a−a(px2+qx2)−ax1−αx1x3−ux1)

+λ2(apx2 + αx1x3 − (e+ a)x2) + λ3(ex2 − (g + a)x3) + λ4(a− ax4).
Using the Pontriagin maximum principle, the OCP can be studied with
the following differential equation system.

x1
′

= a− a(px2 + qx2)− ax1 − αx1x3 − ux1,,
x2
′

= apx2 + αx1x3 − (e+ a)x2,

x3
′

= ex2 − (g + a)x3,

x4
′

= a− ax4.

subject to initial values x1(0) = 5.55e−2, x2(0) = 0.3e−3, x3(0) =
0.41e−3, x4(0) = 1, and the adjoint system

λ1
′

= λ1(a+ u+ αx3)− λ2αx3,
λ2
′

= λ1ap+ λ2(e+ a+ pa)− λ3e,
λ3
′

= −A+ λ1(ap+ αx1)− λ2αx1 + λ3(g + a),

λ4
′

= λ4a.

with transversality conditions λi(3) = 0, i = 1, ..., 4. The OC is presented
by 

0 if ∂H
∂u < 0,

λ1x1
2 if ∂H

∂u = 0,

0.9 if ∂H
∂u > 0.

This is a stiff problem and a nonlinear model for the OC problem. Also,
it is difficult to solve this, analytically and it is necessary to utilize nu-
merical method.This example is solved in [29] by the forward-backward
sweep method. Our proposed method also solves this example well.
The results in the table 12 and Figures 7, 8 shows that the new meth-
ods compete with Runge-Kutta methods in stiff and several variable
problems.

8 Conclusion

In this research, three hybrid methods of orders three and four are pre-
sented and then, the third and fourth order of Runge-Kutta method-
ologies are utilized as predictor schemes to gain whole methods of the
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Figure 7: The optimal curves of the problem in Example 7.4.
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Figure 8: The optimal curves of the problem in Example 7.4(Method1,
p1 = 4).

Table 12: The optimal state values of methods in Example 7.4, p1 =
4.

Method x1 x2 x3 x4

FBSM rk4 0.057229233323 0.000174026727 0.000209796082 0
Method1 0.057201314198 0.000175317514 0.000211408161 0
Method2 0.057187036786 0.000176015581 0.000212278533 0
Method3 0.057201267178 0.000175314688 0.000211404848 0
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same orders. Then the order of truncation errors are investigated for
the explicit hybrid based on Runge-Kutta methods.The stability anal-
ysis as well as covergence of the methods are consequently discussed.
It shows that the stability domains of them are wider compared to the
explicit the third and fourth order of Runge-Kutta methods. At last,
several examples of OCPs are solved by the FBSM scheme and pre-
sented methodologies. The numerical results are presented with the aid
of tables and figures. It is concluded that the hybrid schemes have pleas-
ant performance index getting small end-point errors for solving optimal
control problems numerically.
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