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Abstract. In this paper, multiobjective optimization problems with
nondifferentiable quasiconvex functions are considered. We obtain some
duality results and a linear representation for the considered problems.
Since the well-known strong duality result is not valid for the problems,
we present a weaker form of it, named quasi-strong duality result.
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1 Introduction

We consider the following multiobjective problem

(P) : inf
(
ϕ1(x), . . . , ϕp(x)

)
s.t. ψt(x) ≤ 0, t = 1, . . . , q,

x ∈ Ω,
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where Ω is a convex set in Rn, and ψ1, . . . , ψq, ϕ1, . . . , ϕp, are quasiconvex
functions from Rn to R.

Since the feasible set of (P) is not necessarily convex, applying com-
mon methods of convex analysis is not applicable here. Therefore, we
take the quasiconvex analysis approach. Because of we do not assume
that the emerging functions are differentiable, we replace the derivatives
appearing in the classical results by some subdifferentials, named star
subdifferential and Penot subdifferential [14]. We use these subdiffer-
entials as they have links with variational subdifferentials and they are
more natural for quasiconvexity properties [14, 15].

If p = 1, (P) was studied by Penot [13] and the results are extended
for semi-infinite case (i.e., the number of ψts is infinite) in [6, 11]. Very
recently, Kanzi et al [7] presented Karush-Kuhn-Tucker (KKT) types
necessary and sufficient optimality conditions for (P) with p > 1. Since
the presentation of duality results and also the linearization of nonlin-
ear programming problems are two important applications of optimality
conditions, in the present paper we focus on Mond-Weir [12] type dual
problem and linear approximation of problem (P).

The structure of the subsequent sections of this paper is as follows:
In Sect. 2, we define required definitions, theorems, and relations of qua-
siconvex analysis. The Mond-Weir type dual problem and linearization
of (P) are studied in Sections 2 and 3, respectively.

2 Preliminaries

In this section we briefly overview some notions of quasiconvex analysis
widely used in formulations and proofs of main results of the paper. For
more details and discussion see [1, 5, 14, 15].

Given x, y ∈ Rn, we write x < y (resp. x ≤ y) when xi < yi (resp. xi ≤
yi and x 6= y) for i = 1, . . . , n. Also, x 5 y means xi ≤ yi for i = 1, . . . , n.
The zero vector of Rn is denoted by 0n.

Given a convex set H ⊆ Rn, we denote by NH(x0), the normal cone
of H at x0 ∈ H, i.e.,

NH(x0) :=
{
d ∈ Rn |

〈
d, h− x0

〉
≤ 0, ∀h ∈ H

}
.

The topological interior of H is denoted by int(H).
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Let φ be a function from Rn to R, and let x0 ∈ Rn. The sublevel set
and the strictly sublevel set of φ at x0 are, respectively, defined by

S(φ, x0) :=
{
x ∈ Rn | φ(x) ≤ φ(x0)

}
,

Ss(φ, x0) :=
{
x ∈ Rn | φ(x) < φ(x0)

}
.

φ is said to be a quasiconvex and stictly quasiconvex function if for each
x, y ∈ Rn and λ ∈ [0, 1], respectively, one has

φ(λx+ (1− λ)y) ≤ max {φ(x), φ(y)},

φ(λx+ (1− λ)y) < max {φ(x), φ(y)}.

we can see if φ is quasiconvex function, its corresponding sublevel and
strictly sublevel sets S(φ, x0) and Ss(φ, x0) are convex for all x0 ∈ Rn.
Therefore, the following subdifferentials of φ at x0 are well-defined:

∂§φ(x0) := NSs(φ,x0)(x0) \ {0}, ∂‡φ(x0) := NS(φ,x0)(x0).

Equivalently,

∂§φ(x0) = {d ∈ Rn \ {0} | φ(x) < φ(x0)⇒ 〈d, x− x0〉 ≤ 0},

∂‡φ(x0) = {d ∈ Rn | φ(x) ≤ φ(x0)⇒ 〈d, x− x0〉 ≤ 0}.

∂§φ(x0) and ∂‡φ(x0) are called, respectively, the star subdifferential and
the Penot subdifferential of φ at x0 in [6, 7, 14, 15]. Observe that, if
φ is upper-semicontinuous (u.s.c.) on Ss(φ, x0) and there is no local
minimizer of φ in φ−1

(
φ(x0)

)
, then ([14])

∂§φ(x0) = ∂‡φ(x0) \ {0}. (1)

3 Quasi-Duality Results

Assume that ϕr : Rn → R, for r ∈ I := {1, . . . , p}, are quasiconvex
functions, and Φ : Rn → Rm is defined by

Φ(x) :=
(
ϕ1(x), . . . , ϕp(x)

)
.
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A point x̃ ∈ Rn is called the weak minimizer of Φ if there is no x ∈ Rn
satisfying Φ(x) < Φ(x̃). The set of all weak minimizer of Φ is denoted
by WΦ.

Note that the problem (P) can be rewritten as

(P) : inf Φ(x)

s.t. ψt(x) ≤ 0, t ∈ T,
x ∈ Ω,

in which T := {1, . . . , q}. The feasible set of (P) is denoted by M , i.e.,

M := {x ∈ Ω | ψt(x) ≤ 0, t ∈ T}.

A point x̃ ∈M is said to be a efficient (resp. an weakly efficient) solution
to (P) if there is no x ∈M satisfying Φ(x) ≤ Φ(x̃) (resp. Φ(x) < Φ(x̃)).
The set of all efficient (resp. weakly efficient) solutions of (P) is denoted
by E(P ) (resp. W (P )).

For each feasible point x̃ ∈M , let

T (x̃) := {t ∈ T | ψt(x̃) = 0}.

Very recently, Kanzi and Soleimani-damaneh prove the following impor-
tant theorem in [7, Theorem 3.1].

Theorem 3.1. (KKT necessary condition) Suppose that x̃ ∈W (P ) while
x̃ /∈ WF . If the functions ϕr, for r ∈ I, are strictly quasicinvex and
u.s.c., the functions ψt, for t ∈ T , are u.s.c., and there exists a vector
z∗ ∈ int(M) with ψt(z∗) < 0 for all t ∈ T (Slater condition), then one
has

0 ∈
∑
r∈I

∂§ϕr(x̃) +
∑
t∈T (x̃)

∂‡ψt(x̃) +NΩ(x̃).

Notice, the above theorem is in the line of papers [2, 9, 10]. In fact,
these results present the necessary KKT conditions for nondifferentiable
multiobjective optimization problems under various assumptions.

The following technical lemma will be used in sequel.

Lemma 3.2. Suppose that the quasiconvex function f : Rn → R is u.s.c.
at z0 ∈ Rn. Then, for each z ∈ Rn with f(z) < f(z0) we have〈

ϑ§0, z − z0

〉
< 0, ∀ϑ§0 ∈ ∂

§f(z0). (2)
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Proof. For given ϑ§0 ∈ ∂§f(z0), we have ϑ§0 6= 0 by (1). Owing to

f(z) < f(z0), we can write
〈
ϑ§0, z − z0

〉
≤ 0. By indirect proof assume

the inequality (2) does not hold, and hence
〈
ϑ§0, z−z0

〉
= 0. Thus, there

exists a sequence {pν} in R+ := (0,+∞) converging to
〈
ϑ§0, z − z0

〉
.

From well-known Riez Representation Theorem [1, 5], we can find

some zν ∈ Rn, for ν ∈ N, such that pν =
〈
ϑ§0, zν

〉
. Therefore, we

conclude that {zν} converges to z − z0 and
〈
ϑ§0, zν

〉
> 0 for all ν ∈ N.

This means 〈
ϑ§0, (zν + z0)− z0

〉
> 0.

So, the definition of ∂§f(x0) implies that f(zν + z0) ≥ f(z0). From this
inequality and upper-semicontinuity of f we conclude that

lim
ν→∞

f(zν + z0) ≥ f(z0) =⇒ f(z) = f(z − z0 + z0) ≥ f(z0),

which contradicts the assumption of lemma. Hence, (2) holds. �
We now consider the following Mond-Weir [12] type dual problem to

(P):

(MWD) max Φ(y)

s.t. 0n ∈
∑
r∈I

∂§ϕr(y) +
∑
t∈T (y)

∂‡ψt(y) +NΩ(y).

Let Y denotes the feasible solution of (MWD), i.e.,

Y :=
{
y ∈ Rn | 0n ∈

∑
r∈I

∂§ϕr(y) +
∑
t∈T (y)

∂‡ψt(y) +NΩ(y)
}
. (3)

From now on, an weakly efficient solution of a “max” problem like the
dual problem (MWD) is similarly defined as “min” problem by replacing
“<” by “>”.

The following theorem is quasiconvex version of results that pre-
sented in [4] by Clarke subdifferential for the problems with locally Lip-
schitz data.

Theorem 3.3. (Weak duality) Suppose that x̃ ∈ M and ỹ ∈ Y . If ϕi
is u.s.c. for each r ∈ I, then Φ(x̃) ≮ Φ(ỹ).



6 A. SADEGHIEH AND A. HASSANI BAFRANI

Proof. We present our proof in three steps.
Step 1: By the assumption of ỹ ∈ Y and (3), we find some ϑ§r ∈ ∂§ϕr(ỹ),

for r ∈ I, and ϑ‡t ∈ ∂‡ψt(ỹ), for t ∈ T (ỹ), and ω ∈ NΩ(ỹ) such that∑
r∈I

ϑ§r +
∑
t∈T (ỹ)

ϑ‡t + ω = 0n. (4)

The assumption of x̃ ∈M implies that

ψt(x̃) ≤ 0 = ψt(ỹ), ∀t ∈ T (ỹ).

So, x̃ ∈ S(ψt, ỹ) for each t ∈ T (ỹ), and hence〈
ϑ‡t , x̃− ỹ

〉
≤ 0, ∀t ∈ T (ỹ). (5)

Step 2: By indirect proof we assume that Φ(x̃) < Φ(ỹ), i.e., ϕr(x̃) <
ϕr(ỹ), for all r ∈ I. In view of Lemma 3.2 we deduce that〈

ϑ§r, x̃− ỹ
〉
< 0 ∀r ∈ I. (6)

Step 3: Since ω ∈ NΩ(ỹ), the definition of normal cone implies that〈
ω, x̃ − ỹ

〉
≤ 0 . Adding this inequality with (5) and (6), we conclude

that 〈∑
r∈I

ϑ§r +
∑
t∈T (ỹ)

ϑ‡t + ω , x̃− ỹ
〉
< 0.

which contradicts (4). This contradiction completes the proof. �
The following example shows that, Theorem 3.3 may not be valid if

one replaces ∂‡ with ∂§ in definition of Y in (3).
Example 1. Consider the problem (P) by following data:

p = 2, n = 1, q = 1, ϕ1(x) = ϕ2(x) = x, Ω = R,

ψ1(x) =

{
−1 x ∈ [2, 4]
0 otherwise.

Clearly, M = R. Considering ỹ = −1, we get T (−1) = {1}, and

Ss(ψ1,−1) = [2, 4] =⇒ ∂§ψ1(−1) = (−∞, 0),

Ss(ϕ1,−1) = Ss(ϕ2,−1) = (−∞,−1)

=⇒ ∂§ϕ1(−1) = ∂§ϕ2(−1) = (0,+∞).
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Hence, 0 ∈ ∂§ϕ1(−1) + ∂§ϕ2(−1) + ∂§ψ1(−1), while Φ(x̃) < Φ(ỹ) for
x̃ = −2.

Notice, since ∂‡φ(ỹ) ⊆ ∂§φ(ỹ) for each quasiconvex function φ :
Rn → R, Theorem 3.3 is still true if we replace ∂§ with ∂‡ in definition
of Y in (3).

The forthcoming theorem presents quasi-strong duality relation be-
tween the prime problem (P) and the dual problem (MWD).

Theorem 3.4. (Quasi-strong duality) Assume that x̃ ∈ W (P ) and ỹ ∈
W (MWD). Under the hypothesis of Theorem 3.1, one has

Φ(ỹ) = Φ(x̃) ≮ Φ(ỹ).

Proof. Theorem 3.1 concludes that

0 ∈
∑
r∈I

∂§ϕi(x̃) +
∑
t∈T (x̃)

∂‡ψt(x̃) +NΩ(x̃).

This implies x̃ ∈ Y , and hence Φ(x̃) 5 Φ(ỹ) by ỹ ∈ W (MWD). Now,
owing to weak duality Theorem 3.3, we obtain the result. �

Observe that, unlike when p > 1, if p = 1 (i.e., (P ) is single-objective
optimization problem), Theorem 3.4 guarantees that Φ(ỹ) = Φ(x̃) =
Φ(ỹ) which implies Φ(x̃) = Φ(ỹ), named “strong duality result” in [6,
Theotrem 4.2]. Thus, the quasi-strong Theorem 3.4 is an extension of
strong duality theorem from single-objective to multi-objective quasi-
convex optimization.

4 Linearization

Let x0 ∈ M be a feasible point for problem (P). For given ϑ§ :=

(ϑ§1, . . . , ϑ
§
p) ∈

∏
r∈I ∂

§ϕr(x0), we consider the following linear multi-
objective problem:

(LPϑ
§

x0
) inf Φϑ§

x0(x) :=
(
ϕ1(x0) + 〈ϑ§1, x− x0〉, . . . , ϕp(x0) + 〈ϑ§p, x− x0〉

)
s.t. 〈ϑ‡t , x− x0〉 ≤ 0, ∀t ∈ T (x0), ∀ϑ‡t ∈ ∂‡ψt(x0)\{0},

x ∈ Ω.
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Observe that (LPϑ
§

x0
) has infinite number of constraints in general, and so,

it is a linear semi-infinite multiobjective programming problem (LSIP).
The LSIPs have widely used in various theoretical and practical field;
see, e.g., [3, 8].

The feasible set of (LPϑ
§

x0
) is denoted by Mϑ§

x0 , i.e.,

Mϑ§
x0 :=

{
x ∈ Ω | 〈ϑ‡t , x− x0〉 ≤ 0, t ∈ T (x0), ϑ‡t ∈ ∂‡ψt(x0)\{0}

}
.

The following theorems establish the relationship between the optimality

of x0 for (P) and (LPϑ
§

x0
). At first, we establish the efficient solutions of

these problems coincide.

Theorem 4.1. Let x̃ ∈ E(Pϑ§
x̃ ) for some ϑ§ = (ϑ§1, . . . , ϑ

§
p) ∈

∏
r∈I ∂

§ϕr(x̃).

If all the functions ϕr, r ∈ I, and ψt, t ∈ T , are u.s.c., then x̃ ∈ E(P ).

Proof. By contradiction assume that there exists some x∗ ∈ M such
that Φ(x∗) ≤ Φ(x̃), i.e., there exists ` ∈ I such that

ϕr(x
∗) ≤ ϕr(x̃), ∀r ∈ I, and ϕ`(x

∗) < ϕ`(x̃). (7)

Thus, by definition of star subdifferential and Lemma 3.2, we deduce
that

〈ϑ§r, x∗ − x̃〉 ≤ 0, ∀r ∈ I, and 〈ϑ§`, x
∗ − x̃〉 < 0.

The last inequalities and (7) imply that for each r ∈ I we have

ϕr(x
∗) + 〈ϑ§r, x∗ − x̃〉 ≤ ϕr(x̃) + 0 = ϕr(x̃) + 〈ϑ§r, x̃− x̃〉,

and ϕ`(x
∗) + 〈ϑ§`, x

∗ − x̃〉 < ϕ`(x̃) + 〈ϑ§`, x̃− x̃〉. Thus,

Φϑ§
x̃ (x∗) ≤ Φϑ§

x̃ (x̃). (8)

On the other hand, since ψt(x
∗) ≤ 0 = ψt(x̃) for all t ∈ T (x̃), we have

〈ϑ‡t , x∗− x̃〉 ≤ 0 for t ∈ T (x̃). This implies that x∗ is a feasible point for

(LPϑ
§

x̃ ), and thus (8) gives a contradiction. The proof is complete. �
The following theorem shows that the weak efficient solutions of (P)

and (LPϑ
§

x0
) are equal.
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Theorem 4.2. Let x̃ ∈W (Pϑ§
x̃ ) for some

ϑ§ = (ϑ§1, . . . , ϑ
§
p) ∈

∏
r∈I ∂

§ϕr(x̃). If all the functions ϕr, r ∈ I, and

ψt, t ∈ T , are u.s.c., then x̃ ∈W (P ).

Proof. In direct proof assume Φ(x∗) < Φ(x̃) for some x∗ ∈M . Similar
to the proof of (8), we get

Φϑ§
x̃ (x∗) < Φϑ§

x̃ (x̃). (9)

Repeating the proof of Theorem 4.1 shows that x∗ is a feasible point for

(LPϑ
§

x̃ ). Thus, (9) contradicts x̃ ∈W (Pϑ§
x̃ ), as required. �

The converse of Theorem 4.1 is not true in general, and the follow-
ing theorem presents a “weak version” of this converse. Of course, the
following theorem implies that the converse of Theorem 4.2 is true.

Theorem 4.3. For a given x̃ ∈ W (P ), suppose that the hypothesis of

Theorem 3.1 are fulfilled. Then, x̃ ∈ E(LPϑ§
x̃ ) for some ϑ§ ∈

∏
r∈I ∂

§ϕi(x̃).

Proof. Take T (x̃) = {t1, . . . , tk}. Applying Theorem 3.1, there exist

some ϑ§r ∈ ∂§ϕr(x̃), r ∈ I, some ϑ‡tv ∈ ∂‡ψtv(x̃), v = 1, . . . , k, and a
η ∈ NΩ(x̃) satisfying

∑
r∈I

ϑ§r = −
k∑
v=1

ϑ‡tv − η.

Assume that x∗ ∈Mϑ§
x̃ is arbitrarily given. Since

x∗ ∈ Ω, and ψtv(x̃) ≤ −〈ϑ‡tv , x∗ − x̃〉, ∀v = 1, . . . , k,

we deduce that

〈
∑
r∈I

ϑ§r , x∗ − x̃〉 = −〈
k∑
v=1

ϑ‡tv , x∗ − x̃〉 − 〈η, x∗ − x̃〉︸ ︷︷ ︸
≤0

≥
k∑
v=1

ψtv(x̃) = 0.

This implies that∑
r∈I

ϕr(x̃) +
∑
r∈I
〈ϑ§r, x∗ − x̃〉 ≥

∑
r∈I

ϕr(x̃), ∀x∗ ∈Mϑ§
x̃ . (10)
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Now, if x̃ is not an efficient solution for (LPϑ
§

x̃ ) with ϑ§ := (ϑ§1, . . . , ϑ
§
p) ∈∏

r∈I ∂
§ϕr(x̃), there exist z ∈Mϑ§

x̃ and ` ∈ I such that

ϕr(x̃) + 〈ϑ§r, z − x̃〉 ≤ ϕr(x̃) + 〈ϑ§r, x̃− x̃〉 = ϕr(x̃), ∀r ∈ I,

ϕ`(x̃) + 〈ϑ§`, z − x̃〉 < ϕ`(x̃) + 〈ϑ§`, x̃− x̃〉 = ϕ`(x̃).

Adding these inequalities for r ∈ I, we deduce that∑
r∈I

[
ϕr(x̃) + 〈ϑ§r, z − x̃〉

]
<
∑
r∈I

ϕr(x̃),

which contradicts (10). �

An important point about the problem (LPϑ
§

x̃ ) is the index set of its
constraints, i.e., T (x̃). The following example shows that if we replace
T (x̃) with T there, Theorems 4.1 and 4.2 will not be valid.
Example 2. Consider the problem (P) by following data:

p = 1, n = 1, T = {−1, 1}, ϕ1(x) = x3, Ω = R,

ψ1(x) = x3, ψ−1(x) = −x− 1.

Clearly, M = [−1, 0]. Considering x̃ = 0, we get T (0) = {1}, and

∂§ϕ1(0) = (0,+∞), ∂‡ψ1(0) = (0,+∞), ∂‡ψ−1(0) = (−∞, 0).

Hence, if we replace T (x̃) by T in (LPϑ
§

x̃ ), we receive to the following
problem:

(Q) : max αx

s.t. βx ≤ 0, ∀β > 0,

γx− 1 ≤ 0, ∀γ < 0,

where α > 0. Since the feasible set of (Q) is {0}, then x̃ is the solution
of (Q) while it is not solution of (P).
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