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1 Introduction

Stochastic differential equations occur in many areas of science and engi-
neering have attained much attention in the past decades. The partial in-
tegrodifferential equations has wide applications in the field of electrical,
mechanical and so on. For abstract model of partial integrodifferential
equations with resolvent operators, see for instance [1, 9, 10]. The deter-
ministic model often fluctuate due to noise. Under this circumstance, we
move the deterministic model problems to stochastic model problems,
for more details reader may refer [7, 9, 11]. There are only few works
on existence, uniqueness and stability of stochastic differential systems
have been established [1, 2, 14, 22]. The stochastic systems with resol-
vent operators has occur in different applications such as heat equation,
viscoelasticity and many other physical phenomena, see for instance [12].
The study of existence, uniqueness and stability of stochastic functional
differential with resolvent operator is an unprocessed issue and it is also
the motivation of this paper.

As a generalization of the classical Brownian motion, fractional Brow-
nian motion heavily depends on a parameter H ∈ (0, 1) called as the
Hurst index [17]. When H = 1

2 the fractional Brownian motion is a stan-
dard Brownian motion. When H 6= 1

2 the fractional Brownian motion is
not a semimartingale see Biagini et al [5], we can not use the classical ito
theory to construct a stochastic calculus with respect to fractional Brow-
nian motion. Especially, when H > 1

2 , fractional Brownian motion has
a long range dependence. This property makes this process as a use-
ful driving noise in models appeared in telecommunications networks,
finance, and other fields. Since some physical phenomena are naturally
modelled by stochastic partial differential equations, the randomness can
be described by a fractional Brownian motion, it is important to study
the existence, uniqueness and stability of infinite dimensional equations
with a fractional Brownian motion. Many studies of the solutions of
stochastic equations in an infinte dimensional space with a fractional
Brownian motion have been emerged recently, see [3, 6, 8, 19].

In addition, stochastic functional differential equations with Poisson
jumps have become very popular in modeling the phenomena arising in
the fields of economics, medicine, biology and so on. Moreover, many
practical systems (such as sudden price variations [jumps] due to mar-
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ket crashes, earthquakes and epidemics ect.) may undergo some jump
type stochastic perturbations. The sample paths of such systems are
not continuous. Therefore, it is more appropriate to consider stochastic
processes with jumps to describe such models. These jump models are
generally based on Poisson random measure, and has the sample paths
which are right continuous and have left limits. In recent years, stochas-
tic evolution equations with Poisson jumps have been studied by many
authors, [1, 4, 15, 20].

Based on the above discussion, in this paper, we are interested to
study the existence and stability results for time-dependent impulsive
neutral stochastic partial integrodifferential equations with fractional
Brownian motion and Poisson jumps of the form

d [x(t) + g(t, xt)] = A(t) [x(t) + g(t, xt)] dt+

[ ∫ t

0
Θ(t− s)

[
x(s)

+ g(s, xs)
]
ds+ f(t, xt)

]
dt+ σ(t)dBH(t)

+

∫
U
h(t, xt, u)Ñ(dt, du), t 6= tk, t ∈ [0, T ],

∆x(tk) = x(t+k )− x(−k ) = Ik(x(tk)), t = tk, k = 1, 2, ...m,

x(t) = ϕ ∈ DbB0
((−∞, 0];X ), (1)

where A(t) is the linear operators generates a linear evolution systems
{R(t, s), t ≥ 0} on X , and Θ(t− s), t ∈ [0, T ] is a closed linear operator
on X with domain D(Θ) ⊃ D(A) which is independent of t. BH is a
fractional Brownian motion on a real and separable Hilbert space Y.
Let R+ = [0,∞) and let the functions g, f : R+ × D̂ → X , σ : R+ →
L(Y,X ) and h : R+ × D̂ × U → X are appropriate functions. Here
D̂ = D((−∞, 0];X ) denotes the family of all right piecwise continuous
functions with left-hand limit ϕ from (−∞, 0] to X . The phase space
D((−∞, 0];X ) is assumed to be equipped with the norm

‖ϕ‖t = sup
−∞<θ≤0

|ϕ(θ)| .

We also assume that DbB0
((−∞, 0];X ) denotes the family of all almost

surely bounded, =0-measurable, D̂-valued random variables. Further-
more, the fixed moments of time tk satisfy 0 < t1 < · · · < tm < T , where
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x(t+k ) and x(t−k ) represent the right and left limits of x(t) at t = tk,
respectively. And ∆x(tk) = x(t+k ) − x(t−k ) represents the jump in the
state x at time tk with Ik determining the size of the jump. Further,
let BT be a Banach space of all =t- adapted processes ϕ(t, w) which are
almost surely continuous in t for fixed w ∈ Ω with norm defined for any
ϕ ∈ BT by

‖ϕ‖BT =

(
sup

0≤t≤T
E ‖ϕ‖2t

)1/2

.

2 Wiener Process and Deterministic Integrod-
ifferential Equations

2.1 Wiener Process

In this section we introduce the fractional Brownian motion as well as
the Wiener integral with respect to it. We also need to establish some
important results which will be needed throughout the paper. So, first
let (Ω,=,P) be a complete probability space. Let X , Y be real separable
Hilbert spaces and L(Y,X ) be the space of bounded linear operators
mapping Y into X , and let Q ∈ L(Y,Y) be a nonnegative self-adjoint

operator. By L0
Q we denote the space of all γ ∈ L(Y,X ) such that γQ

1
2

is a Hilbert-Schmidt operator and the norm is given by

|γ|2L0Q(Y,X ) =
∣∣∣γQ 1

2

∣∣∣2
HS

= tr(γQγ∗).

Then γ being a Q-Hilbert-Schmidt operator maps from Y into X .

Definition 2.1. A two-sided one-dimensional fractional Brownian mo-
tion with Hurst parameter H ∈ (0, 1) is a continuous centered Gaussian
process βH =

{
βH(t), t ∈ R

}
with the covariance function

RH(t,s) = E
[
βH(t)βH(s)

]
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s ∈ R.

Now, let us introduce Wiener integral with respect to the one-dimensional
fractional Brownian motion βH. Fix b > 0. The notation Φ is denoted
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by the linear space of R-valued step functions on [0, b], that is ϕ ∈ Φ if

ϕ(t) =
n−1∑
i=1

XiV[ti,ti+1)(t), t ∈ [0, b],

where 0 = t1 < t2 < ... < tn = b and Xi ∈ R.
Define the Wiener integral of ϕ ∈ Φ with respect to βH by

∫ b

0
ϕ(s)dβH(s) =

n−1∑
i=1

Xi(β
H(ti+1)− βH(ti)).

Now, let H be the Hilbert space that consist of closure functions Φ with
respect to the scalar product〈

V[0,t],V[0,s]

〉
H = RH(t, s).

Then, we have

ϕ =
n−1∑
i=1

XiV[ti,ti+1) 7→
∫ b

0
ϕ(s)dβH(s).

The above mapping is an isometry between Φ and the linear space span{
βH, t ∈ [0, b]

}
, which can be extended to an isometry between H and

the first Wiener chaos of the fractional Brownian motion spanL
2(Ω)

{
βH,

t ∈ [0, b]
}

(see [21]). Denote by βH(ϕ) the image of ϕ by this isometry.
At this point in time, we present an explicit expression of this integral.
Let KH(t, s) be the kernel given by

KH(t, s) = CHs
1
2
−H
∫ t

s
(τ − s)H−

3
2 τH−

1
2dτ, for t > s,

Here, CH =

√
H(2H−1)

B(2−2H,H− 1
2

)
with B is the Beta function. It is easy to see

that

∂KH(t, s)

∂t
= cH(

t

s
)H−

1
2 (t− s)H−

3
2 .
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Let us consider the operator K∗H : Φ→ L2([0, T ]) defined by

(K∗Hϕ)(s) =

∫ t

s
ϕ(t)

∂K

∂t
(t, s)(dt).

And then

(K∗HV[0,t])(s) = KH(t, s)V[0,t](s).

The isometry K∗H between Φ and L2([0, b]) can be extended to H . Now
we consider W = {W, t ∈ [0, b]}, defined by

W(t) = βH((K∗H )−1V[0,t]).

Then W is a Wiener process and

βH(t) =

∫ t

0
KH(t, s)dW(s).

Also ∫ b

0
ϕ(s)dβH(s) =

∫ b

0
(K∗Hϕ)(t)dW(t).

for any ϕ ∈ H iff K∗Hϕ ∈ L2([0, b]). Moreover, let L2
H ([0, b]) =

{
ϕ ∈

H ,K∗Hϕ ∈ L2([0, b])
}

. when H > 1
2 . we have L

1
H ([0, b]) ⊂ L2

H ([0, b]).

Lemma 2.2. [18] For ϕ ∈ L
1
H ([0, b]),

H(2H− 1)

∫ b

0

∫ b

0
|ϕ(v)| |ϕ(τ)| |v − τ |2H−2 dvdτ ≤ cH ‖ϕ‖2L 1

H ([0,b])
.

Let
{
βHn(t)

}
n∈N be a sequence of two-side one dimensional standard

fractional Brownian motion mutually independent on (Ω,=,P). Con-
sider the following series

∞∑
n=1

βHn(t)en, t ≥ 0,
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where {en}n∈N is a complete orthonormal basis in Y, the series does not
necessarily converge in the space Y. Therefore, we consider a Y-valued
stochastic process BH

Q(t) given by the following series:

BH
Q(t) =

∞∑
n=1

βHn(t)Q
1
2 en, t ≥ 0.

Moreover, if Q is a non-negative self-adjoint trace class operator, then
this series converges in the space Y, that is, it holds that BH

Q(t) ∈
L2(Ω,Y), and BH

Q(t) is a Y-valued Q-cylindrical fractional Brownian
motion with covariance operator. For example, if {λn}n∈N is a bounded
sequence of non-negative real numbers such that Qen = λnen, then if Q
is a nuclear operator in Y, then the stochastic process

BH
Q(t) =

∞∑
n=1

βHn(t)Q
1
2 en =

∞∑
n=1

√
λnβ

H
n(t)en, t ≥ 0,

is well-defined as a Y-valued Q-cylindrical fractional Browian motion.
Let ϕ : [0, b]→ L0

Q(Y,X ) be such that

∞∑
n=1

∥∥∥K∗H (ϕQ
1
2 en)

∥∥∥
L2[0,b];X

<∞. (2)

Definition 2.3. Let ϕ(s), s ∈ [0, b] be a function with values in L0
Q(Y,X ).

Then the Wiener integral of ϕ with respect to BH
Q is defined by∫ t

0
ϕ(s)dBH

Q(s) =
∞∑
n=1

∫ t

0
ϕ(s)Q

1
2 endβ

H
n

=
∞∑
n=1

∫ t

0

(
K∗H (ϕQ

1
2 en)

)
(s)dW(s), t ≥ 0.

Note that if

∞∑
n=1

∥∥∥ϕQ 1
2 en

∥∥∥
L2[0,b];X

<∞, (3)

then certainly (3) holds, which follows directly from L
1
H ([0, e]) ⊂ L2

H ([0, e]).
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Lemma 2.4. For any ϕ : [0, b] 7→ L0
Q(Y,X ) satisfies

∫ T
0 ‖ϕ‖

2
L0Q

ds <∞
then the above sum in (4) is well defined as a X -valued random variable
and we have

E

∥∥∥∥∫ α

β
ϕ(s)dBH

Q(s)

∥∥∥∥2

≤ cH(2H− 1)(α− β)2H−1

∫ α

β
‖ϕ‖2L0Q ds.

2.2 Poisson Process

Let X be a separable Hilbert space and let Bσ(X ) denotes the Borel
σ-algebra of X . Let p(t), t ≥ 0 be an X -valued, σ-finite station-
ary =t-adapted Poisson point process on (Ω,=,P). The counting ran-
dom meaure Np defined by Np((t1, t2] × Λ)(w) =

∑
t1<s≤t2 IΛ(p(s)) for

any Λ ∈ Bσ(X ) is called the Poisson random measure associated to
the Poisson jump proces p. Then we define the measure Ñ(dt, du) =
Np(dt, du)− dtv(du), where λ is the characteristic measure on H, which
is called the compensated Poisson random measure associated to the
Poisson point process p. For a main source for the material on Poisson
process and random measure we refer the reader to [13]. For a Borel
set U ∈ Bσ(X − [0]), we denote by p2([0, T ] × U ;X ) the space of all
predicable mapping h : [0, T ]× U × Ω→ X for which∫ T

0

∫
U

E ‖h(t, u)‖2 dtλ(du) <∞.

We may then define the X -valued stochastic integral∫ T

0

∫
U
h(t, u)Ñ(dt, du)

, which is a centered square-integrable martingale [16].

2.3 Partial Integrodifferential Equations

Let us recall some fundamental results needed to establish our results.
The resolvent operator plays an important role in the study of the exis-
tence of solutions and to given a variation of constant formula for linear
systems. However, need to know when the linear system (4) has a resol-
vent operator. For more details on resolvent operator, refer [10].
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(H1) A(t) generates a strongly continuous semigroup of evolution oper-
ators.

(H2) Suppose Y is a Banach space formed from D(A) equipped with
the graph norm. A(t) and Θ(t, s) are in the set of bounded linear
operators fro Y to X , Θ(Y,X ) for 0 ≤ t ≤ T and 0 ≤ s ≤ t ≤ T ,
respectively. A(t) and Θ(t, s) are continuous on 0 ≤ t ≤ T and
0 ≤ s ≤ t ≤ T , respectively, into L(Y,X ).

To obtain the results, consider the integrodifferential abstract Cauchy
problem

dx(t) =

[
A(t)x(t) +

∫ t

0
Θ(t, s)x(s)ds

]
dt, 0 ≤ s ≤ t ≤ T,

x(0) = x0 ∈ X . (4)

Definition 2.5. A resolvent operator for equation (4) is a bounded
linear operator valued function R(t, s) ∈ L(X ) for 0 ≤ s ≤ t ≤ T ,
satisfying the following properties:
1 R(t, t) = I and |R(t, s)| ≤ Meβ(t−s), t, s ∈ [0, T ], M and β are
constant.
2 R(t, s) is strongly continuously in s and t on X .
3 For y ∈ X , R(t, s)y is continuously differentiable in s and t, and for
0 ≤ s ≤ t ≤ T ,

∂

∂t
R(t, s)y = A(t)R(t, s)y +

∫ t

s
Θ(t, r)R(r, s)ydr,

∂

∂s
R(t, s)y = −R(t, s)A(s)y −

∫ t

s
R(r, s)Θ(t, r)ydr,

with ∂
∂tR(t, s)y and ∂

∂sR(t, s)y are strongly continuous on 0 ≤ s ≤
t ≤ T . Here R(t, s) can be extracted from the evolution operator of the
generator A(t).
For the family {A(t) : 0 ≤ t ≤ T} of linear operators, the following re-
strictions are imposed:

(A1) The domain D(A) of {A(t) : 0 ≤ t ≤ T} is dense in X and inde-
pendent of t, A(t) is closed linear operator.
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(A2) For each t ∈ [0, T ], the resolvent R(ζ,A(t)) exists for all ζ with
Reζ ≤ 0 and there exists K > 0

‖R(ζ,A(t))‖ ≤ K

(|ζ|+ 1)
.

(A3) There exists 0 < δ ≤ 1 and K > 0 such that∥∥(A(t)−A(s))A−1(τ)
∥∥ ≤ K |t− s|δ , t, s, τ ∈ [0, T ].

(A4) For each t ∈ [0, T ] and some {A(t) : 0 ≤ t ≤ T} generates a unique
linear evolution system called linear evolution operator.

Definition 2.6. A two parameter family of bounded linear operators
R(t, s), 0 ≤ s ≤ t ≤ T , on X is called an evolution system if the following
two conditions hold:
1 R(s, s) = I, R(t, r)R(r, s) = R(t, s), 0 ≤ s ≤ τ ≤ t ≤ T .
2 (t, s)→ R(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .

Lemma 2.7. Let {A(t), t ∈ [0, T ]} be a family of linear operators sat-
isfying (A1)− (A4). If {R(t, s), 0 ≤ s ≤ t ≤ T} is the linear evolution
system generated by {A(t), t ∈ [0, T ]}, then {R(t, s), 0 ≤ s ≤ t ≤ T} is a
compact operator whenever t− s > 0.

Definition 2.8. A stochastic process {x(t), t ∈ (−∞, T ]}, is called a
mild solution of the equation (1.1) if
(i) x(t) is =t-adapted,
(ii) x(t) satisfies the integral equation

x(t) = ϕ(t), t ∈ (−∞, 0]

x(t) = R(t) [ϕ(0) + g(0, ϕ)]− g(t, xt) +

∫ t

0
R(t, s)f(s, xs)ds

+

∫ t

0
R(t, s)σ(s)dBH(s) +

∫ t

0

∫
U
R(t, s)h(s, xs, u)Ñ(ds, du)

+
∑

0<tk<t

R(t− tk)Ik(x(tk)). (5)



WELL-POSEDNESS AND STABILITY OF TIME-DEPENDENT... 11

3 Existence and Uniqueness

In this section, the existence and uniqueness of mild solution of the
system (1) are discussed and worked under the following assumptions:

(H1) There exists a resolvent operator R(t, s) which is compact and
continuous in the uniform operator topology for t > s. Further,
there exists a constant M > 0 such that ‖R(t, s)‖ < M , for all
t ∈ [0, T ].

(H2) The functions f and h satisfy the following conditions. For each
x, y ∈ D̂ and for all t ∈ [0, T ] such that

i) ‖f(t, xt)− f(t, yt)‖2 ≤ K
(
‖x− y‖2t

)
.

ii)

∫ t

0

∫
U
‖h(t, xt, v)− h(t, yt, u)‖2 v(du)ds ∨(∫ t

0

∫
U
‖h(t, xt, u)− h(t, yt, u)‖4 v(du)ds

)1/2

≤ K
(
‖x− y‖2t

)
.

iii)

(∫ t

0

∫
U
‖h(t, xt, u)− h(t, yt, u)‖4 v(du)ds

)1/2

≤ K ‖x‖2t ds.

where K(·) is a concave non-decreasing function from R+ to R+,

such that K(0) = 0, K(u) > 0, for u > 0 and

∫
0+

du

K(u)
=∞.

(H3) Assuming that there exists a positive number Lg such that Lg <
1
12 , for any x, y ∈ D̂ and for all t ∈ [0, T ] such that

‖g(t, xt)− g(t, yt)‖2 ≤ Lg ‖x− y‖2t ,

(H4) The function Ik ∈ C (X ,X ) and there exists some constant hk such
that

‖Ik(x(tk))− Ik(y(tk))‖2 ≤ hk ‖x− y‖2t , x, y ∈ D̂, k = 1, 2, ...m,

(H5) The function σ : [0, T ]→ L0
Q(Y,X ) satisfies that exists a positive

constant L such that

‖σ(s)‖2L02 ≤ L uniformly in [0, T ].
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(H6) For all t ∈ [0, T ], it follows that g(t, 0), f(t, 0) and h(t, 0, u) ∈ L2,
for k = 1, 2, ...m such that

‖g(t, 0)‖2 ∨ ‖f(t, 0)‖2 ∨ ‖h(t, 0, u)‖2 ∨ ‖Ik(0)‖2 ≤ k0,

where k0 > 0 is a constant.

Let us now introduce the successive approximation to equation (5) as
follows

xn(t) =


ϕ(t), for t ∈ (−∞, o],

R(t)ϕ(0), t ∈ [0, T ], for n = 0,

xn(t) = R(t) [ϕ(0) + g(0, ϕ)]− g(t, xnt ) +

∫ t

0
R(t− s)f(s, xn−1

s )ds

+

∫ t

0
R(t− s)σ(s)dBH(s) +

∫ t

0

∫
U
R(t− s)h(s, xn−1

s , u)Ñ(ds, du)

+
∑

0<tk<t

R(t− tk)Ik(xn−1(tk)), a.s t ∈ [0, T ], (6)

with an arbitrary non-negative initial approximation x0 ∈ BT .

Theorem 3.1. Let the assumptions (H1)− (H6) hold. Then the system
(1) has unique mild solution x(t) in BT and

E

{
sup

0≤t≤T
‖xn(t)− x(t)‖2

}
→ 0, as n→∞

where {xn(t)}n≥1 are the successive approximations (6).

Proof.: The proof will be split into the following steps:
Step 1: For all t ∈ (−∞, T ], the sequence xn(t), n ≥ 1 ∈ BT is bounded.
Let x0 ∈ BT be a fixed initial approximation to (6). To begin with the
assumptions (H1)− (H6) and observing that ‖R(t, s)‖ ≤ M for some
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M ≥ 1 and for all t ∈ [0, T ]. Then for any n ≥ 1, we have

‖xn(t)‖2

≤ 6M2E ‖ϕ(0) + g(0, ϕ)‖2 + 12E
[
‖g(t, xnt )− g(t, 0)‖2 + ‖g(t, 0)‖2

]
+ 12M2TE

∫ t

0

[∥∥f(s, xn−1
s )− f(s, 0)

∥∥2
+ ‖f(s, 0)‖2

]
ds

+ 6M2cH(2H− 1)T 2H−1E

∫ t

0
‖σ(s)‖2L02 ds

+ 12M2E

∫ t

0

∫
U

[∥∥h(s, xn−1
s , u)− h(s, 0, u)

∥∥2
+ ‖h(s, 0, u)‖2

]
ds

+ 6M2E
(∫ t

0

∫
U

∥∥h(s, xn−1
s , u)

∥∥4
v(du)ds

) 1
2

+ 12M2mE

m∑
k=1

[∥∥Ik(xn−1(tk))− Ik(0)
∥∥2

+ ‖Ik(0)‖2
]
.

Thus,

‖xn(t)‖2B ≤ Q1

1− 12Lg
+

6M2(2T + 3)

1− 12Lg
E

∫ t

0
K
(∥∥xn−1

∥∥2

B

)
ds

+
12M2m

1− 12Lg

m∑
k=1

hk

{
E
∥∥xn−1

∥∥2

B

}
.

where,

Q1 = 12M2

[
E ‖ϕ(0)‖2 + LgE ‖ϕ‖20 +

1

2
cH(2H− 1)T 2HL

]
+ 12

[(
1 +M2T (T + 1) +M2m

m∑
k=1

hk

)]
k0.

Given that K(·) is concave and K(0) = 0, we can find positive constants
a and b such that

K(u) ≤ a+ bu, for all u ≥ 0.
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Then,

E ‖xn(t)‖2B ≤ Q2 +
6M2(2T + 3)b

1− 12Lg

∫ t

0
E
∥∥xn−1

∥∥2

s
ds

+
12M2m

1− 12Lg

m∑
k=1

hk

{
E
∥∥xn−1

∥∥2

B

}
, n = 1, 2, ...

where Q2 = Q1

1−12Lg
+ 6M2(2T+3)Ta

1−12Lg
.

Since,

E
∥∥x0(t)

∥∥2

B ≤ M2E ‖ϕ(0)‖2 = Q3 <∞. (7)

Thus,

E ‖xn(t)‖2 < ∞, for all n = 1, 2, ... and t ∈ [0, T ]. (8)

This proves the boundedness of {xn(t), n ∈ N}.
Step 2: The sequence {xn(t)}, n ≥ 1 is a Cauchy sequence.
Let us next show that {xn(t)} is Cauchy sequence in BT . For this con-
sider,

E
∥∥xn+1(t)− xn(t)

∥∥2 ≤ 4LgE
∥∥xn+1 − xn

∥∥2

t

+ 4M2(T + 2)

∫ t

0
K
(
E
∥∥xn − xn−1

∥∥2

s

)
ds

+ 4M2m
m∑
k=1

hkE
{∥∥xn − xn−1

∥∥2

t

}
.

Thus,

E
∥∥xn+1(t)− xn(t)

∥∥2 ≤ 4M2(T + 2)

1− 4Lg

∫ t

0
K
(
E
∥∥xn − xn−1

∥∥2

s

)
ds

+
4M2m

∑m
k=1 hk

1− 4Lg
E
{∥∥xn − xn−1

∥∥2

t

}
. (9)

Set

Ψn(t) = sup
t∈[0,T ]

E
∥∥xn+1 − xn

∥∥2

t
. (10)
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Then, we have in the view of (9),

Ψn(t) ≤ 4M2(T + 2)

1− 4Lg

∫ t

0
K (Ψn−1(s)) ds

+
4M2m

∑m
k=1 hk

1− 4Lg
Ψn−1(t), 0 ≤ t ≤ T. (11)

Choose T1 ∈ [0, T ) such that

C1

∫ t

0
K (Ψn−1(s)) ds ≤ C1Ψn−1(s)ds, n = 1, 2, .. 0 ≤ t ≤ T1.

Moreover,∥∥x1(t)− x0(t)
∥∥2

=
∥∥∥R(t)g(0, ϕ)−

[
g(t, x1

t )− g(t, x0
t )
]
− g(t, x0

t )

+

∫ t

0
R(t− s)f(s, x0

s)ds+

∫ t

0
R(t− s)σ(s)dBH(s)

+

∫ t

0

∫
U
R(t− s)h(s, x0

s, u)Ñ(ds, du)

+
∑

0<tk<t

R(t− tk)Ik(x0(tk))
∥∥∥2
.

Then, we get

E
∥∥x1(t)− x0(t)

∥∥2

t
≤ Q4 +

14Lg + 14M2m
∑m

k=1 hk
1− 7Lg

E
∥∥x0
∥∥2

t

+
7M2(2T + 3)

1− 7Lg

∫ t

0
K
(
E
∥∥x0
∥∥2

s

)
ds.

If we take the supremum over t, and use (8), we get

Ψ0(t) = sup
t∈[0,T ]

E
∥∥x1 − x0

∥∥2

t

≤ Q5 +
7M2(2T + 3)

1− 7Lg

∫ t

0
K(Q3)ds

≤ Q6. (12)
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Now, for n = 1 in (11) we get

Ψ1(t) ≤ C1

∫ t

0
K (Ψ0(s)) ds+ C2Ψ0(t), 0 ≤ t ≤ T1.

where C1 = 4M2(T+2)
1−4Lg

and C2 =
4M2m

∑m
k=1 hk

1−4Lg
.

Therefore,

Ψ1(t) ≤ C1

∫ t

0
K (Ψ0(s)) ds+ C2Ψ0(t)

≤ C1

∫ t

0
Q6ds+ C2Q6

≤ (C1 + C2)T1Q6.

Now, for n = 2 in (11), we get

Ψ2(t) ≤ C1

∫ t

0
K (Ψ1(s)) ds+ C2Ψ1(t)

≤ C1

∫ t

0
(C1 + C2) sQ6ds+ C2(C1 + C2)T1Q6

≤ (C1 + C2)2 T
2
1

2!
Q6.

Thus by applying mathematical induction in (11) and using the above
work we get

Ψn(t) ≤ (C1 + C2)n Tn1
n!

Q6, n ≥ 0, t ∈ [0, T1].

Note that for any m > n ≥ 0, we have,

sup
t∈[0,T1]

E ‖xm(t)− xn(t)‖2 ≤
+∞∑
r=n

sup
t∈[0,T1]

E
∥∥xr+1 − xr

∥∥2

t

≤
+∞∑
r=n

(C1 + C2)rT r1
r!

Q6

→ 0 as n→∞. (13)
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This shows that {xn} is Cauchy in BT . The Borel-Cantelli Lemma shows
that as n→∞, xn(t)→ x(t) uniformly in t on [0, T1]. By iteration, the
existence of solution of (1) on [0, T ] can be obtained.
Step 3: Next, we prove the uniqueness of the solution (5). Let x1, x2 ∈
BT be two solutions to (5) on some interval (−∞, T ]. Then, for t ∈
(−∞, 0], the uniqueness is obvious and for 0 ≤ t ≤ T , we have

E ‖x1(t)− x2(t)‖2 ≤ 4
[
Lg +M2m

m∑
k=1

hk

]
E ‖x1 − x2‖2t

+ 4M2(T + 1)

∫ t

0
K
(
E ‖x1 − x2‖2s

)
ds.

Thus,

E ‖x1(t)− x2(t)‖2t ≤
4M2(T + 1)

1−Q7

∫ t

0
K
(
E ‖x1 − x2‖2s

)
ds.

where, 4
[
Lg +M2m

∑m
k=1 hk

]
.

Thus, Bihari’s inequality yields that

sup
t∈[0,T ]

E ‖x1(t)− x2(t)‖2t = 0, 0 ≤ t ≤ T.

Thus, x1(t) = x2(t), for all 0 ≤ t ≤ T . Therefore, for all −∞ < t ≤ T ,
x1(t) = x2(t) a.s. This completes the proof. �

4 Stability

In this section, we study stability through the continuous dependence
on initial values.

Definition 4.1. . A mild solution u(t) of the system (1) with inital
value φ is said to be stable in the mean square if for all ε > 0, there
exists δ > 0 such that

E ‖x− x̂‖2B ≤ ε, whenever E
∥∥∥φ− φ̂∥∥∥2

B
≤ δ

where x̂(t) is another mild solution of the system (1) with initial φ̂.
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Theorem 4.2. Let x(t) and y(t) be the mild solution of the system (1)
with initial values ϕ1 and ϕ2 respectively. If the assumption of Theorem
3.1 are satisfied, then the mild solution of the system (1) is stable in the
mean square.

Proof. Let x(t) and y(t) be the mild solutions of equation (1) with
initial values ϕ1 and ϕ2 respectively. Then for 0 ≤ t ≤ T ,

x(t)− y(t) = R(t)

[
[ϕ1(0)− ϕ2(0)] + [g(0, ϕ1)− g(0, ϕ2)]

]
−

[
g(t, xt)− g(t, yt)

]
+

∫ t

0
R(t− s) [f(s, xs)− f(s, ys)] ds

+

∫ t

0

∫
U
R(t− s) [h(s, xs, u)− h(s, ys, u)] Ñ(ds, du)

+
∑

0<tk<t

R(t− s) [Ik(x(tk))− Ik(y(tk))] .

So, estimating as before, we get

E ‖x− y‖2 ≤ 6M2 [1 + Lg] E ‖ϕ1 − ϕ2‖2

+ 6M2 [T + 1]

∫ t

0
K
(
E ‖x− y‖2s

)
ds

+ 6

[
Lg +M2m

m∑
k=1

hk

]
E ‖x− y‖2t .

Thus,

E ‖x− y‖2t ≤
6M2(1 + Lg)

1− 6(Lg +M2m
∑m

k=1 hk)
E ‖ϕ1 − ϕ2‖2

+
6M2(T + 1)

1− 6(Lg +M2m
∑m

k=1 hk)

∫ t

0
K
(
E ‖x− y‖2s

)
ds.

Let K1(u) = 6M2(T+1)
1−6(Lg+M2m

∑m
k=1 hk)

K(u), where K is a concave increasing

function from R+ to R+ such that K(0) = 0, K(u) > 0 for u > 0 and∫
0+

du
K(u) = +∞. Then, K1(u) is concave from R+ to R+ such that
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K(0) = 0, K1(u) ≥ K(u) for 0 ≤ u ≤ 1 and
∫

0+
du
K(u) = +∞. Now for

any ε > 0, ε1 = 1
2ε, we have lims→0

∫ ε1
s

du
K1(u) = ∞. Then, there is a

positive constant δ < ε1, such that
∫ ε1
δ

du
K1(u) ≥ T .

Let

u0 =
6M2(1 + Lg)

1− 6(Lg +M2m
∑m

k=1 hk)
E ‖ϕ1 − ϕ2‖2 ,

u(t) = E ‖u− v‖2B , v(t) = 1,

when u0 ≤ δ ≤ ε1. Then from corollary 2.1 in [2], we deduce that

∫ ε1

u0

du

K1(u)
≥

∫ ε1

δ

du

K1(u)
≥ T =

∫ T

0
v(t)ds.

It follows, for any t ∈ [0, T ], the estimate u(t) ≤ ε1 hold. This completes
the proof. �

Remark 4.3. If m = 0 in (1), then the system behaves as stochas-
tic partial neutral functional integrodifferential equations with infinite
delays and poisson jumps of the form:

d [x(t) + g(t, xt)] = A(t) [x(t) + g(t, xt)] dt+

[ ∫ t

0
Θ(t− s)

[
x(s)

+ g(s, xs)
]
ds+ f(t, xt)

]
dt+ σ(t)dBH(t)

+

∫
U
h(t, xt, u)Ñ(dt, du), t 6= tk, t ∈ [0, T ],

x(t) = ϕ ∈ DbB0
((−∞, 0];X ), (14)

By applying Theorem 3.1, under the hypotheses (H1)− (H3), (H5) the
system (14) guarantees the existence and uniqueness of the mild solution.

Remark 4.4. If the system (14) satisfies the Remark 4.3, then by The-
orem 4.2, the mild solution of the system (14) is stable in mean square.
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5 Application

Example 1: Consider the following impulsive neutral stochastic par-
tial integrodifferential equations with fractional Brownian motion and
Poisson jumps of the form

d [u(t, ζ) + ĝ(t, u(t− h), ζ)] =
∂2

∂ζ2
[u(t, ζ) + ĝ(t, u(t− h), ζ)] dt

+

∫ t

0
Θ̂(t− s) ∂

2

∂ζ2
[u(s, ζ) + ĝ(s, u(t− h), ζ)] ds

+ f̂(t, u(t− h), ζ)dt+ σ̂(t)dBH(t)

+

∫
U
ĥ(t, u(t− h), v, ζ)Ñ(ds, dv), 0 ≤ ζ ≤ π, t ∈ [0, T ],

u(t, 0) = u(t, π) = 0, t ∈ [0, T ],

∆u(tk) = (1 + bk)u(ζ(tk)), t = tk, k = 1, 2, ...m,

u(t, ζ) = ϕ(0, ζ), θ ∈ (−∞, 0], 0 ≤ ζ ≤ π, (15)

Let X = L2([0, π]). To rewrite (15) into the form (1), define A : X → X
by Az = z

′′
with domain D(A) =

{
z ∈ X , z, z′ are absolutely continuous

z
′′ ∈ X , z(0) = z(π) = 0

}
. Then, A generates a strongly continuous

semigroup R(t) on X , thus (H1) is true. Moreover, the operator A can
be expressed as

Az =

∞∑
n=1

n2 < z, zn > zn, z ∈ D(A),

where zn(s) =
√

2
πsin(ns), n = 1, 2, ..., is orthonormal set of eigenvec-

tors of A.

In addition, it follows that R(t) is compact for every t > 0 and

‖R(t)‖ ≤ e−t, t ≥ 0.

Now, we define an operator A(t) : D(A) ⊂ X → X by

A(t)x(ζ) = Ax(ζ) + b(t, ζ)x(ζ).
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Let b(·) be continuous and b(t, ζ) ≤ −γ(γ > 0), for every t ∈ R. Then,
the system {

u
′
(t) = A(t)u(t), t ≥ s,

u(s) = x ∈ X ,

has an associated evolution family, given by

R(t, s)x(ζ) =
∣∣∣R(t− s)e

∫ t
s b(s,ζ)dsx

∣∣∣ (ζ).

From the above expression, it follows that R(t, s) is a compact operator
and for every t, s ∈ [0, T ], with t > s

‖R(t, x)‖ = e−(1+γ)(t−s).

Thus, assuming that ĝ, f̂ : [0, T ]× D̂ → X , ĥ : [0, T ]× D̂ × U → X and
σ : [0, T ]× D̂ → L0

2(Y,X ) by g(t, z)(·) = ĝ(t, z)(·), f(t, z)(·) = f̂(t, z)(·),
h(t, z, u)(·) = ĥ(t, z, u)(·), σ(t) = σ̂ and Ik(z(tk)) = (1 + bk)u(z(tk)), k =
1, 2, ...,m, then, the system (15) can be rewriter as the abstract form as
the system (1). Further, all the conditions of Theorem 3.1 have been
fulfilled. So, we can conclude that the system (15) has a unique mild
solution.

Example 2: We conclude this work an example of the form

d[u(t, x) +

∫ π

0
b(y, x)u(tsint, y)dy]

=

[
∂2

∂x2
ˆΘ(t− s)

[
u(t, x) +

∫ π

0
b(y, x)u(tsint, y)dy

]
+ f̂(t, u(tsint, x))

]
dt

+ σ̂(t)dBH(t) +

∫
U
ĥ(t, u(t− h), v, ζ)Ñ(ds, dv), 0 ≤ ζ ≤ π, t ∈ [0, T ],

u(t+k )− u(t−k ) = (1 + bk)u(x(tt))

u(t, 0) = u(t, π) = 0

u(t, x) = Φ(t, x), 0 ≤ x ≤ π, −∞ < t ≤ 0 (16)

Let X = L2([0, π]) and Y = R1, the real number σ is the magnitude of
continuous noise, dw(t) is a standard one dimension Brownian motion,
Φ ∈ DbB0

((−∞, 0],X ), bk ≥ 0 for k = 1, 2, ...,m and
∑m

k=1 bk <∞.
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Define A an operator on X by Au = ∂2u
∂x2

with the domain

D(A) =

{
u ∈ X |u and

∂u

∂x
are absolutely continuous, u

′
, u(0) = u(π) = 0

}
.

It is well known that A generates a strongly continuous semigroup R(t)
which is compact, analytic and self adjoint. Moreover, the operator A
can be expressed as

Au =

∞∑
n=1

n2 < u, un > un, u ∈ D(A),

where un(ζ) = ( 2
π )

1
2 sin(nζ), n = 1, 2, ..., is the orthonormal set of eigen-

vectors of A, and

R(t)u =
∞∑
n=1

e−n
2t < u, un > un, u ∈ X .

We assume that the following condition hold:
(1) The function b is measurable and∫ π

0

∫ π

0
b2(y, x)dydx <∞.

(2) Let the function ∂
∂tb(y, x) be measurable, let b(y, 0) = b(y, π), and

let

Lg =

[∫ π

0

∫ π

0
(
∂

∂t
b(y, x))2dydx

] 1
2

<∞.

Assuming that conditions (1) and (2) are verified, then the problem (16)
can be modeled as the abstract impulsive neutral stochastic partial inte-
grodifferential equations with fractional Brownian motion and Poisson
jumps of the form (1), as follows

g(t, xt) =

∫ π

0
b(y, x)u(tsint, y)dy, f(t, xt) = f̂(t, u(tsint, x)),

σ(t) = σ̂(t),

∫
U
h(t, u(t− h), v, ζ) =

∫
U
ĥ(t, u(t− h), v, ζ).
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