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Abstract. In this paper, we propose a method to obtain approximate
solutions to Fredholm integral-differential equations by employing the
homotopy analysis method (HAM). The HAM gives the possibility to
increase convergence region and rate of series solution. we show that the
adomian decomposition method (ADM) cannot give better results than
the present method. Five examples are presented to illustrate conver-
gence and accuracy of the method to the solution. Also, we compute the
absolute error to show that obtained results have reasonable accuracy.
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1. Introduction

The homotopy analysis method have been used for many years for solv-
ing mathematical problems. This new method has been presented by
Liao ([1]) and applied to nonlinear oscillators with discontinuities ([2-
4]), heat transfer ([5,6]), boundary layer flows ([7-9]), chaotic dynamical
systems ([10]), systems of ODEs ([11]), delay differential equation ([12]),
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ordinary differential equations ([13]), Glauert-jet problem ([14]), chaotic
dynamical systems ([15]) and strongly nonlinear oscillatory system ([16]).
Consider the following Feredholm integro-Differential equation

m b
> BOu0) = FO)+ [ K9G, u™(s)ds, (1)
7=0 @
Oul(t .
g]ﬁ. )\t:a = N\iyi=0,1,...,m1,
Otu(t .
875(2 )‘t:b == )\i,l = 0, 1, ey, M.

where u(t) : [a,b] — R is the unknown function. where K(¢,s) and
P;(t), j =0,1,2,...,m are known functions.

In this paper, we propose an analytical method to solve the Feredholm’s
Integro-Differential Equations. Comparisons are made between ADM
and the proposed method. It is demonstrated that the solutions obtained
by the ADM are special cases of the present method. For the purpose,
we first give the following definition and theorems.

Definition 1.1. Let ¢ be a function of the homotopy parameter q, then

Dn(d’) =L

nl dq™ 1q=0"
s called the nth-order homotopy-derivative of ¢, where n > 0 is an
mnteger.

Theorem 1.2. For homotopy-series

o0
¢ = upg",
k=0

it holds the recurrence formulas
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where m > 1 is integer.
Proof. See [17]. O

Theorem 1.3. For homotopy-series
o0
¢ = upg",
k=0
it holds the recurrence formulas

Do(sin(¢)) = sin(uo), Do(cos(¢)) = cos(uo),

—_

Dyn(sin(@)) = Y (1~ ) Dy(cos(8)) D (9),

k=0

[y

m—

Dip(cos(9)) = Y (1= ) Di(sin(9) Dy 1(6).

k

Il
=)

where m > 1 1is integer.

Proof. See [17]. O

2. Main Results

2.1 Analysis of the Method for the Feredholm Integro-
Differential Equations

From (4) we define the nonlinear operator

NS Z P 255D iy
/ K9G8 (s:0), o T oDy (3)
and we choose the auxiliary linear operator as follows
DSt = S,

otm
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where ¢ € [0,1] is an embedding parameter; S(t; ¢), is real function of ¢
and ¢, respectively. Let i denote a nonzero auxiliary parameter. Also,
assume ug denote the initial guess of the exact solution u(t).

We construct the zero-order deformation equation

(1 —q)L[S(t;q) — uo] = ¢hN (S(t:9), 9), (3)
subject to the boundary conditions
855(151‘7(])’15:& =i, i =0,1,...,my,
a%(ti"])h:b =X\, i=0,1,...,mo.
Using Taylor’s theorem, we expand S(¢;¢) in the power series of q as
follows
S(tiq) =uo+ Y _u;(t)g, (4)
j=1
where

u;j(t) = D;j(S(t:q)).

Note that (2.) contains an auxiliary parameter A. Assuming that is
correctly chosen so that (2.) is convergent at ¢ = 1, we have the series
solution

u(t) = S(t;1) =uo + »_ u;(t),
j=1

Operating on both sides of (2), we have the so-called nth-order defor-
mation equation

Lluy,(t) = xntn—1(t)] = ARy (uo, w1, ..oy Up—1,1),

Oitun_1(t)
ati
D1 (t)
ati

’t:a = O7Z = 07 17 -y,

iy = 0,i=0,1,...,ms.
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where
0, n<l1,

Xn =
1, otherwise.

and
Ry(ug, - tn-1,t) = Dp1(N(uo+ Y u;(t)q’))
Then, we have

ZP (Bu, = FE)( = xa)

/ K(t, 5)Dy_1( G(S(s;q>,...,mi(jjq>))ds. (5)

We gain u,, (n =1,2,3,...), successively. At the Mth-order approxima-
tion we have

M
u(t) ~ Unr(t,h) = ug + > uj(t)

j=1
2.2 Convergence of Method and Comparison to ADM

Theorem 2.2.1. If the series solution

0+ u)

converges then it is an exact solution of of (4).

Proof. If the series solution:

t)+ Y ui(t)
j=1
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is convergent, then:
lim u;(t) = 0. (6)

Jj—oo

Using (6), we obtain:

W%gnOOZL Un(t) = XnUp—1(t)] = lim w,y,(t) =0.

m—00

Since h # 0, we deduce:
ZR (ug, U1y ooy Up—1,t) = 0.

Now, from (2), it conclude:

> R. = ZZ (), = ST F@)(1 - xa)
n=1 j=0

n=1 n=1
- / K(t:5) Y Dot (G(S(5:0) s 2Dy 0. (1)
a n=1

If the series solution

) = uo(t +Zu]

is convergent, then the series

o0

S D1 (G(S(s50), -, Loy
n=1

will converge to G(u(s), ..., u™ D (s),ul™ (s)) (see [18]).
Now, by using (7) we have:

m b
> Pty (t) = F(t) + / K(t,8)G(u(s), ..., u™ D (s), ul™ (s))ds. (8)

Jj=0

This completes the proof. [
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Remark 2.2.2. The valid region of h for convergence of series solution
uo(t) + 372, u;(t), can be found although approzimately by plotting the
curves of unknown quantities versus h. Let to € [a,b], then Ups(to, h), is
function of h. In accordance with h-curve of Ups(to, h), we can find the
valid region of h [1].

Theorem 2.2.3. (Comparison to ADM) If h = —1 and L{ug(t)] = F(t),
the present method will be converted to ADM.

Proof. See [1]. O

3. Test Examples

In this section, we solve five test problems to demonstrate the accurate
nature of the proposed method. The validity of the method is based on
assumption that the series (2.) converges at ¢ = 1.

There is the convergence-control parameter 7 which guarantees that this
assumption can be satisfied. We need to concentrate on the convergence
of the obtained results by properly choosing h.

Example 3.1. Consider the following nonlinear integro differential
equation

{ u'(t) =2 — sm(l) (2 +1) fo 2(t? 4+ 1) cos(u(z))dz,
u(0) =0, u’(O) =0.

The exact solution of this problem is u(t) = ¢* ([18]).

We choose up(t) = 0 as initial approximation guess. We study the
influence of A on the convergence of Ug(0.5,1). We can investigate the
influence of 7 on the convergence region of Ug(0.5, i) by means of h-curve
as shown in Fig. 1. From Fig. 1, the convergence region of U(0.5, ) is
[—1.2,—0.5]. The Error function |Ups(t, k) — u(t)| with M = 6 has been
plotted for different A in Fig. 2.

Example 3.2. Consider the following linear integro differential equation

{ u’(t) =t —sin(t) — fog tzu(z)dz,
w(0) =0, '(0)=1.
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The exact solution of this problem is u(t) = sin(¢) ([18]).

We choose ugp(t) = t as initial approximation guess. The curve of
Us(5, D) is plotted in Fig. 3 to determine the valid region of . As shown
in Fig. 3, the series solutions of Us(%, h) converge at [—1.05, —0.55]. The
results presented in Table 1 clearly show the good accuracy of present
method.

Example 3.3. Consider the following nonlinear integro differential
equation
{ W) =1—e '+ [ e Ot
u(0) = 0.

The exact solution of this problem is u(t) = ¢ ([19]).

Let us choose up(t) = 0 as initial approximation guess. Fig. 4 shows
the A-curve obtained from the % at t = 0.5. From this figure, the
valid values of A fall in the range [—0.45, —0.35]. The Error function
|Uns(t, h) — u(t)| with M = 6 has been plotted for different value of £ in

Fig. 5.

Example 3.4. Consider the following nonlinear integro differential
equation

{ W(t) =2~ 4 [ (a? — t)ud(t)dt,

The exact solution of this problem is u(t) = ¢ ([20]).

Let us choose ug(t) = 0 as initial approximation guess. In Fig. 6, h-
curve of Ug(0.4, 1) has been plotted, as we see the valid region of A is
[—1.2,—0.3]. The numerical solution obtained from the present method
is much more accurate than the numerical solution given by the ADM,
as shown in Table 2.

Example 3.5. Consider the following linear integro differential equation

{ ' (t) + 2/ (t) — zu(z) = et — 2sin(t) — f_ll sin(t)e *u(z)dz,
u(0) =1, «/(0)=1.

The exact solution of this problem is u(t) = e! ([21]).
We choose ug(t) = 1+t as initial approximation guess. To find the valid
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region of A, the h-curve given by the ag; at t = —0.5 is drawn in Fig.
7, which indicates that the valid region of % is about [—1.2, —0.4]. The
convergence region of the solution given by ADM is ¢ € [-0.5,0.5], as

shown in Fig. 8. When h = —1,—-0.9, —0.7, we obtain an approximate
solution which is much more accurate than the solution given by the
ADM as shown in Table 3.

T T T
-3 -2 =l 1]
control parameter b

Figure 1: The h-curve of U}(0.5,h) (Example 3.1).
0%
10°* 4
10°% 4

Emar -6

] 0z 0.4 06 0g 1
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[=—=h=Tnr h=-07 —h=-1]

Figure 2: The error with & = —0.6, A = —0.7 and & = —1 (Example 3.1).
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Table 1: Absolute error (Example 3.2).

t Ueact h=-1 h=-08 h=-07 ADM
71071 0.3090169944 4.9E-6 26FE -8 290FE -7 54E — 6
7971 0.3420201433 6.8E-6 3.6E -8 4.0E -7 74E —6
n.871 0.3826834325 9.6E-6 49E -8 56E -7 1.1E -5
7771 0.4338837393 1.4E-5 7T1E -8 81E -7 1.5E -5
7.671 0.5000000000 2.2E-5 1.0E -7 1.2E -6 25E -5
7571 0.5877852524 3.9E-5 1.7TE -7 1.9E -6 4.3E -5
7471 0.7071067810 7.7E-5 27E -7 3.1E -6 84FE —5
m.371 0.8660254040 1.8E-4 38E -7 4.3E — 6 2.0E -4
m.271 1.0000000000 6.2E-4 1.3E -6 1.5E -5 6.8E —4

Table 2: Absolute error (Example 3.4).
t Uegact h=-1.0 h=-0.8 h=-1.1 ADM
0 0.0 0.0 0.0 0.0 0.0

0.2 0.2 5.1E-3 5.0E -4 0.7TE —4 5.9E -3

0.4 0.4 9.6E-3 9.5E -4 1.1E -3 1.1E -3

0.6 0.6 1.3E-2 1.2 -3 14E -3 1.5E -3

0.8 0.8 1.5E-2 1.3E -3 1.5E -3 1.6E —3

1.0 1.0 1.4E-2 14F -3 1.6E —3 1.5E -3

Table 3: Absolute error (Example 3.5).

t Uezact h=-1 h=-09 h=-07 ADM
-1 0.3678794412 2.7TE-4 49F — 6 6.0F —6 divergent
—0.8  0.4493289641 7.7E-5 6.4E — 6 15E -5 divergent
—0.6  0.5488116361 1.7E-5 22E -6 49E -6 divergent
—0.4  0.6703200460 5.0E-6 52FE -7 52E -6 37E —2
—0.2  0.8187307531 3.6E-7 1.9FE -6 45E -6 45E -3

0 1 0 1.7TE -7 1.6E -7 0

0.2 1.221402758 5.6e-6 2.0E -6 6.7E — 6 4.0e — 3
0.4 1.491824698 1.9E-6 6.4EFE — 6 2.6E -5 29EF -2
0.6 1.822118800 2.2E-5 3.0E—6 33E -5 8.8E —2
0.8 2.225540928 7.3E-5 6.5FE —7 3.1E—5 divergent

1 2.718281828 1.7E-4 TAE — 7 2.6E —5 divergent
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Figure 3: The h-curve of Us(5,h) (Example 3.2).
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Figure 4: The h-curve of U}(0.5,h) (Example 3.3).
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Error
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Figure 5: The error with i = —0.35, h = —0.4 and h = —0.45 (Example 3.3).
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Figure 6: The A-curve of Ug(0.4, /) (Example 3.4).
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Figure 7: The h-curve of Us(—0.5, %) (Example 3.5).
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Figure 8: Comparison of the exact result with the 5th-order approximation

given by ADM (Example 3.5).



88

4.

M. FARDI, M. GHASEMI, AND F. HEMATI BOROUJENI

Conclusion

In this paper, an semi-analytical method was proposed for solving Fered-
holm Integro-Differential Equations. The efficiency of this method is
demonstrated by solving five examples. We have illustrated that the
ADM cannot give better results than the present method. In fact, the
ADM are only the especial case of the present method.
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