Numerical Range in C*-Algebras

M. T. Heydari
Yasouj University

Abstract

Let \mathcal{A} be a C^{*}-algebra with unit 1 and let \mathcal{S} be the state space of \mathcal{A}, i.e., $\mathcal{S}=\left\{\varphi \in \mathcal{A}^{*}: \varphi \geqslant 0, \varphi(1)=1\right\}$. For each $a \in \mathcal{A}$, the C^{*}-algebra numerical range is defined by $$
V(a):=\{\varphi(a): \varphi \in \mathcal{S}\} .
$$

We prove that if $V(a)$ is a disc with center at the origin, then $\left\|a+a^{*}\right\|=$ $\left\|a-a^{*}\right\|$.

AMS Subject Classification: 47A12; 46K10
Keywords and Phrases: Support line, numerical ranges, norm

1. Introduction

Let T be a bounded linear operator on a complex Hilbert space \mathcal{H}. We can write

$$
\begin{equation*}
T=A+i B \tag{1}
\end{equation*}
$$

where A and B are Hermitian operators. Such a decomposition is unique; we have

$$
\begin{equation*}
A=\frac{1}{2}\left(T+T^{*}\right), B=\frac{1}{2 i}\left(T-T^{*}\right) \tag{2}
\end{equation*}
$$

The elements A, B are called the real and imaginary parts of T, denoted by $\operatorname{Re}(T)$ and $\operatorname{Im}(T)$, respectively, and the decomposition (1) is called the Cartesian decomposition of T.
The numerical range of T is the set

[^0]$$
W(T):=\{\langle T x, x\rangle: x \in \mathcal{H},\|x\|=1\},
$$
in the complex plane, where $\langle.,$.$\rangle denotes the inner product in \mathcal{H}$. In other words, $W(T)$ is the image of the unit sphere $\{x \in \mathcal{H}:\|x\|=1\}$ of \mathcal{H} under the (bounded) quadratic form $x \mapsto\langle T x, x\rangle$.

Some properties of the numerical range follow easily from the definition. Recall that, the numerical range is unchanged under the unitary equivalence of operators: $W(T)=W\left(U^{*} T U\right)$ for any unitary operator U. It also behaves nicely under the operation of taking the adjoint of an operator: $W\left(T^{*}\right)=\{\bar{z}: z \in W(T)\}$. One of the most fundamental properties of the numerical range is it's convexity, stated by the famous Toeplitz-Hausdorff Theorem. Other important property of $W(T)$ is that its closure contains the spectrum of the operator. Also, $W(T)$ is a connected set and it is compact in the finite dimensional case.

2. Numerical Range and Norm

Suppose E is a bounded convex subset of the plane. For $0 \leqslant \theta<2 \pi$ define

$$
\begin{equation*}
p_{E}(\theta):=\sup \left\{\operatorname{Re}\left(e^{-i \theta} z\right): z \in E\right\} . \tag{3}
\end{equation*}
$$

Note that for $z \in \mathbb{C}$, the number $\operatorname{Re}\left(e^{-i \theta} z\right)$ is the real dot product of the plane vectors $e^{i \theta}$ and z, i.e., the signed length of the projection of z in the direction of $e^{i \theta}$. Thus the set

$$
\prod_{\theta}=\left\{z \in \mathbb{C}: \operatorname{Re}\left(e^{-i \theta} z\right) \leqslant p_{E}(\theta)\right\},
$$

is a closed half-plane that contains E and intersects ∂E. The boundary L_{θ} of \prod_{θ} is called the support line of E perpendicular to $e^{i \theta}$. The magnitude of $p_{E}(\theta)$ is the orthogonal distance from the origin to L_{θ}. The function $p_{E}(\theta):[0,2 \pi): \rightarrow \mathbb{R}$ defined by (3) is called the support function of E. The Hahn-Banach theorem insures that the closure of E is the intersection of all the half-planes \prod_{θ} as θ runs from 0 to 2π. Hence two bounded convex sets with the same support function have the same closures(see [3]).

In our applications the set E will always contain the origin in its closure, in which case $p_{E} \geqslant 0$. We will be particularly interested in the support function of a standard ellipse.

Proposition 2.1. Suppose $a, b>0$ and E is the elliptical disc determined by the inequality $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leqslant 1$. Then $p_{E}(\theta)=\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}$. $(0 \leqslant \theta<2 \pi)$.

Proof. We parameterize the boundary of E by the complex equation $z(t)=a \cos t+i b \sin t$, with $0 \leqslant t<2 \pi$. So

$$
\begin{aligned}
p_{E}(\theta) & =\sup \left\{\operatorname{Re}\left(e^{-i \theta} z\right): z \in E\right\} \\
& =\sup \{a \cos \theta \cos t+b \sin \theta \sin t, 0 \leqslant t<2 \pi\}
\end{aligned}
$$

Put $f(t)=a \cos \theta \cos t+b \sin \theta \sin t, 0 \leqslant t<2 \pi$. Since f is twice differentiable so, by second derivative test, it has a local maximum at $\tan t=\frac{b}{a} \tan \theta$. After a little calculation with right triangles this yields the equations

$$
\cos t=\frac{a \cos \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}, \quad \sin t=\frac{b \sin \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}
$$

and then by substituting, $p_{E}(\theta)=\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} . \quad(0 \leqslant \theta<$ $2 \pi)$.

We note in closing that this result persists in the limiting case $b=0$. In this case E is the real segment $[-a, a]$, for which the definition of support function yields $p_{E}(\theta)=a|\cos (\theta)|$. If $a=b$, then $p_{E}(\theta)=a$, indeed if E is a disc with center at the origin then the function $p_{E}(\theta)$ is constant for all θ.

Proposition 2.2. If T is a bounded linear operator on a Hilbert space \mathcal{H} such that $\bar{W}(T)$ is a disc with center at the origin. Then

$$
\|\operatorname{Re}(T)\|=\|\operatorname{Im}(T)\| .
$$

Proof. We compute the support function p_{T} of $W(T)$ in this standard fashion:

$$
\begin{aligned}
p_{T}(\theta): & =\sup \left\{\operatorname{Re}\left(e^{-i \theta} z\right): z \in W(T)\right\} \\
& =\sup \left\{\operatorname{Re}\left(e^{-i \theta}<T f, f>\right): f \in \mathcal{H},\|f\|=1\right\} \\
& =\sup \left\{<H_{\theta} f, f>: f \in \mathcal{H},\|f\|=1\right\}
\end{aligned}
$$

where $H_{\theta}:=\operatorname{Re}\left(e^{-i \theta} T\right)=\frac{1}{2}\left(e^{-i \theta} T+e^{i \theta} T^{*}\right)$.
Since H_{θ} is a self-adjoint operator on \mathcal{H} and $W(T)$ is a disc with center at the origin, then the last calculation show that for each $0 \leqslant \theta<2 \pi$,

$$
p_{T}(\theta)=\sup \left\{\left|<H_{\theta} f, f>\right|: f \in \mathcal{H},\|f\|=1\right\}=\left\|H_{\theta}\right\| .
$$

Now, Proposition 2. implies that, $p_{T}(\theta)$ and also $\left\|H_{\theta}\right\|$ is constant for all θ. In particular, $\left\|H_{0}\right\|=\left\|H_{\frac{\pi}{2}}\right\|$ or

$$
\left\|T+T^{*}\right\|=\left\|T-T^{*}\right\|
$$

This completes the proof.
Let \mathcal{A} be a C^{*}-algebra with unit 1 and let \mathcal{S} be the state space of \mathcal{A}, i.e., $\mathcal{S}=\left\{\varphi \in \mathcal{A}^{*}: \varphi \geqslant 0, \varphi(1)=1\right\}$. For each $a \in \mathcal{A}$, the C^{*}-algebra numerical range is defined by

$$
V(a):=\{\varphi(a): \varphi \in \mathcal{S}\} .
$$

It is well known that $V(a)$ is non empty, compact and convex subset of the complex plane and $V(\alpha 1+\beta a)=\alpha+\beta V(a)$ where $a \in \mathcal{A}, \alpha, \beta \in \mathbb{C}$, and if $z \in V(a),|z| \leqslant\|a\|$ (for further details see [2]).
As an example, let \mathcal{A} be the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} and $A \in \mathcal{A}$. It is well known that $V(A)$ is the closure of $W(A)$, where

$$
W(A):=\{\langle A x, x\rangle: x \in \mathcal{H},\|x\|=1\},
$$

is the usual numerical range of the operator A.

Theorem 2.3. Let $a \in \mathcal{A}$ be such that $V(a)$ be a disc with center at the origin. Then

$$
\|\operatorname{Re}(a)\|=\|\operatorname{Im}(a)\|
$$

Proof. Let ρ be a state of \mathcal{A}. Then there exists a cyclic representation φ_{ρ} of \mathcal{A} on a Hilbert space \mathcal{H}_{ρ} and a unit cyclic vector x_{ρ} for φ_{ρ} such that

$$
\rho(a)=\left\langle\varphi_{\rho}(a) x_{\rho}, x_{\rho}\right\rangle, a \in \mathcal{A} .
$$

By Gelfand-Naimark Theorem, the direct sum $\varphi: a \mapsto \sum_{\rho \in \mathcal{S}} \oplus \varphi_{\rho}(a)$ is a faithful representation of \mathcal{A} on the Hilbert space $\mathcal{H}=\sum_{\rho \in \mathcal{S}} \oplus \mathcal{H}_{\rho}$ (see [6]). Therefore, for each $\rho \in \mathcal{S}, \rho(a) \in W\left(\varphi_{\rho}(a)\right) \subset W(\varphi(a))$, and hence $V(a)$ is contained in $W(\varphi(a))$. On the other hand if x is a unit vector of \mathcal{H}, then the formula $\rho(b)=\langle\varphi(b) x, x\rangle, b \in \mathcal{A}$ defines a state on \mathcal{A} and hence $\rho(a)=\langle\varphi(a) x, x\rangle \in V(a)$. So it follows that

$$
\begin{equation*}
W\left(T_{a}\right)=V(a), \tag{4}
\end{equation*}
$$

where $T_{a}=\varphi(a)$. (see also Theorem 3 of [1]).
Since $\varphi(\operatorname{Re}(a))=\operatorname{Re}\left(T_{a}\right), \varphi(\operatorname{Im}(a))=\operatorname{Im}\left(T_{a}\right)$ and φ is isometry, thus by equation (4) and Proposition (2.) the proof is completed.

Example 2.4. Let \mathbb{U} denote the open unit disc in the complex plane. Recall that the Hardy space H^{2} consists the functions $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}$ holomorphic in \mathbb{U} such that $\sum_{n=0}^{\infty}|\widehat{f}(n)|^{2}<\infty$, with $\widehat{f}(n)$ denoting the n -th Taylor coefficient of f. The inner product inducing the norm of H^{2} is given by $\langle f, g\rangle:=\sum_{n=0}^{\infty} \widehat{f}(n) \bar{g}(n)$. The inner product of two functions f and g in H^{2} may also be computed by integration:

$$
<f, g>=\frac{1}{2 \pi i} \int_{\partial \mathbb{U}} f(z) \overline{g(z)} \frac{d z}{z},
$$

where $\partial \mathbb{U}$ is positively oriented and f and g are defined a.e. on $\partial \mathbb{U}$ via radial limits.
Each holomorphic self map φ of \mathbb{U} induces on H^{2} a composition operator C_{φ} defined by the equation $C_{\varphi} f=f \circ \varphi\left(f \in H^{2}\right)$. A consequence of
a famous theorem of J. E. Littlewood [7] asserts that C_{φ} is a bounded operator. (see also [9] and [4]). In fact,

$$
\sqrt{\frac{1}{1-|\varphi(0)|^{2}}} \leqslant\left\|C_{\varphi}\right\| \leqslant \sqrt{\frac{1+|\varphi(0)|}{1-|\varphi(0)|}} .
$$

In the case $\varphi(0) \neq 0$ Joel H. Shapiro has been shown that the second inequality changes to equality if and only if φ is an inner function.
A conformal automorphism is a univalent holomorphic mapping of \mathbb{U} onto itself. Each such map is linear fractional, and can be represented as a product $w . \alpha_{p}$, where

$$
\alpha_{p}(z):=\frac{p-z}{1-\bar{p} z},(z \in \mathbb{U}),
$$

for some fixed $p \in \mathbb{U}$ and $w \in \partial \mathbb{U}$ (see [8]).
The map α_{p} interchanges the point p and the origin and it is a self-inverse automorphism of \mathbb{U}.

Each conformal automorphism is a bijection map from the sphere $\mathbb{C} \bigcup\{\infty\}$ to itself with two fixed points (counting multiplicity). An automorphism is called:

- elliptic if it has one fixed point in the disc and one outside the closed disc,
- hyperbolic if it has two distinct fixed point on the boundary $\partial \mathbb{U}$, and
- parabolic if there is one fixed point of multiplicity 2 on the boundary $\partial \mathbb{U}$.
For $r \in \mathbb{U}$, a r-dilation is a map of the form $\delta_{r}(z)=r z$ and we call r the dilation parameter of δ_{r} and in the case that $r>0, \delta_{r}$ is called positive dilation. A conformal r-dilation is a map that is conformally conjugate to an r-dilation, i.e., a map $\varphi=\alpha^{-1} \circ \delta_{r} \circ \alpha$, where $r \in \mathbb{U}$ and α is a conformal automorphism of \mathbb{U}.
For $w \in \partial \mathbb{U}$, an w-rotation is a map of the form $\rho_{w}(z)=w z$. We call w the rotation parameter of ρ_{w}. A straightforward calculation shows that
every elliptic automorphism φ of \mathbb{U} must have the form

$$
\varphi=\alpha_{p} \circ \rho_{w} \circ \alpha_{p},
$$

for some $p \in \mathbb{U}$ and some $w \in \partial \mathbb{U}$.
In [3] the shapes of the numerical range for composition operators induced on H^{2} by some conformal automorphisms of the unit disc specially parabolic and hyperbolic are investigated. The authors proved, among other things, the following results:

1. If φ is a conformal automorphism of \mathbb{U} is either parabolic or hyperbolic then $W\left(C_{\varphi}\right)$ is a disc centered at the origin.
2. If φ is a hyperbolic automorphism of \mathbb{U} with antipodal fixed points and it is conformally conjugate to a positive dilation $z \mapsto r z(0<$ $r<1$) then $W\left(C_{\varphi}\right)$ is the open disc of radius $1 / \sqrt{r}$ centered at the origin.
3. If φ is elliptic and conformally conjugate to a rotation $z \mapsto \omega z$ $(|\omega|=1)$ and ω is not a root of unity then $\bar{W}\left(C_{\varphi}\right)$ is a disc centered at the origin.

So, we have the following consequences:
Proposition 2.5. If φ is a conformal automorphism of \mathbb{U}, except finite order elliptic automorphism, then

$$
\left\|C_{\varphi}+C_{\varphi}^{*}\right\|=\left\|C_{\varphi}-C_{\varphi}^{*}\right\| .
$$

Also C_{φ} is not self adjoint. If φ is a finite order elliptic automorphism with rotation parameter w of order k, then

$$
\sigma\left(C_{\varphi}\right)=\left\{1, w, w^{2}, \ldots, w^{k-1}\right\} .
$$

If $w \neq \pm 1$, then $\sigma\left(C_{\varphi}\right)$ is not a subset of \mathbb{R} and so C_{φ} is not self adjoint.
Corollary 2.6. C_{φ} is Hermitian if and only if $\varphi(z)=z$ or $-z$.

References

[1] S. K. Berberian and G. H. Orland, On the closure of the numerical range of an operator, Proc. Amer. Math. Soc., 18 (1967), 499-503.
[2] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on normed Spaces and of Elements of Normed Algebras, London-New York: Cambridge University Press, 1971.
[3] P. S. Bourdon and J. H. Shapiro, The numerical range of automorphic composition operators, J. Math. Analysis and application, 251 (2000), 839-854.
[4] C. C. Cowen and B. D. Maccluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995.
[5] M. T. Heydari, C*-Algebra numerical range of quadratic elements, Iranian Journal of Mathematical Sciences and Informatics, 5(1) (2010), 49-53.
[6] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol, I. Elementary Theory. Pure and Applied Mathematics 100, New York: Academic Press, 1983.
[7] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23 (1925), 481-519.
[8] W. Rudin, Real and complex analysis, Third edition, McGraw-Hill Book Co., New York, 1987.
[9] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, 1993.

Mohammd Taghi Heydari
Department of Mathematics
College of Sciences
Assistant Professor of Mathematics
Yasouj University
Yasouj, Iran
E-mail: heydari@mail.yu.ac.ir

[^0]: Received: June 2011; Accepted: March 2012

