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Numerical Range in C*-Algebras

M. T. Heydari
Yasouj University

Abstract. Let A be a C*-algebra with unit 1 and let S be the state
space of A, i.e., S = {ϕ ∈ A∗ : ϕ > 0, ϕ(1) = 1}. For each a ∈ A, the
C*-algebra numerical range is defined by

V (a) := {ϕ(a) : ϕ ∈ S}.

We prove that if V (a) is a disc with center at the origin, then ‖a+a∗‖ =
‖a− a∗‖.
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1. Introduction

Let T be a bounded linear operator on a complex Hilbert space H. We
can write

T = A+ iB, (1)

where A and B are Hermitian operators. Such a decomposition is
unique; we have

A =
1
2
(T + T ∗), B =

1
2i

(T − T ∗). (2)

The elements A,B are called the real and imaginary parts of T , denoted
by Re(T ) and Im(T ), respectively, and the decomposition (1) is called
the Cartesian decomposition of T .
The numerical range of T is the set
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W (T ) := {〈Tx, x〉 : x ∈ H, ‖x‖ = 1},

in the complex plane, where 〈., .〉 denotes the inner product in H. In
other words, W (T ) is the image of the unit sphere {x ∈ H : ‖x‖ = 1} of
H under the (bounded) quadratic form x 7→ 〈Tx, x〉.

Some properties of the numerical range follow easily from the defini-
tion. Recall that, the numerical range is unchanged under the unitary
equivalence of operators: W (T ) = W (U∗TU) for any unitary operator
U . It also behaves nicely under the operation of taking the adjoint of
an operator: W (T ∗) = {z : z ∈ W (T )}. One of the most fundamental
properties of the numerical range is it’s convexity, stated by the famous
Toeplitz-Hausdorff Theorem. Other important property of W (T ) is that
its closure contains the spectrum of the operator. Also, W (T ) is a con-
nected set and it is compact in the finite dimensional case.

2. Numerical Range and Norm

Suppose E is a bounded convex subset of the plane. For 0 6 θ < 2π
define

pE(θ) := sup{Re(e−iθz) : z ∈ E}. (3)

Note that for z ∈ C, the number Re(e−iθz) is the real dot product of
the plane vectors eiθ and z, i.e., the signed length of the projection of z
in the direction of eiθ. Thus the set∏

θ = {z ∈ C : Re(e−iθz) 6 pE(θ)},

is a closed half-plane that contains E and intersects ∂E. The boundary
Lθ of

∏
θ is called the support line of E perpendicular to eiθ. The

magnitude of pE(θ) is the orthogonal distance from the origin to Lθ.
The function pE(θ) : [0, 2π) :→ R defined by (3) is called the support
function of E. The Hahn-Banach theorem insures that the closure of
E is the intersection of all the half-planes

∏
θ as θ runs from 0 to 2π.

Hence two bounded convex sets with the same support function have
the same closures( see [3]).
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In our applications the set E will always contain the origin in its closure,
in which case pE > 0 . We will be particularly interested in the support
function of a standard ellipse.

Proposition 2.1. Suppose a, b > 0 and E is the elliptical disc deter-
mined by the inequality x2

a2 + y2

b2
6 1. Then pE(θ) =

√
a2 cos2 θ + b2 sin2 θ.

(0 6 θ < 2π).

Proof. We parameterize the boundary of E by the complex equation
z(t) = a cos t+ ib sin t, with 0 6 t < 2π. So

pE(θ) = sup{Re(e−iθz) : z ∈ E}
= sup{a cos θ cos t+ b sin θ sin t, 0 6 t < 2π}.

Put f(t) = a cos θ cos t + b sin θ sin t, 0 6 t < 2π. Since f is twice dif-
ferentiable so, by second derivative test, it has a local maximum at
tan t = b

a tan θ. After a little calculation with right triangles this yields
the equations

cos t =
a cos θ√

a2 cos2 θ + b2 sin2 θ
, sin t =

b sin θ√
a2 cos2 θ + b2 sin2 θ

and then by substituting, pE(θ) =
√
a2 cos2 θ + b2 sin2 θ. (0 6 θ <

2π). �

We note in closing that this result persists in the limiting case b = 0.
In this case E is the real segment [−a, a], for which the definition of
support function yields pE(θ) = a| cos(θ)|. If a = b, then pE(θ) = a,
indeed if E is a disc with center at the origin then the function pE(θ) is
constant for all θ.

Proposition 2.2. If T is a bounded linear operator on a Hilbert space
H such that W (T ) is a disc with center at the origin. Then

‖Re(T )‖ = ‖Im(T )‖.
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Proof. We compute the support function pT of W (T ) in this standard
fashion:

pT (θ) : = sup{Re(e−iθz) : z ∈W (T )}
= sup{Re(e−iθ < Tf, f >) : f ∈ H, ‖f‖ = 1}
= sup{< Hθf, f >: f ∈ H, ‖f‖ = 1}

where Hθ := Re(e−iθT ) = 1
2(e−iθT + eiθT ∗).

Since Hθ is a self-adjoint operator on H and W (T ) is a disc with cen-
ter at the origin, then the last calculation show that for each 0 6 θ < 2π,

pT (θ) = sup{| < Hθf, f > | : f ∈ H, ‖f‖ = 1} = ‖Hθ‖.

Now, Proposition 2. implies that, pT (θ) and also ‖Hθ‖ is constant for
all θ. In particular, ‖H0‖ = ‖Hπ

2
‖ or

‖T + T ∗‖ = ‖T − T ∗‖.

This completes the proof. �

Let A be a C*-algebra with unit 1 and let S be the state space of A,
i.e., S = {ϕ ∈ A∗ : ϕ > 0, ϕ(1) = 1}. For each a ∈ A, the C*-algebra
numerical range is defined by

V (a) := {ϕ(a) : ϕ ∈ S}.

It is well known that V (a) is non empty, compact and convex subset of
the complex plane and V (α1 +βa) = α+βV (a) where a ∈ A, α, β ∈ C,
and if z ∈ V (a), |z| 6 ‖a‖ (for further details see [2]).
As an example, let A be the C*-algebra of all bounded linear operators
on a complex Hilbert space H and A ∈ A. It is well known that V (A)
is the closure of W (A), where

W (A) := {〈Ax, x〉 : x ∈ H, ‖x‖ = 1},

is the usual numerical range of the operator A.
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Theorem 2.3. Let a ∈ A be such that V (a) be a disc with center at the
origin. Then

‖Re(a)‖ = ‖Im(a)‖

.

Proof. Let ρ be a state of A. Then there exists a cyclic representation
ϕρ of A on a Hilbert space Hρ and a unit cyclic vector xρ for ϕρ such
that

ρ(a) = 〈ϕρ(a)xρ, xρ〉, a ∈ A.

By Gelfand-Naimark Theorem, the direct sum ϕ : a 7→
∑

ρ∈S ⊕ϕρ(a) is
a faithful representation of A on the Hilbert space H =

∑
ρ∈S ⊕Hρ (see

[6]). Therefore, for each ρ ∈ S, ρ(a) ∈ W (ϕρ(a)) ⊂ W (ϕ(a)), and hence
V (a) is contained in W (ϕ(a)). On the other hand if x is a unit vector
of H, then the formula ρ(b) = 〈ϕ(b)x, x〉, b ∈ A defines a state on A and
hence ρ(a) = 〈ϕ(a)x, x〉 ∈ V (a). So it follows that

W (Ta) = V (a), (4)

where Ta = ϕ(a). (see also Theorem 3 of [1]).

Since ϕ(Re(a)) = Re(Ta), ϕ(Im(a)) = Im(Ta) and ϕ is isometry, thus
by equation (4) and Proposition (2.) the proof is completed. �

Example 2.4. Let U denote the open unit disc in the complex plane.
Recall that the Hardy space H2 consists the functions f(z) =

∑∞
n=0 f̂(n)zn

holomorphic in U such that
∑∞

n=0 |f̂(n)|2 <∞, with f̂(n) denoting the
n-th Taylor coefficient of f . The inner product inducing the norm of
H2 is given by < f, g >:=

∑∞
n=0 f̂(n)ĝ(n). The inner product of two

functions f and g in H2 may also be computed by integration:

< f, g >=
1

2πi

∫
∂U
f(z)g(z)

dz

z
,

where ∂U is positively oriented and f and g are defined a.e. on ∂U via
radial limits.

Each holomorphic self map ϕ of U induces on H2 a composition operator
Cϕ defined by the equation Cϕf = f ◦ ϕ(f ∈ H2). A consequence of
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a famous theorem of J. E. Littlewood [7] asserts that Cϕ is a bounded
operator. (see also [9] and [4]). In fact,√

1
1− |ϕ(0)|2

6 ‖Cϕ‖ 6

√
1 + |ϕ(0)|
1− |ϕ(0)|

.

In the case ϕ(0) 6= 0 Joel H. Shapiro has been shown that the second
inequality changes to equality if and only if ϕ is an inner function.
A conformal automorphism is a univalent holomorphic mapping of U
onto itself. Each such map is linear fractional, and can be represented
as a product w.αp, where

αp(z) :=
p− z

1− pz
, (z ∈ U),

for some fixed p ∈ U and w ∈ ∂U (see [8]).
The map αp interchanges the point p and the origin and it is a self-inverse
automorphism of U.

Each conformal automorphism is a bijection map from the sphere C
⋃
{∞}

to itself with two fixed points (counting multiplicity). An automorphism
is called:

• elliptic if it has one fixed point in the disc and one outside the
closed disc,

• hyperbolic if it has two distinct fixed point on the boundary ∂U,
and

• parabolic if there is one fixed point of multiplicity 2 on the bound-
ary ∂U.

For r ∈ U, a r-dilation is a map of the form δr(z) = rz and we call r the
dilation parameter of δr and in the case that r > 0, δr is called positive
dilation. A conformal r-dilation is a map that is conformally conjugate
to an r-dilation, i.e., a map ϕ = α−1 ◦ δr ◦ α, where r ∈ U and α is a
conformal automorphism of U.
For w ∈ ∂U, an w-rotation is a map of the form ρw(z) = wz. We call w
the rotation parameter of ρw. A straightforward calculation shows that
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every elliptic automorphism ϕ of U must have the form

ϕ = αp ◦ ρw ◦ αp,

for some p ∈ U and some w ∈ ∂U.
In [3] the shapes of the numerical range for composition operators in-
duced onH2 by some conformal automorphisms of the unit disc specially
parabolic and hyperbolic are investigated. The authors proved, among
other things, the following results:

1. If ϕ is a conformal automorphism of U is either parabolic or hy-
perbolic then W (Cϕ) is a disc centered at the origin.

2. If ϕ is a hyperbolic automorphism of U with antipodal fixed points
and it is conformally conjugate to a positive dilation z 7→ rz (0 <
r < 1) then W (Cϕ) is the open disc of radius 1/

√
r centered at the

origin.

3. If ϕ is elliptic and conformally conjugate to a rotation z 7→ ωz

(|ω| = 1) and ω is not a root of unity then W (Cϕ) is a disc centered
at the origin.

So, we have the following consequences:

Proposition 2.5. If ϕ is a conformal automorphism of U, except finite
order elliptic automorphism, then

‖Cϕ + C∗
ϕ‖ = ‖Cϕ − C∗

ϕ‖.

Also Cϕ is not self adjoint. If ϕ is a finite order elliptic automorphism
with rotation parameter w of order k, then

σ(Cϕ) = {1, w, w2, ..., wk−1}.

If w 6= ±1, then σ(Cϕ) is not a subset of R and so Cϕ is not self adjoint.

Corollary 2.6. Cϕ is Hermitian if and only if ϕ(z) = z or − z.
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