Journal of Mathematical Extension Vol. 6, No. 2, (2012), 91-98

Numerical Range in C*-Algebras

M. T. Heydari

Yasouj University

Abstract. Let \mathcal{A} be a C*-algebra with unit 1 and let \mathcal{S} be the state space of \mathcal{A} , i.e., $\mathcal{S} = \{\varphi \in \mathcal{A}^* : \varphi \ge 0, \varphi(1) = 1\}$. For each $a \in \mathcal{A}$, the C*-algebra numerical range is defined by

$$V(a) := \{\varphi(a) : \varphi \in \mathcal{S}\}.$$

We prove that if V(a) is a disc with center at the origin, then $\|a+a^*\|=\|a-a^*\|.$

AMS Subject Classification: 47A12; 46K10 **Keywords and Phrases:** Support line, numerical ranges, norm

1. Introduction

Let T be a bounded linear operator on a complex Hilbert space \mathcal{H} . We can write

$$T = A + iB,\tag{1}$$

where A and B are Hermitian operators. Such a decomposition is unique; we have

$$A = \frac{1}{2}(T + T^*), B = \frac{1}{2i}(T - T^*).$$
 (2)

The elements A, B are called the real and imaginary parts of T, denoted by Re(T) and Im(T), respectively, and the decomposition (1) is called the Cartesian decomposition of T.

The *numerical range* of T is the set

Received: June 2011; Accepted: March 2012

$$W(T) := \{ \langle Tx, x \rangle : x \in \mathcal{H}, \|x\| = 1 \},\$$

in the complex plane, where $\langle ., . \rangle$ denotes the inner product in \mathcal{H} . In other words, W(T) is the image of the unit sphere $\{x \in \mathcal{H} : ||x|| = 1\}$ of \mathcal{H} under the (bounded) quadratic form $x \mapsto \langle Tx, x \rangle$.

Some properties of the numerical range follow easily from the definition. Recall that, the numerical range is unchanged under the unitary equivalence of operators: $W(T) = W(U^*TU)$ for any unitary operator U. It also behaves nicely under the operation of taking the adjoint of an operator: $W(T^*) = \{\overline{z} : z \in W(T)\}$. One of the most fundamental properties of the numerical range is it's convexity, stated by the famous Toeplitz-Hausdorff Theorem. Other important property of W(T) is that its closure contains the spectrum of the operator. Also, W(T) is a connected set and it is compact in the finite dimensional case.

2. Numerical Range and Norm

Suppose E is a bounded convex subset of the plane. For $0 \leq \theta < 2\pi$ define

$$p_E(\theta) := \sup\{Re(e^{-i\theta}z) : z \in E\}.$$
(3)

Note that for $z \in \mathbb{C}$, the number $Re(e^{-i\theta}z)$ is the real dot product of the plane vectors $e^{i\theta}$ and z, i.e., the signed length of the projection of z in the direction of $e^{i\theta}$. Thus the set

$$\prod_{\theta} = \{ z \in \mathbb{C} : Re(e^{-i\theta}z) \leq p_E(\theta) \},\$$

is a closed half-plane that contains E and intersects ∂E . The boundary L_{θ} of \prod_{θ} is called the support line of E perpendicular to $e^{i\theta}$. The magnitude of $p_E(\theta)$ is the orthogonal distance from the origin to L_{θ} . The function $p_E(\theta) : [0, 2\pi) :\to \mathbb{R}$ defined by (3) is called the support function of E. The Hahn-Banach theorem insures that the closure of E is the intersection of all the half-planes \prod_{θ} as θ runs from 0 to 2π . Hence two bounded convex sets with the same support function have the same closures (see [3]).

In our applications the set E will always contain the origin in its closure, in which case $p_E \ge 0$. We will be particularly interested in the support function of a standard ellipse.

Proposition 2.1. Suppose a, b > 0 and E is the elliptical disc determined by the inequality $\frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1$. Then $p_E(\theta) = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}$. $(0 \leq \theta < 2\pi)$.

Proof. We parameterize the boundary of *E* by the complex equation $z(t) = a \cos t + ib \sin t$, with $0 \leq t < 2\pi$. So

$$p_E(\theta) = \sup\{Re(e^{-i\theta}z) : z \in E\}$$

=
$$\sup\{a\cos\theta\cos t + b\sin\theta\sin t, 0 \le t < 2\pi\}.$$

Put $f(t) = a \cos \theta \cos t + b \sin \theta \sin t$, $0 \leq t < 2\pi$. Since f is twice differentiable so, by second derivative test, it has a local maximum at $\tan t = \frac{b}{a} \tan \theta$. After a little calculation with right triangles this yields the equations

$$\cos t = \frac{a\cos\theta}{\sqrt{a^2\cos^2\theta + b^2\sin^2\theta}} \quad , \quad \sin t = \frac{b\sin\theta}{\sqrt{a^2\cos^2\theta + b^2\sin^2\theta}}$$

and then by substituting, $p_E(\theta) = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}$. $(0 \leq \theta < 2\pi)$. \Box

We note in closing that this result persists in the limiting case b = 0. In this case E is the real segment [-a, a], for which the definition of support function yields $p_E(\theta) = a |\cos(\theta)|$. If a = b, then $p_E(\theta) = a$, indeed if E is a disc with center at the origin then the function $p_E(\theta)$ is constant for all θ .

Proposition 2.2. If T is a bounded linear operator on a Hilbert space \mathcal{H} such that $\overline{W}(T)$ is a disc with center at the origin. Then

$$||Re(T)|| = ||Im(T)||.$$

Proof. We compute the support function p_T of W(T) in this standard fashion:

$$p_T(\theta) := \sup \{ Re(e^{-i\theta}z) : z \in W(T) \}$$

=
$$\sup \{ Re(e^{-i\theta} < Tf, f >) : f \in \mathcal{H}, ||f|| = 1 \}$$

=
$$\sup \{ < H_{\theta}f, f >: f \in \mathcal{H}, ||f|| = 1 \}$$

where $H_{\theta} := Re(e^{-i\theta}T) = \frac{1}{2}(e^{-i\theta}T + e^{i\theta}T^*).$

Since H_{θ} is a self-adjoint operator on \mathcal{H} and W(T) is a disc with center at the origin, then the last calculation show that for each $0 \leq \theta < 2\pi$,

$$p_T(\theta) = \sup\{| < H_{\theta}f, f > | : f \in \mathcal{H}, ||f|| = 1\} = ||H_{\theta}||.$$

Now, Proposition 2. implies that, $p_T(\theta)$ and also $||H_{\theta}||$ is constant for all θ . In particular, $||H_0|| = ||H_{\frac{\pi}{2}}||$ or

$$||T + T^*|| = ||T - T^*||.$$

This completes the proof. \Box

Let \mathcal{A} be a C*-algebra with unit 1 and let \mathcal{S} be the state space of \mathcal{A} , i.e., $\mathcal{S} = \{\varphi \in \mathcal{A}^* : \varphi \ge 0, \varphi(1) = 1\}$. For each $a \in \mathcal{A}$, the C*-algebra numerical range is defined by

$$V(a) := \{\varphi(a) : \varphi \in \mathcal{S}\}.$$

It is well known that V(a) is non empty, compact and convex subset of the complex plane and $V(\alpha 1 + \beta a) = \alpha + \beta V(a)$ where $a \in \mathcal{A}, \alpha, \beta \in \mathbb{C}$, and if $z \in V(a), |z| \leq ||a||$ (for further details see [2]).

As an example, let \mathcal{A} be the C*-algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} and $A \in \mathcal{A}$. It is well known that V(A)is the closure of W(A), where

$$W(A) := \{ \langle Ax, x \rangle : x \in \mathcal{H}, \|x\| = 1 \},\$$

is the usual numerical range of the operator A.

Theorem 2.3. Let $a \in \mathcal{A}$ be such that V(a) be a disc with center at the origin. Then

$$||Re(a)|| = ||Im(a)||$$

Proof. Let ρ be a state of \mathcal{A} . Then there exists a cyclic representation φ_{ρ} of \mathcal{A} on a Hilbert space \mathcal{H}_{ρ} and a unit cyclic vector x_{ρ} for φ_{ρ} such that

$$\rho(a) = \langle \varphi_{\rho}(a) x_{\rho}, x_{\rho} \rangle, \ a \in \mathcal{A}.$$

By Gelfand-Naimark Theorem, the direct sum $\varphi : a \mapsto \sum_{\rho \in \mathcal{S}} \oplus \varphi_{\rho}(a)$ is a faithful representation of \mathcal{A} on the Hilbert space $\mathcal{H} = \sum_{\rho \in \mathcal{S}} \oplus \mathcal{H}_{\rho}$ (see [6]). Therefore, for each $\rho \in \mathcal{S}, \rho(a) \in W(\varphi_{\rho}(a)) \subset W(\varphi(a))$, and hence V(a) is contained in $W(\varphi(a))$. On the other hand if x is a unit vector of \mathcal{H} , then the formula $\rho(b) = \langle \varphi(b)x, x \rangle, b \in \mathcal{A}$ defines a state on \mathcal{A} and hence $\rho(a) = \langle \varphi(a)x, x \rangle \in V(a)$. So it follows that

$$W(T_a) = V(a), \tag{4}$$

where $T_a = \varphi(a)$. (see also Theorem 3 of [1]).

Since $\varphi(Re(a)) = Re(T_a)$, $\varphi(Im(a)) = Im(T_a)$ and φ is isometry, thus by equation (4) and Proposition (2.) the proof is completed. \Box

Example 2.4. Let \mathbb{U} denote the open unit disc in the complex plane. Recall that the *Hardy space* H^2 consists the functions $f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$ holomorphic in \mathbb{U} such that $\sum_{n=0}^{\infty} |\widehat{f}(n)|^2 < \infty$, with $\widehat{f}(n)$ denoting the n-th Taylor coefficient of f. The inner product inducing the norm of H^2 is given by $\langle f, g \rangle := \sum_{n=0}^{\infty} \widehat{f}(n)\overline{\widehat{g}(n)}$. The inner product of two functions f and g in H^2 may also be computed by integration:

$$\langle f,g \rangle = \frac{1}{2\pi i} \int_{\partial \mathbb{U}} f(z) \overline{g(z)} \frac{dz}{z},$$

where $\partial \mathbb{U}$ is positively oriented and f and g are defined a.e. on $\partial \mathbb{U}$ via radial limits.

Each holomorphic self map φ of \mathbb{U} induces on H^2 a composition operator C_{φ} defined by the equation $C_{\varphi}f = f \circ \varphi(f \in H^2)$. A consequence of

a famous theorem of J. E. Littlewood [7] asserts that C_{φ} is a bounded operator. (see also [9] and [4]). In fact,

$$\sqrt{\frac{1}{1-|\varphi(0)|^2}} \leqslant \|C_{\varphi}\| \leqslant \sqrt{\frac{1+|\varphi(0)|}{1-|\varphi(0)|}}.$$

In the case $\varphi(0) \neq 0$ Joel H. Shapiro has been shown that the second inequality changes to equality if and only if φ is an inner function. A *conformal automorphism* is a univalent holomorphic mapping of \mathbb{U} onto itself. Each such map is linear fractional, and can be represented as a product $w.\alpha_p$, where

$$\alpha_p(z):=\frac{p-z}{1-\overline{p}z}, (z\in\mathbb{U}),$$

for some fixed $p \in \mathbb{U}$ and $w \in \partial \mathbb{U}$ (see [8]).

The map α_p interchanges the point p and the origin and it is a self-inverse automorphism of \mathbb{U} .

Each conformal automorphism is a bijection map from the sphere $\mathbb{C} \bigcup \{\infty\}$ to itself with two fixed points (counting multiplicity). An automorphism is called:

- *elliptic* if it has one fixed point in the disc and one outside the closed disc,
- hyperbolic if it has two distinct fixed point on the boundary $\partial \mathbb{U}$, and
- *parabolic* if there is one fixed point of multiplicity 2 on the boundary $\partial \mathbb{U}$.

For $r \in \mathbb{U}$, a *r*-dilation is a map of the form $\delta_r(z) = rz$ and we call *r* the dilation parameter of δ_r and in the case that $r > 0, \delta_r$ is called *positive dilation*. A conformal *r*-dilation is a map that is conformally conjugate to an *r*-dilation, i.e., a map $\varphi = \alpha^{-1} \circ \delta_r \circ \alpha$, where $r \in \mathbb{U}$ and α is a conformal automorphism of \mathbb{U} .

For $w \in \partial \mathbb{U}$, an *w*-rotation is a map of the form $\rho_w(z) = wz$. We call w the rotation parameter of ρ_w . A straightforward calculation shows that

every elliptic automorphism φ of \mathbb{U} must have the form

$$\varphi = \alpha_p \circ \rho_w \circ \alpha_p,$$

for some $p \in \mathbb{U}$ and some $w \in \partial \mathbb{U}$.

In [3] the shapes of the numerical range for composition operators induced on H^2 by some conformal automorphisms of the unit disc specially parabolic and hyperbolic are investigated. The authors proved, among other things, the following results:

- 1. If φ is a conformal automorphism of \mathbb{U} is either parabolic or hyperbolic then $W(C_{\varphi})$ is a disc centered at the origin.
- 2. If φ is a hyperbolic automorphism of \mathbb{U} with antipodal fixed points and it is conformally conjugate to a positive dilation $z \mapsto rz$ (0 < r < 1) then $W(C_{\varphi})$ is the open disc of radius $1/\sqrt{r}$ centered at the origin.
- 3. If φ is elliptic and conformally conjugate to a rotation $z \mapsto \omega z$ $(|\omega| = 1)$ and ω is not a root of unity then $\overline{W}(C_{\varphi})$ is a disc centered at the origin.

So, we have the following consequences:

Proposition 2.5. If φ is a conformal automorphism of \mathbb{U} , except finite order elliptic automorphism, then

$$\|C_{\varphi} + C_{\varphi}^*\| = \|C_{\varphi} - C_{\varphi}^*\|.$$

Also C_{φ} is not self adjoint. If φ is a finite order elliptic automorphism with rotation parameter w of order k, then

$$\sigma(C_{\varphi}) = \{1, w, w^2, ..., w^{k-1}\}.$$

If $w \neq \pm 1$, then $\sigma(C_{\varphi})$ is not a subset of \mathbb{R} and so C_{φ} is not self adjoint.

Corollary 2.6. C_{φ} is Hermitian if and only if $\varphi(z) = z$ or -z.

M. T. HEYDARI

References

- S. K. Berberian and G. H. Orland, On the closure of the numerical range of an operator, *Proc. Amer. Math. Soc.*, 18 (1967), 499-503.
- [2] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on normed Spaces and of Elements of Normed Algebras, London-New York: Cambridge University Press, 1971.
- [3] P. S. Bourdon and J. H. Shapiro, The numerical range of automorphic composition operators, J. Math. Analysis and application, 251 (2000), 839-854.
- [4] C. C. Cowen and B. D. Maccluer, Composition operators on spaces of analytic functions, CRC Press, Boca Raton, 1995.
- [5] M. T. Heydari, C*-Algebra numerical range of quadratic elements, *Iranian Journal of Mathematical Sciences and Informatics*, 5(1) (2010), 49-53.
- [6] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol, I. Elementary Theory. Pure and Applied Mathematics 100, New York: Academic Press, 1983.
- [7] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23 (1925), 481-519.
- [8] W. Rudin, *Real and complex analysis*, Third edition, McGraw-Hill Book Co., New York, 1987.
- [9] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, 1993.

Mohammd Taghi Heydari

Department of Mathematics College of Sciences Assistant Professor of Mathematics Yasouj University Yasouj, Iran E-mail: heydari@mail.yu.ac.ir