Numerical Range in C*-Algebras

M. T. Heydari
Yasouj University

Abstract. Let A be a C*-algebra with unit 1 and let S be the state space of A, i.e., $S = \{ \varphi \in A^* : \varphi \geq 0, \varphi(1) = 1 \}$. For each $a \in A$, the C*-algebra numerical range is defined by

$$V(a) := \{ \varphi(a) : \varphi \in S \}.$$

We prove that if $V(a)$ is a disc with center at the origin, then $\|a + a^*\| = \|a - a^*\|$.

AMS Subject Classification: 47A12; 46K10
Keywords and Phrases: Support line, numerical ranges, norm

1. Introduction

Let T be a bounded linear operator on a complex Hilbert space \mathcal{H}. We can write

$$T = A + iB,$$

where A and B are Hermitian operators. Such a decomposition is unique; we have

$$A = \frac{1}{2}(T + T^*), B = \frac{1}{2i}(T - T^*).$$

The elements A, B are called the real and imaginary parts of T, denoted by $Re(T)$ and $Im(T)$, respectively, and the decomposition (1) is called the Cartesian decomposition of T.

The numerical range of T is the set

Received: June 2011; Accepted: March 2012
\[W(T) := \{ \langle Tx, x \rangle : x \in \mathcal{H}, \|x\| = 1 \}, \]
in the complex plane, where \(\langle ., . \rangle \) denotes the inner product in \(\mathcal{H} \). In other words, \(W(T) \) is the image of the unit sphere \(\{ x \in \mathcal{H} : \|x\| = 1 \} \) of \(\mathcal{H} \) under the (bounded) quadratic form \(x \mapsto \langle Tx, x \rangle \).

Some properties of the numerical range follow easily from the definition. Recall that, the numerical range is unchanged under the unitary equivalence of operators: \(W(T) = W(U^*TU) \) for any unitary operator \(U \). It also behaves nicely under the operation of taking the adjoint of an operator: \(W(T^*) = \{ \bar{z} : z \in W(T) \} \). One of the most fundamental properties of the numerical range is it’s convexity, stated by the famous Toeplitz-Hausdorff Theorem. Other important property of \(W(T) \) is that its closure contains the spectrum of the operator. Also, \(W(T) \) is a connected set and it is compact in the finite dimensional case.

2. Numerical Range and Norm

Suppose \(E \) is a bounded convex subset of the plane. For \(0 \leq \theta < 2\pi \) define

\[p_E(\theta) := \sup \{ \text{Re}(e^{-i\theta}z) : z \in E \}. \quad (3) \]

Note that for \(z \in \mathbb{C} \), the number \(\text{Re}(e^{-i\theta}z) \) is the real dot product of the plane vectors \(e^{i\theta} \) and \(z \), i.e., the signed length of the projection of \(z \) in the direction of \(e^{i\theta} \). Thus the set

\[\Pi_\theta = \{ z \in \mathbb{C} : \text{Re}(e^{-i\theta}z) \leq p_E(\theta) \}, \]

is a closed half-plane that contains \(E \) and intersects \(\partial E \). The boundary \(L_\theta \) of \(\Pi_\theta \) is called the support line of \(E \) perpendicular to \(e^{i\theta} \). The magnitude of \(p_E(\theta) \) is the orthogonal distance from the origin to \(L_\theta \).

The function \(p_E(\theta) : [0, 2\pi) \to \mathbb{R} \) defined by (3) is called the support function of \(E \). The Hahn-Banach theorem insures that the closure of \(E \) is the intersection of all the half-planes \(\Pi_\theta \) as \(\theta \) runs from 0 to \(2\pi \).

Hence two bounded convex sets with the same support function have the same closures (see [3]).
In our applications the set E will always contain the origin in its closure, in which case $p_E \geq 0$. We will be particularly interested in the support function of a standard ellipse.

Proposition 2.1. Suppose $a, b > 0$ and E is the elliptical disc determined by the inequality $\frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1$. Then $p_E(\theta) = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}$. ($0 \leq \theta < 2\pi$).

Proof. We parameterize the boundary of E by the complex equation $z(t) = a \cos t + ib \sin t$, with $0 \leq t < 2\pi$. So

$$p_E(\theta) = \sup\{Re(e^{-i\theta} z) : z \in E\} = \sup\{a \cos \theta \cos t + b \sin \theta \sin t, 0 \leq t < 2\pi\}.$$

Put $f(t) = a \cos \theta \cos t + b \sin \theta \sin t, 0 \leq t < 2\pi$. Since f is twice differentiable so, by second derivative test, it has a local maximum at $\tan t = \frac{b}{a} \tan \theta$. After a little calculation with right triangles this yields the equations

$$\cos t = \frac{a \cos \theta}{\sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}}, \quad \sin t = \frac{b \sin \theta}{\sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}}$$

and then by substituting, $p_E(\theta) = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}$. ($0 \leq \theta < 2\pi$). □

We note in closing that this result persists in the limiting case $b = 0$. In this case E is the real segment $[-a, a]$, for which the definition of support function yields $p_E(\theta) = a |\cos(\theta)|$. If $a = b$, then $p_E(\theta) = a$, indeed if E is a disc with center at the origin then the function $p_E(\theta)$ is constant for all θ.

Proposition 2.2. If T is a bounded linear operator on a Hilbert space \mathcal{H} such that $\overline{W(T)}$ is a disc with center at the origin. Then

$$\|Re(T)\| = \|Im(T)\|.$$
Proof. We compute the support function p_T of $W(T)$ in this standard fashion:

$$p_T(\theta) : = \sup \{ \Re(e^{-i\theta}z) : z \in W(T) \}$$

$$= \sup \{ \Re(e^{-i\theta} < Tf, f >) : f \in \mathcal{H}, \|f\| = 1 \}$$

$$= \sup \{ < H_\theta f, f > : f \in \mathcal{H}, \|f\| = 1 \}$$

where $H_\theta := \Re(e^{-i\theta}T) = \frac{1}{2}(e^{-i\theta}T + e^{i\theta}T^*)$.

Since H_θ is a self-adjoint operator on \mathcal{H} and $W(T)$ is a disc with center at the origin, then the last calculation show that for each $0 \leq \theta < 2\pi$,

$$p_T(\theta) = \sup \{ | < H_\theta f, f > | : f \in \mathcal{H}, \|f\| = 1 \} = \|H_\theta\|.$$

Now, Proposition 2. implies that, $p_T(\theta)$ and also $\|H_\theta\|$ is constant for all θ. In particular, $\|H_0\| = \|H_{\frac{\pi}{2}}\|$ or

$$\|T + T^*\| = \|T - T^*\|.$$

This completes the proof. □

Let \mathcal{A} be a C*-algebra with unit 1 and let \mathcal{S} be the state space of \mathcal{A}, i.e., $\mathcal{S} = \{ \varphi \in \mathcal{A}^* : \varphi \geq 0, \varphi(1) = 1 \}$. For each $a \in \mathcal{A}$, the C*-algebra numerical range is defined by

$$V(a) := \{ \varphi(a) : \varphi \in \mathcal{S} \}.$$

It is well known that $V(a)$ is non empty, compact and convex subset of the complex plane and $V(\alpha 1 + \beta a) = \alpha + \beta V(a)$ where $a \in \mathcal{A}, \alpha, \beta \in \mathbb{C}$, and if $z \in V(a), |z| \leq \|a\|$ (for further details see [2]).

As an example, let \mathcal{A} be the C*-algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} and $A \in \mathcal{A}$. It is well known that $V(A)$ is the closure of $W(A)$, where

$$W(A) := \{ \langle Ax, x \rangle : x \in \mathcal{H}, \|x\| = 1 \},$$

is the usual numerical range of the operator A.

Theorem 2.3. Let $a \in \mathcal{A}$ be such that $V(a)$ be a disc with center at the origin. Then

$$\|\text{Re}(a)\| = \|\text{Im}(a)\|$$

.

Proof. Let ρ be a state of \mathcal{A}. Then there exists a cyclic representation φ_{ρ} of \mathcal{A} on a Hilbert space \mathcal{H}_{ρ} and a unit cyclic vector x_{ρ} for φ_{ρ} such that $\rho(a) = \langle \varphi_{\rho}(a)x_{\rho}, x_{\rho} \rangle$, $a \in \mathcal{A}$.

By Gelfand-Naimark Theorem, the direct sum $\varphi : a \mapsto \sum_{\rho \in \mathcal{S}} \otimes \varphi_{\rho}(a)$ is a faithful representation of \mathcal{A} on the Hilbert space $\mathcal{H} = \sum_{\rho \in \mathcal{S}} \otimes \mathcal{H}_{\rho}$ (see [6]). Therefore, for each $\rho \in \mathcal{S}$, $\rho(a) \in W(\varphi_{\rho}(a)) \subset W(\varphi(a))$, and hence $V(a)$ is contained in $W(\varphi(a))$. On the other hand if x is a unit vector of H, then the formula $\rho(b) = \langle \varphi(b)x, x \rangle$, $b \in \mathcal{A}$ defines a state on \mathcal{A} and hence $\rho(a) = \langle \varphi(a)x, x \rangle \in V(a)$. So it follows that

$$W(T_a) = V(a), \quad (4)$$

where $T_a = \varphi(a)$. (see also Theorem 3 of [1]).

Since $\varphi(\text{Re}(a)) = \text{Re}(T_a)$, $\varphi(\text{Im}(a)) = \text{Im}(T_a)$ and φ is isometry, thus by equation (4) and Proposition (2.) the proof is completed. \qed

Example 2.4. Let \mathbb{U} denote the open unit disc in the complex plane. Recall that the Hardy space H^2 consists of the functions $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$ holomorphic in \mathbb{U} such that $\sum_{n=0}^{\infty} |\hat{f}(n)|^2 < \infty$, with $\hat{f}(n)$ denoting the n-th Taylor coefficient of f. The inner product inducing the norm of H^2 is given by $< f, g > = \sum_{n=0}^{\infty} \hat{f}(n)\overline{\hat{g}(n)}$. The inner product of two functions f and g in H^2 may also be computed by integration:

$$< f, g > = \frac{1}{2\pi i} \int_{\partial \mathbb{U}} f(z)g(z)\frac{dz}{z},$$

where $\partial \mathbb{U}$ is positively oriented and f and g are defined a.e. on $\partial \mathbb{U}$ via radial limits.

Each holomorphic self map φ of \mathbb{U} induces on H^2 a composition operator C_{φ} defined by the equation $C_{\varphi}f = f \circ \varphi(f \in H^2)$. A consequence of
a famous theorem of J. E. Littlewood [7] asserts that C_φ is a bounded operator. (see also [9] and [4]). In fact,

$$\sqrt{\frac{1}{1 - |\varphi(0)|^2}} \leq \|C_\varphi\| \leq \sqrt{\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}}.$$

In the case $\varphi(0) \neq 0$ Joel H. Shapiro has been shown that the second inequality changes to equality if and only if φ is an inner function.

A conformal automorphism is a univalent holomorphic mapping of U onto itself. Each such map is linear fractional, and can be represented as a product $w \alpha_p$, where

$$\alpha_p(z) := \frac{p - z}{1 - \overline{p}z}, (z \in U),$$

for some fixed $p \in U$ and $w \in \partial U$ (see [8]).

The map α_p interchanges the point p and the origin and it is a self-inverse automorphism of U.

Each conformal automorphism is a bijection map from the sphere $\mathbb{C} \cup \{\infty\}$ to itself with two fixed points (counting multiplicity). An automorphism is called:

- **elliptic** if it has one fixed point in the disc and one outside the closed disc,

- **hyperbolic** if it has two distinct fixed point on the boundary ∂U, and

- **parabolic** if there is one fixed point of multiplicity 2 on the boundary ∂U.

For $r \in U$, a r-dilation is a map of the form $\delta_r(z) = rz$ and we call r the dilation parameter of δ_r and in the case that $r > 0$, δ_r is called positive dilation. A conformal r-dilation is a map that is conformally conjugate to an r-dilation, i.e., a map $\varphi = \alpha^{-1} \circ \delta_r \circ \alpha$, where $r \in U$ and α is a conformal automorphism of U.

For $w \in \partial U$, an w-rotation is a map of the form $\rho_w(z) = wz$. We call w the rotation parameter of ρ_w. A straightforward calculation shows that
every elliptic automorphism φ of U must have the form

$$\varphi = \alpha_p \circ \rho_w \circ \alpha_p,$$

for some $p \in U$ and some $w \in \partial U$.

In [3] the shapes of the numerical range for composition operators induced on H^2 by some conformal automorphisms of the unit disc specially parabolic and hyperbolic are investigated. The authors proved, among other things, the following results:

1. If φ is a conformal automorphism of U is either parabolic or hyperbolic then $W(C_{\varphi})$ is a disc centered at the origin.

2. If φ is a hyperbolic automorphism of U with antipodal fixed points and it is conformally conjugate to a positive dilation $z \mapsto rz$ ($0 < r < 1$) then $W(C_{\varphi})$ is the open disc of radius $1/\sqrt{r}$ centered at the origin.

3. If φ is elliptic and conformally conjugate to a rotation $z \mapsto \omega z$ ($|\omega| = 1$) and ω is not a root of unity then $\overline{W}(C_{\varphi})$ is a disc centered at the origin.

So, we have the following consequences:

Proposition 2.5. If φ is a conformal automorphism of U, except finite order elliptic automorphism, then

$$\|C_{\varphi} + C_{\varphi}^*\| = \|C_{\varphi} - C_{\varphi}^*\|.$$

Also C_{φ} is not self adjoint. If φ is a finite order elliptic automorphism with rotation parameter w of order k, then

$$\sigma(C_{\varphi}) = \{1, w, w^2, ..., w^{k-1}\}.$$

If $w \neq \pm 1$, then $\sigma(C_{\varphi})$ is not a subset of \mathbb{R} and so C_{φ} is not self adjoint.

Corollary 2.6. C_{φ} is Hermitian if and only if $\varphi(z) = z$ or $-z$.

References

Mohammd Taghi Heydari
Department of Mathematics
College of Sciences
Assistant Professor of Mathematics
Yasouj University
Yasouj, Iran
E-mail: heydari@mail.yu.ac.ir