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Numerical Range in C*-Algebras

M. T. Heydari

Yasouj University

Abstract. Let A be a C*-algebra with unit 1 and let S be the state
space of A, i.e., S ={p € A" : ¢ > 0,0(1) = 1}. For each a € A, the
C*-algebra numerical range is defined by

V(a) :={p(a) : p € S§}.

We prove that if V' (a) is a disc with center at the origin, then ||[a4a*|| =
lla —a™|.
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1. Introduction

Let T be a bounded linear operator on a complex Hilbert space H. We
can write

T =A+iB, (1)

where A and B are Hermitian operators. Such a decomposition is
unique; we have

1 * 1 *
:i(T—l—T),B 2(T—T). (2)

A - -

i
The elements A, B are called the real and imaginary parts of T', denoted
by Re(T) and Im(T), respectively, and the decomposition (1) is called
the Cartesian decomposition of T'.

The numerical range of T is the set
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W(T) :={{Tz,z) : x € H,|z| = 1},

in the complex plane, where (.,.) denotes the inner product in H. In
other words, W(T') is the image of the unit sphere {x € H : ||z|| = 1} of
‘H under the (bounded) quadratic form z — (T'x,x).

Some properties of the numerical range follow easily from the defini-
tion. Recall that, the numerical range is unchanged under the unitary
equivalence of operators: W(T) = W(U*TU) for any unitary operator
U. It also behaves nicely under the operation of taking the adjoint of
an operator: W (T*) = {z: z € W(T)}. One of the most fundamental
properties of the numerical range is it’s convexity, stated by the famous
Toeplitz-Hausdorff Theorem. Other important property of W (T) is that
its closure contains the spectrum of the operator. Also, W(T) is a con-
nected set and it is compact in the finite dimensional case.

2. Numerical Range and Norm

Suppose E is a bounded convex subset of the plane. For 0 < 6§ < 27
define

pE(0) ;= sup{Re(e ?2) : z € E}. (3)

Note that for z € C, the number Re(e~%%) is the real dot product of
the plane vectors e’ and z, i.e., the signed length of the projection of z
in the direction of €. Thus the set

[Iy = {z € C: Re(e™2) < pp(0)},

is a closed half-plane that contains E and intersects 0E. The boundary
Ly of [], is called the support line of E perpendicular to e, The
magnitude of pg(f) is the orthogonal distance from the origin to Lg.
The function pg(6) : [0,27) :— R defined by (3) is called the support
function of E. The Hahn-Banach theorem insures that the closure of
E is the intersection of all the half-planes [[, as 6 runs from 0 to 2.
Hence two bounded convex sets with the same support function have
the same closures( see [3]).
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In our applications the set E will always contain the origin in its closure,
in which case pg > 0 . We will be particularly interested in the support
function of a standard ellipse.

Proposition 2.1. Suppose gL,b > 0 and E s the elliptical disc deter-
mined by the inequality 2—;4—3{)’—2 < 1. Thenpg(0) = Va2 cos? 0 + b2sin? 6.
(0< 0 < 2m).

Proof. We parameterize the boundary of E by the complex equation
z(t) = acost + ibsint, with 0 < ¢t < 27m. So

pe(0) = sup{Re(e ™z):z¢€ E}
= sup{acosfcost+bsinfsint, 0 <t < 2m}.

Put f(t) = acos@cost + bsinfsint,0 < t < 2w. Since f is twice dif-
ferentiable so, by second derivative test, it has a local maximum at
tant = gtan 0. After a little calculation with right triangles this yields
the equations

acosf bsin 0

cost = , sint =
Va2 cos? 0 + b2sin? 6

Va2 cos?2 f + b2sin2 0

and then by substituting, pg(0) = Va2cos?0 + b2sin26. (0 < 6 <
2r). O

We note in closing that this result persists in the limiting case b = 0.
In this case E is the real segment [—a,a], for which the definition of
support function yields pg(6) = a|cos(0)|. If a = b, then pg(f) = a,
indeed if E is a disc with center at the origin then the function pg(0) is
constant for all 6.

Proposition 2.2. If T is a bounded linear operator on a Hilbert space
H such that W(T) is a disc with center at the origin. Then

[Re(T)]| = [[Im(T)]
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Proof. We compute the support function pr of W(T') in this standard
fashion:

pr(0): = sup{Re(e ?2):zeW(T)}
= sup{Re(e ™ <Tf,f>):feH,|fll =1}
sup{< Hof, [ >: f € H,||f]| =1}

where Hg := Re(e™T) = 1(e="T + "T*).
Since Hy is a self-adjoint operator on H and W(T) is a disc with cen-
ter at the origin, then the last calculation show that for each 0 < 6 < 27,

pr(0) = sup{| < Hpf, [ >|: f € H,[|fl| =1} = || Hol|.

Now, Proposition 2. implies that, pr(0) and also ||Hy|| is constant for
all . In particular, ||Hol = [[Hz| or

1T+ T = [T = T7.

This completes the proof. [
Let A be a C*-algebra with unit 1 and let S be the state space of A,

ie, S={p e A" : ¢ > 0,9(1) = 1}. For each a € A, the C*-algebra
numerical range is defined by

Vi(a) :=={p(a) : p € S}.

It is well known that V'(a) is non empty, compact and convex subset of
the complex plane and V(al + Ba) = a+ SV (a) where a € A, o, 3 € C,
and if z € V(a), |2| < ||la]| (for further details see [2]).

As an example, let A be the C*-algebra of all bounded linear operators
on a complex Hilbert space H and A € A. It is well known that V(A)
is the closure of W (A), where

W(A) .= {(Ax,z) : x € H,||z| = 1},

is the usual numerical range of the operator A.
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Theorem 2.3. Let a € A be such that V(a) be a disc with center at the
origin. Then
[Re(a)ll = [[Tm(a)]]

Proof. Let p be a state of A. Then there exists a cyclic representation
¢, of A on a Hilbert space H, and a unit cyclic vector x, for ¢, such
that

pla) = (pp(a)zy, zp), a € A

By Gelfand-Naimark Theorem, the direct sum ¢ : a — 3 s Dpp(a) is
a faithful representation of A on the Hilbert space H = ) pes OH,p (see
[6]). Therefore, for each p € S, p(a) € W(p,(a)) C W(p(a)), and hence
V(a) is contained in W (p(a)). On the other hand if x is a unit vector
of H, then the formula p(b) = (p(b)x, z),b € A defines a state on A and
hence p(a) = (p(a)z,z) € V(a). So it follows that

W(Ta) = V(CL), (4)

where T, = ¢(a). (see also Theorem 3 of [1]).

Since p(Re(a)) = Re(T,), o(Im(a)) = Im(T,) and ¢ is isometry, thus
by equation (4) and Proposition (2.) the proof is completed. [

Example 2.4. Let U denote the open unit disc in the complex plane.
Recall that the Hardy space H? consists the functions f(z) = 320 fln)zn

~ ~

holomorphic in U such that Yo% ;| f(n)|> < oo, with f(n) denoting the
n-th Taylor coefficient of f. The inner product inducing the norm of

H? is given by < f,g >:= Yo% f(n)g(n). The inner product of two
functions f and ¢ in H? may also be computed by integration:

1 ——dz
< f,g>= m/amf(z)g(z)za
where OU is positively oriented and f and g are defined a.e. on U via
radial limits.

Each holomorphic self map ¢ of U induces on H? a composition operator
C,, defined by the equation C,f = fo(f € H 2). A consequence of
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a famous theorem of J. E. Littlewood [7] asserts that C, is a bounded
operator. (see also [9] and [4]). In fact,

1 11 10(0)
VizTeor Il syizpor

In the case ¢(0) # 0 Joel H. Shapiro has been shown that the second
inequality changes to equality if and only if ¢ is an inner function.

A conformal automorphism is a univalent holomorphic mapping of U
onto itself. Each such map is linear fractional, and can be represented
as a product w.qy,, where

p—z
= ,(z € 1),
0p(z) = f—— (= € V)
for some fixed p € U and w € 9U (see [§8]).

The map «, interchanges the point p and the origin and it is a self-inverse
automorphism of U.

Each conformal automorphism is a bijection map from the sphere C | J{oco}
to itself with two fixed points (counting multiplicity). An automorphism
is called:

e clliptic if it has one fixed point in the disc and one outside the
closed disc,

e hyperbolic if it has two distinct fixed point on the boundary 0U,
and

e parabolic if there is one fixed point of multiplicity 2 on the bound-
ary dU.

For r € U, a r-dilation is a map of the form d,(z) = rz and we call r the
dilation parameter of §, and in the case that » > 0,d, is called positive
dilation. A conformal r-dilation is a map that is conformally conjugate
to an r-dilation, i.e., a map ¢ = a~' 06, o v, where r € U and « is a
conformal automorphism of U.

For w € dU, an w-rotation is a map of the form p,,(z) = wz. We call w
the rotation parameter of p,,. A straightforward calculation shows that
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every elliptic automorphism ¢ of U must have the form
Y= ap O Pw © Oép’

for some p € U and some w € 9U.
In [3] the shapes of the numerical range for composition operators in-
duced on H? by some conformal automorphisms of the unit disc specially
parabolic and hyperbolic are investigated. The authors proved, among
other things, the following results:

1. If ¢ is a conformal automorphism of U is either parabolic or hy-
perbolic then W (C,,) is a disc centered at the origin.

2. If p is a hyperbolic automorphism of U with antipodal fixed points
and it is conformally conjugate to a positive dilation z — rz (0 <
r < 1) then W(C,,) is the open disc of radius 1//r centered at the
origin.

3. If ¢ is elliptic and conformally conjugate to a rotation z — wz
(Jw| = 1) and w is not a root of unity then W(C,,) is a disc centered
at the origin.

So, we have the following consequences:

Proposition 2.5. If ¢ is a conformal automorphism of U, except finite
order elliptic automorphism, then

1Ce + Coll = G = Cl-

Also C, is not self adjoint. If ¢ is a finite order elliptic automorphism
with rotation parameter w of order k, then

o(Cyp) = {1, w,w?, ...,w" '}
If w # %1, then 0(Cy,) is not a subset of R and so C,, is not self adjoint.

Corollary 2.6. C, is Hermitian if and only if ¢(z) = z or — z.
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