On Odd Duals of a Banach Algebra as a Banach Algebra

M. Ettefagh
Tabriz Branch, Islamic Azad University

Abstract

It is known that even duals of a Banach algebra A with one of Arens products are Banach algebras, these products are natural multiplications extending the one on A. But the essence of A^{*} is completely different. By defining new products, we investigate some algebraic and spectral properties of odd duals of A . We will show relations between these products and Arens products, weak or weak-star continuity, commutativity and unit elements of these algebras. We also determine the spectrum and multiplier algebra for A^{*}, and we calculate the quasi-inverses, spectrum and spectral radius for elements of these kinds of algebras.

AMS Subject Classification: 46H20;
Keywords and Phrases: Banach algebra, Arens product, spectrum, quasi-inverse

1 Introduction

Throughout this paper, A is a Banach algebra. The set of all non-zero characters on A is called the spectrum of A and denoted by $\sigma(A)$. The spectrum $\sigma_{A}(a)$ of an element $a \in A$ is defined as follows [3];

[^0](i) If A has unit element e,
$$
\sigma_{A}(a)=:\{\lambda \in \mathbb{C}: \lambda e-a \notin \operatorname{inv} A\},
$$
where $i n v A$ is the set of all invertible elements of A.
(ii) If A dose not have unit element, we define
$$
\sigma_{A}(a)=: \sigma_{A^{\#}}(a, 0),
$$
where $A^{\#}=A \oplus \mathbb{C}$ is the unitization of A.
The spectral radius of $a \in A$, is defined by [3]
$$
r_{A}(a)=: \lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{\frac{1}{n}}
$$

The quasi-product of $a, b \in A$ is $a \circ b=a+b-a b$. An element $a \in A$ is left [right] quasi-invertible if there exists $b \in A$ such that $b \circ a=0$ [$a \circ b=0$], and it is quasi-invertible if it is both left and right quasiinvertible. So, if a is quasi-invertible, there is a unique element $b \in A$ such that $a \circ b=b \circ a=0, b$ is the quasi-inverse of a, and is denoted by a^{q}. We write $q-i n v A$ for the set of all quasi-invertible elements of A $[3,4]$. Clearly $a \circ b=0$ if and only if $(-a, 1)(-b, 1)=e$ in $A^{\#}$, and so

$$
\begin{align*}
& i n v A^{\#}=\{(-a, 1): \quad a \in q-i n v A\}, \tag{1}\\
& q-\operatorname{inv} A=\left\{a \in A: \quad(-a, 1) \in \operatorname{inv} A^{\#}\right\} .
\end{align*}
$$

We recall the first and second Arens products \square and \diamond on the second dual $A^{* *}$ of A are defined by

$$
\begin{array}{ll}
(f \cdot a)(b)=f(a b) & (a \cdot f)(b)=f(b a) \\
(F \cdot f)(a)=F(f \cdot a) & (f \cdot F)(a)=F(a \cdot f) \tag{2}\\
(F \square G)(f)=F(G \cdot f) & (F \diamond G)(f)=G(f \cdot F)
\end{array}
$$

for $a, b \in A, f \in A^{*}$ and $F, G \in A^{* *}$. Each of these products makes $A^{* *}$ to a Banach algebra, and A is called Arens regular if two products \square and \diamond coincide $[2,6]$. We have

$$
\begin{align*}
& F \square G=w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta}\left(a_{\alpha} b_{\beta}\right)^{\wedge} \\
& F \diamond G=w^{*}-\lim _{\beta} w^{*}-\lim _{\alpha}\left(a_{\alpha} b_{\beta}\right)^{\wedge} \tag{3}
\end{align*}
$$

in which $\hat{a} \in A^{* *}$ is defined by $\hat{a}(f)=f(a)$ for $f \in A^{*}$. We also take $\hat{A}=:\{\hat{a}: a \in A\}$, that is a subalgebra in $A^{* *}$. Therefore, all even duals of A become Banach algebras with Arens products. But the essence of A^{*} is compelely different. For example if $A=C_{0}(X)$ for a locally compact Hausdorff space X, then $A^{*}=M(X)$ is the space of regular countably additive Borel measures on X. Now for A^{*} (and also for odd duals of A) the pointwise product is not well defined, so there are another products on A^{*} to make it into a Banach algebra. Let $a \in A$ with $\|a\| \leqslant 1$ and $F \in A^{* *}$ with $\|F\| \leqslant 1$, and define two products $\bigcirc a$ and \bigcirc^{F} on A^{*} by

$$
\begin{equation*}
f \bigcirc_{a} g=: f(a) g \quad, \quad f \bigcirc^{F} g=: F(f) g \quad\left(f, g \in A^{*}\right) . \tag{4}
\end{equation*}
$$

It was shown in [12] that with each of above products, A^{*} is a Banach algebra. Also there are similar works in $[1,5,8,9,10,11]$. These kinds of algebras can be a source of (counter-) examples for various purposes in functional analysis.

In this paper, $A^{(n)}(n \in \mathbb{N})$ denotes the n-th dual of A. We use the symbols $\left(A^{*}, \bigcirc_{a}\right)$ and $\left(A^{*}, \bigcirc^{F}\right)$ for Banach algebras with products \bigcirc_{a} and \bigcirc^{F} as in (4), in section 2, we will investigate some properties of these algebras such as relations between these products and Arens products, weak or weak-star continuity, commutativity and unit elements of these algebras. In section 3, we determine the spectrum and multiplier algebra for $\left(A^{*}, \bigcirc_{a}\right)$ and $\left(A^{*}, \bigcirc^{F}\right)$. In section 4, we calculate the quasi-inverses, spectrum and spectral radius for elements of these kinds of algebras. Finally, we will present some examples by using Riesz representation theorem.

2 Some Algebraic and Analytic Properties

The first proposition shows the relations between the products defined in (2) and $\bigcirc_{a}, \bigcirc^{F}$. Its proof is straightforward.

Proposition 2.1. Let A be a Banach algebra and let $n \in\{1,2, \ldots\}$, then for $a, b \in A^{(2 n-2)}, f, g \in A^{(2 n-1)}$ and $F, G \in A^{(2 n)}$ we have
(i) $f \bigcirc_{a} g=f \bigcirc^{\hat{a}} g \quad, \quad \hat{f} \bigcirc_{\hat{a}} \hat{g}=\left(f \bigcirc_{a} g\right)^{\wedge}$,
(ii) $\hat{f} \bigcirc_{F} \hat{g}=\left(f \bigcirc^{F} g\right)^{\wedge}=\hat{f} \bigcirc^{\hat{F}} \hat{g}$,
(iii) $b \cdot f \bigcirc_{a} g=f \bigcirc_{a b} g \quad, \quad f \cdot b \bigcirc_{a} g=f \bigcirc_{b a} g$,
(iv) $f \bigcirc_{a} b \cdot g=b \cdot\left(f \bigcirc_{a} g\right) \quad, \quad f \bigcirc_{a} g \cdot b=\left(f \bigcirc_{a} g\right) \cdot b$,
(v) $F \cdot f \bigcirc_{a} g=f \cdot a \bigcirc^{F} g \quad, \quad f \cdot F \bigcirc_{a} g=a \cdot f \bigcirc^{F} g$,
(vi) $f \bigcirc_{a} F \cdot g=F \cdot\left(f \bigcirc_{a} g\right) \quad, \quad f \bigcirc_{a} g \cdot F=\left(f \bigcirc_{a} g\right) \cdot F$,
(vii) $f \bigcirc^{F} a \cdot g=a \cdot\left(f \bigcirc^{F} g\right) \quad, \quad f \bigcirc^{F} g \cdot a=\left(f \bigcirc^{F} g\right) \cdot a$,
(viii) $G \cdot f \bigcirc^{F} g=f \bigcirc^{F \square G} g \quad, \quad f \cdot G \bigcirc^{F} g=f \bigcirc^{F \diamond G} g$,
(ix) $f \bigcirc^{F} G \cdot g=G \cdot\left(f \bigcirc^{F} g\right) \quad, \quad f \bigcirc^{F} g \cdot G=\left(f \bigcirc^{F} g\right) \cdot G$.

It is known that the product in a Banach algebra is norm-continuous, the next proposition shows relations between weak or weak* topologies and products $\bigcirc^{F}, \bigcirc_{a}$.

Proposition 2.2. Let A be a Banach algebra and let $n \in\{1,2, \ldots\}$, then for $f, g \in A^{(2 n-1)}$
(i) the map ($a \mapsto f \bigcirc_{a} g$) from $A^{(2 n-2)}$ to $A^{(2 n-1)}$ is linear and $w-w^{*}$ - continuous,
(ii) the map $\left(F \mapsto f \bigcirc^{F} g\right.$) from $A^{(2 n)}$ to $A^{(2 n-1)}$ is linear and $w^{*}-w^{*}-$ continuous,
(iii) the maps $\left(f \mapsto f \bigcirc_{a} g\right)$ and $\left(f \mapsto g \bigcirc_{a} f\right)$ from $A^{(2 n-1)}$ to $A^{(2 n-1)}$ are linear and $w^{*}-w^{*}$-continuous for $a \in A^{(2 n-2)}$,
(iv) the maps $\left(f \mapsto f \bigcirc^{F} g\right)$ and $\left(f \mapsto g \bigcirc^{F} f\right)$ from $A^{(2 n-1)}$ to $A^{(2 n-1)}$ are linear and $w-w^{*}$-continuous and $w^{*}-w^{*}-$ continuous, respectively, for $F \in A^{(2 n)}$,
(v) for $F=w^{*}-\lim _{\alpha} \hat{a}_{\alpha}$ and $G=w^{*}-\lim _{\beta} \hat{b}_{\beta}$ in $A^{(2 n)}$ we have the following formulas

$$
\begin{aligned}
f \bigcirc^{F} g & =w^{*}-\lim _{\alpha} f \bigcirc_{a_{\alpha}} g, \\
f \bigcirc^{F \square G} g & =w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} f \bigcirc_{a_{\alpha} b_{\beta}} g, \\
f \bigcirc^{F \diamond G} g & =w^{*}-\lim _{\beta} w^{*}-\lim _{\alpha} f \bigcirc_{a_{\alpha} b_{\beta}} g .
\end{aligned}
$$

Proof. It is easy to check that the maps in all parts are linear. Now for $F=w^{*}-\lim _{\alpha} F_{\alpha}$ and $a=w-\lim _{\beta} a_{\beta}$, where $\left(F_{\alpha}\right) \in A^{(2 n)},\left(a_{\beta}\right) \in A^{(2 n-2)}$ and for $x \in A^{(2 n-2)}$, one can write

$$
\begin{aligned}
\left\langle f \bigcirc_{a} g, x\right\rangle & =\langle f(a) g, x\rangle \\
& =\left\langle\lim _{\beta} f\left(a_{\beta}\right) g, x\right\rangle \\
& =\lim _{\beta}\left\langle f \bigcirc_{a_{\beta}} g, x\right\rangle \\
& =\left\langle w^{*}-\lim _{\beta}\left(f \bigcirc_{a_{\beta}} g\right), x\right\rangle,
\end{aligned}
$$

and this complete the proof of (i). Also we have

$$
\begin{aligned}
\left\langle f \bigcirc^{F} g, x\right\rangle & =\langle F(f) g, x\rangle \\
& =\left\langle\lim _{\alpha} F_{\alpha}(f) g, x\right\rangle \\
& =\lim _{\alpha}\left\langle f \bigcirc^{F_{\alpha}} g, x\right\rangle \\
& =\left\langle w^{*}-\lim _{\alpha}\left(f \bigcirc^{F_{\alpha}} g\right), x\right\rangle,
\end{aligned}
$$

and this proves (ii).
For parts (iii) and (iv) it is easy to check the following equations for the bounded net $\left(f_{\alpha}\right) \in A^{(2 n-1)}$

$$
\begin{aligned}
\left(w^{*}-\lim _{\alpha} f_{\alpha}\right) \bigcirc_{a} g & =w^{*}-\lim _{\alpha}\left(f_{\alpha} \bigcirc_{a} g\right), \\
g \bigcirc_{a}\left(w^{*}-\lim _{\alpha} f_{\alpha}\right) & =w^{*}-\lim _{\alpha}\left(g \bigcirc_{a} f_{\alpha}\right), \\
\left(w-\lim f_{\alpha}\right) \bigcirc^{F} g & =w^{*}-\lim _{\alpha}\left(f_{\alpha} \bigcirc^{F} g\right), \\
g \bigcirc^{F}\left(w^{*}-\lim _{\alpha} f_{\alpha}\right) & =w^{*}-\lim _{\alpha}\left(g \bigcirc^{F} f_{\alpha}\right) .
\end{aligned}
$$

Finally, part (v) is a consequence of part (ii), the formulas (3) and also part (i) of proposition 2.1.

Now we investigate the third dual $A^{* * *}$ of A. We use the symbol $\left(A^{* *}\right)^{*}$ for dual of $A^{* *}$ (with one of its Arens products), and the symbol $\left(A^{*}\right)^{* *}$ as the second dual of A^{*}. One can find more details in [7].

Proposition 2.3. Let $A^{* *}$ be the second dual of a Banach algebra A, with one of Arens products \square or \diamond. Then we have
(i) $\left(\left(A^{* *}\right)^{*}, \bigcirc_{\hat{a}}\right)=\left(A^{*}, \bigcirc_{a}\right)^{* *}$,
(ii) $\left(\left(A^{* *}\right)^{*}, \bigcirc^{\hat{F}}\right)=\left(A^{*}, \bigcirc^{F}\right)^{* *}$.

Note that the right sides of each above equations can be considered with each of Arens products \square or \diamond.

Proof. Suppose that $A^{* *}$ has the first Arens product \square (the proof with the second Arense product \diamond is similar), and let $\varphi=w^{*}-\lim _{\alpha} \hat{g}_{\alpha}$, $\eta=w^{*}-\lim _{\beta} \hat{h}_{\beta}$, where $\left(g_{\alpha}\right)$ and $\left(h_{\beta}\right)$ are bounded nets in A^{*}. Now for φ, η as elements of $\left(\left(A^{* *}\right)^{*}, \bigcirc_{\hat{a}}\right)$ we have

$$
\varphi \bigcirc_{\hat{a}} \eta=\varphi(\hat{a}) \eta=\lim _{\alpha} g_{\alpha}(a) \eta .
$$

On the other hand for φ, η as elements of $\left(A^{*}, \bigcirc a\right)^{* *}$ with first Arens product \square (the proof with second Arens product is similar), we can write

$$
\begin{aligned}
\varphi \square \eta & =w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta}\left(g_{\alpha} \bigcirc_{a} h_{\beta}\right)^{\wedge} \\
& =w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} g_{\alpha}(a) \hat{h}_{\beta} \\
& =\lim _{\alpha} g_{\alpha}(a) \eta,
\end{aligned}
$$

and this completes the proof. The proof of part (ii) is similar.
The next two propositions show that how can the algebras $\left(A^{*}, \bigcirc_{a}\right)$ or $\left(A^{*}, \bigcirc^{F}\right)$ be commutative or unital.

Proposition 2.4. Let A be a Banach algebra, then
(i) $\left(A^{*}, \bigcirc^{F}\right)$ is commutative if and only if F is one to one,
(ii) $\left(A^{*}, \bigcirc_{a}\right)$ is commutative if and only if \hat{a} is one to one.

Proof. (i) Let $\left(A^{*}, \bigcirc^{F}\right)$ be commutative and $F(f)=F(g)$ for some $f, g \in A^{*}$. Since $\left(A^{*}, \bigcirc^{F}\right)$ is commutative, we have $f \bigcirc^{F} g=g \bigcirc^{F} f$, so $F(f) g=F(g) f$. Hence $g=f$ and this proves that F is one to one. Conversely, let F be one to one. For each $f, g \in A^{*}$ we have

$$
F\left(f \bigcirc^{F} g\right)=F(F(f) g)=F(f) F(g)=F(g) F(f)=F\left(g \bigcirc^{F} f\right)
$$

Hence $f \bigcirc^{F} g=g \bigcirc^{F} f$, and this proves the commutativity of $\left(A^{*}, \bigcirc^{F}\right)$. (ii) This is a consequence of part (i) for $\left(A^{*}, \bigcirc a\right)=\left(A^{*}, \bigcirc^{\hat{a}}\right)$.

Proposition 2.5. Let A be a Banach algebra, then
(i) $f \in\left(A^{*}, \bigcirc^{F}\right)\left[f \in\left(A^{*}, \bigcirc_{a}\right)\right]$ is left identity if and only if $F(f)=1[f(a)=1]$,
(ii) if $f \in\left(A^{*}, \bigcirc^{F}\right)\left[f \in\left(A^{*}, \bigcirc a\right)\right]$ be right identity, then $F(f)=1$ $[f(a)=1]$. Also $\left(A^{*}, \bigcirc^{F}\right)\left[\left(A^{*}, \bigcirc_{a}\right)\right]$ has right identity if and only if it is one dimensional.

Proof. (i) Let $f \in\left(A^{*}, \bigcirc^{F}\right)$ be left identity, then for all $g \in A^{*}$, $f \bigcirc^{F} g=g$. So $F(f) g=g$, or $F(f)=1$. Conversely, let $F(f)=1$ and $g \in A^{*}$, then $f \bigcirc^{F} g=F(f) g=g$. Since $f \bigcirc^{\hat{a}} g=f \bigcirc_{a} g$, the proof for $\left(A^{*}, \bigcirc_{a}\right)$ is a consequence of the first part of proof.
(ii) Let $f \in\left(A^{*}, \bigcirc^{F}\right)$ be right identity, then for all $g \in A^{*}, g \bigcirc^{F} f=g$. So $F(g) f=g$, also for $g=f$ we have $F(f) f=f$. Hence $F(f)=1$. On the other hand the equality $F(g) f=g$ shows that A^{*} is one dimensional. The converse is obvious. The proof for $\left(A^{*}, \bigcirc_{a}\right)$ is similar.

3 Linear, Multiplicative and Multiplier Functions

Proposition 3.1. Let A be a Banach algebra, then
(i) The linear functional $F \in\left(A^{*}, \bigcirc^{F}\right)^{*}$ is the only multiplicative functional on $\left(A^{*}, \bigcirc^{F}\right)$.
(ii) The linear functional $\hat{a} \in\left(A^{*}, \bigcirc_{a}\right)^{*}$ is the only multiplicative functional on $\left(A^{*}, \bigcirc_{a}\right)$.

Proof. (i) For $f, g \in A^{*}$ we can write

$$
F\left(f \bigcirc^{F} g\right)=F(F(f) g)=F(f) F(g)
$$

so F is multiplicative. Now suppose that $G \in\left(A^{*}, \bigcirc^{F}\right)^{*}$ is multiplicative, then $G\left(f \bigcirc^{F} g\right)=G(f) G(g)$, so $F(f) G(g)=G(f) G(g)$ for all $f, g \in A^{*}$. Therefor $F(f)=G(f)$ for all $f \in A^{*}$, this completes the proof (i). The proof of part (ii) is similar.

Corollary 3.2. For a Banach algebra A, we have
(i) $\sigma\left(A^{*}, \bigcirc^{F}\right)=\{F\}$,
(ii) $\sigma\left(A^{*}, \bigcirc_{a}\right)=\{\hat{a}\}$.

It is known that the adjoint $T^{*}: B^{*} \rightarrow A^{*}$ of a bounded linear map $T: A \rightarrow B$ is bounded and linear. Now in the next proposition we investigate the multiplicativity of T^{*}.

Proposition 3.3. Let $T: A \rightarrow B$ be a bounded linear map between Banach algebras A and B. Then for $f, g \in B^{*}, b \in B$ and $G \in B^{* *}$ we have $\quad T^{*}\left(f \bigcirc_{b} g\right)=f(b) T^{*}(g) \quad, \quad T^{*}\left(f \bigcirc^{G} g\right)=G(f) T^{*}(g)$. If also T is surjective, then $T^{*}:\left(B^{*}, \bigcirc_{b}\right) \rightarrow\left(A^{*}, \bigcirc_{a}\right)$ is multiplicative, where $b=T(a)$. If $T^{* *}: A^{* *} \rightarrow B^{* *}$ is sujective, then $T^{*}:\left(B^{*}, \bigcirc^{G}\right) \rightarrow\left(A^{*}, \bigcirc^{F}\right)$ is multiplicative, where $G=T^{* *}(F)$.

Proof. We can write

$$
T^{*}\left(f \bigcirc_{b} g\right)=\left(f \bigcirc_{b} g\right) o T=f(b) g o T=f(b) T^{*}(g) .
$$

Thus for $b=T(a)$ we have
$T^{*}\left(f \bigcirc_{b} g\right)=T^{*}\left(f \bigcirc_{T(a)} g\right)=f(T(a)) T^{*}(g)=\left(T^{*} f\right)(a) T^{*}(g)=T^{*} f \bigcirc_{a} T^{*} g$, and this proves the multiplicativity of T^{*}. The rest of proof is similar.

Proposition 3.4. Let A be a Banach algebra. Then
(i) $R M\left(A^{*}, \bigcirc a\right)=R M\left(A^{*}, \bigcirc^{F}\right)=B\left(A^{*}\right)$,
(ii) for each $T \in L M\left(A^{*}, \bigcirc^{F}\right)\left[T \in L M\left(A^{*}, \bigcirc_{a}\right)\right]$ and $f \in A^{*}$, there exists $\lambda_{f} \in \mathbb{C}$ such that $T(f)=\lambda_{f} f$,
where LM and RM stand for the set of all left and right multipliers, respectively, and $B\left(A^{*}\right)$ denotes the set of bounded linear maps $T: A^{*} \rightarrow A^{*}$.

Proof. (i) A direct varification shows that for $T \in B\left(A^{*}\right)$ and $f, g \in\left(A^{*}, \bigcirc^{F}\right)$

$$
T\left(f \bigcirc^{F} g\right)=f \bigcirc^{F} T(g) \quad, \quad T\left(f \bigcirc_{a} g\right)=f \bigcirc_{a} T(g)
$$

(ii) Let $T \in \operatorname{LM}\left(A^{*}, \bigcirc^{F}\right)$ and $f, g \in\left(A^{*}, \bigcirc^{F}\right)$, then we have

$$
T\left(f \bigcirc^{F} g\right)=T(f) \bigcirc^{F} g \Rightarrow F(f) T(g)=F(T(f)) g
$$

and for $f=g, T(f)=\frac{F(T(f))}{F(f)} f$, in which $\lambda_{f}=: \frac{F(T(f))}{F(f)}$. A similar calculating for $\left(A^{*}, \bigcirc_{a}\right)$ completes the proof.

4 Spectral Theory in Nonunital Case

According to proposition 2.5 we will focus on nonunital Banach alge$\operatorname{bras}\left(A^{*}, \bigcirc^{F}\right)$ and $\left(A^{*}, \bigcirc_{a}\right)$.

Proposition 4.1. Let A be a Banach algebra. Then
(i) $q-\operatorname{inv}\left(A^{*}, \bigcirc^{F}\right)=\left\{f \in A^{*}: F(f) \neq 1\right\}$,
(ii) $q-\operatorname{inv}\left(A^{*}, \bigcirc_{a}\right)=\left\{f \in A^{*}: f(a) \neq 1\right\}$,
and for each $f \in q-\operatorname{inv}\left(A^{*}, \bigcirc^{F}\right)\left[f \in q-\operatorname{inv}\left(A^{*}, \bigcirc_{a}\right)\right]$ we have

$$
f^{q}=\frac{f}{F(f)-1}\left[f^{q}=\frac{f}{f(a)-1}\right] .
$$

Proof. Let $f \in A^{*}$. Then $g \in A^{*}$ is right quasi-inverse for f if and only if $f+g=f \bigcirc^{F} g$, so we have $f+g=F(f) g$. Hence $g=\frac{f}{F(f)-1}$ if $F(f) \neq 1$. For the left quasi-inverse g for f we have $f+g=g \bigcirc^{F} f$, so
$f+g=F(g) f$. Therefore $F(f)+F(g)=F(g) F(f)$ and then $F(g)=\frac{F(f)}{F(f)-1}$. By replacing $F(g)$ in $F+g=F(g) f$ we conclude that $g=\left(\frac{F(f)}{F(f)-1}-1\right) f=\frac{f}{F(f)-1}$. This proves part (i) and the equality $f^{q}=\frac{f}{F(f)-1}$. The rest of proof is obvious for $\left(A^{*}, \bigcirc_{a}\right)=\left(A^{*}, \bigcirc^{\hat{a}}\right)$.

Corollary 4.2. Let A be a Banach algebra. Then
(i) $\operatorname{inv}\left(A^{*}, \bigcirc^{F}\right)^{\#}=\{(f, \lambda): \lambda \neq 0, \lambda \neq-F(f)\}$,
(ii) $\operatorname{inv}\left(A^{*}, \bigcirc_{a}\right)^{\#}=\{(f, \lambda): \lambda \neq 0, \lambda \neq-f(a)\}$, and for each $(f, \lambda) \in \operatorname{inv}\left(A^{*}, \bigcirc^{F}\right)^{\#}\left[(f, \lambda) \in \operatorname{inv}\left(A^{*}, \bigcirc_{a}\right)^{\#}\right]$ we have

$$
(f, \lambda)^{-1}=\left(\frac{-f}{\lambda(F(f)+\lambda)}, \frac{1}{\lambda}\right)\left[(f, \lambda)^{-1}\left(\frac{-f}{\lambda(f(a)+\lambda)}, \frac{1}{\lambda}\right)\right] .
$$

Proof. It is straightforward by using (1).
Corollary 4.3. For $f \in A^{*}$ we have

$$
\begin{aligned}
\sigma_{\left(A^{*}, \bigcirc^{F}\right)}(f) & =\{0, F(f)\}, \\
\sigma_{\left(A^{*}, \bigcirc_{a}\right)}(f) & =\{0, f(a)\},
\end{aligned}
$$

and for spectral radius of f we have

$$
\begin{aligned}
r_{\left(A^{*}, \bigcirc^{F}\right)}(f) & =|F(f)|, \\
r_{\left(A^{*}, O_{a}\right)}(f) & =|f(a)|
\end{aligned}
$$

Proof. By corollary 4.2 one can write

$$
\begin{aligned}
\sigma_{\left(A^{*}, \bigcirc^{F}\right)}(f)=: \sigma_{\left(A^{*}, O^{F}\right)}(f, 0) & =\left\{\lambda \in \mathbb{C}: \lambda(0,1)-(f, 0) \notin \operatorname{inv}\left(A^{*}, \bigcirc^{F}\right)^{\#}\right\} \\
& =\left\{\lambda \in \mathbb{C}:(-f, \lambda) \notin \operatorname{inv}\left(A^{*}, \bigcirc^{F}\right)^{\#}\right\} \\
& =\{\lambda \in \mathbb{C}: \lambda=0 \text { or } \lambda=-F(-f)\} \\
& =\{0, F(f)\},
\end{aligned}
$$

and with a similar proof for $\sigma_{\left(A^{*}, \mathrm{O}_{a}\right)}(f)$. Alse we have

$$
r_{\left(A^{*}, \bigcirc^{F}\right)}(f)=\lim _{n \rightarrow \infty}\left\|f^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}|F(f)|^{\frac{n-1}{n}}| | f \|^{\frac{1}{n}}=|F(f)|
$$

and with a similar proof for $r_{\left(A^{*}, O_{a}\right)}(f)$.

Example 4.4. According to Riesz representation theorem we have
(i) the linear isometric isomorphism $H^{*} \approx H$, where H is a Hilbert space, so for each $T \in H^{*}$ there exists a unique $y_{T} \in H$ such that

$$
T(x)=\left(y_{T}, x\right) \quad(x \in H),
$$

where (\cdot, \cdot) denotes the inner product of H. Now if we consider one of the products \bigcirc_{a} or \bigcirc^{F} in H^{*}, with $a \in H$ and $F \in H^{* *}$ we will have

$$
y_{T O_{a} S}=T(a) y_{S} \quad, \quad y_{T O_{S} S}=F(T) y_{S} \quad\left(T, S \in H^{*}\right) .
$$

(ii) the linear isometric isomorphism $C_{0}(X)^{*} \approx M(X)$, where X is a locally compact Hausdorff space, so for each $T \in C_{0}(X)^{*}$ there exists a unique measure $\mu_{T} \in M(X)$ such that

$$
T(f)=\int_{X} f d \mu \quad\left(f \in C_{0}(X)\right)
$$

Now with one of the products \bigcirc_{h} or \bigcirc^{φ} in $C_{0}(X)^{*}$, where $h \in C_{0}(X)$ and $\varphi \in C_{0}(X)^{* *}$ it is easy to obtain

$$
\mu_{T \bigcirc_{h} S}=T(h) \mu_{S} \quad, \quad \mu_{T ○^{\varphi} S}=\varphi(T) \mu_{S} \quad\left(T, S \in C_{0}(X)^{*}\right) .
$$

(iii) the linear isometric isomorphism $\left(L^{p}\right)^{*} \approx L^{q}$, where $\frac{1}{p}+\frac{1}{q}=1$, $1 \leqslant p<+\infty$. For each $T \in\left(L^{p}\right)^{*}$ there exists a unique $g_{T} \in L^{q}$ such that

$$
T(f)=\int f g_{T} \quad\left(f \in L^{p}\right) .
$$

Now for the products \bigcirc_{h} and \bigcirc^{φ} in $\left(L^{p}\right)^{*}$ we have

$$
g_{T O_{h} S}=T(h) g_{S} \quad, \quad g_{T O_{S}}=\varphi(T) g_{S} \quad\left(T, S \in\left(L^{p}\right)^{*}\right)
$$

where $h \in L^{p}$ and $\varphi \in\left(L^{p}\right)^{* *}$.

5 Acknowledgements

The author thanks the referee for valuble comments.

References

[1] M. Amyari and M. Mirzavaziri, Ideally factored algebras, Acta Mathematica Academiae Paedagogicae Ny'ıregyh 'aziensis, 24 (2008), 227-233.
[2] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
[3] F. F. Bonsall and J. Duncan. Complete Normed Algebras. SpringerVerlag, New York, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80.
[4] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. Ser., 24, The Clarendon Press, Oxford University Press, New York, 2000.
[5] E. Desquith. Banach Algebras Associated to Bounded Module Maps. www.ictp.trieste.it/~pub-off.
[6] J. Duncan and S. A. Hosseiniun, The second dual of Banach algebras, Proc. Roy. Soc. Edinburg Set. A84 (1979), 309-325.
[7] M. Ettefagh, The third dual of a Banach algebra, Studia. Sci. Math. Hung. 45 (1) (2008), 1-11.
[8] R. A. Kamyabi-Gol and M. Janfada, Banach algebras related to the elements of the unit ball of a Banach algebra, Taiwan. J. Math., (12) No. 7 (2008), 1769-1779.
[9] A. R. Khoddami, Biflatness biprojectivity, φ-amenability and ϕ-contractibility of a certain class of Banach algebras, U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 2 (2018), 169-178.
[10] A. R. Khoddami, Bounded and continuous functions on the closed unit ball of a normed vector space equipped with a new product, U.P.B. Sci. Bull., Series A, Vol. 81, Iss. 2 (2019), 81-86.
[11] A.R. Khoddami, H. R. Ebrahimi Vishki, The Higher duals of a Banach algebra induced by a bounded linear functional, Bulletin of Mathematical Analysis and Applications. Volume 3 Issue 2 (2011), 118-122.
[12] J. Laali and M. Fozouni, Some properties of functional Banach algebra, Facta Universitatis (NĬS) Ser. Math. Inform. Vol. 28, No 2 (2013), 189-196.

Mina Ettefagh

Associate Professor of Mathematics
Department of Mathematics
Tabriz Branch, Islamic Azad University,
Tabriz, Iran
etefagh@iaut.ac.ir; minaettefagh@gmail.com

[^0]: Received: May 2020; Accepted: Jauary 2021

