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Abstract. It is known that even duals of a Banach algebra A with
one of Arens products are Banach algebras, these products are natu-
ral multiplications extending the one on A. But the essence of A∗ is
completely different. By defining new products, we investigate some
algebraic and spectral properties of odd duals of A. We will show re-
lations between these products and Arens products, weak or weak-star
continuity, commutativity and unit elements of these algebras. We also
determine the spectrum and multiplier algebra for A∗, and we calculate
the quasi-inverses, spectrum and spectral radius for elements of these
kinds of algebras.
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1 Introduction

Throughout this paper, A is a Banach algebra. The set of all non-zero
characters on A is called the spectrum of A and denoted by σ(A). The
spectrum σA(a) of an element a ∈ A is defined as follows [3];
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(i) If A has unit element e,

σA(a) =: {λ ∈ C : λe− a /∈ invA} ,

where invA is the set of all invertible elements of A.

(ii) If A dose not have unit element, we define

σA(a) =: σA#(a, 0) ,

where A# = A⊕ C is the unitization of A.

The spectral radius of a ∈ A, is defined by [3]

rA(a) =: lim
n→∞

||an||
1
n .

The quasi-product of a, b ∈ A is a ◦ b = a + b − ab. An element a ∈ A
is left [right] quasi-invertible if there exists b ∈ A such that b ◦ a = 0
[a ◦ b = 0], and it is quasi-invertible if it is both left and right quasi-
invertible. So, if a is quasi-invertible, there is a unique element b ∈ A
such that a ◦ b = b ◦ a = 0, b is the quasi-inverse of a, and is denoted by
aq. We write q − invA for the set of all quasi-invertible elements of A
[3, 4]. Clearly a ◦ b = 0 if and only if (−a, 1)(−b, 1) = e in A#, and so

invA# = {(−a, 1) : a ∈ q − invA} ,
q − invA = {a ∈ A : (−a, 1) ∈ invA#} .

(1)

We recall the first and second Arens products � and ♦ on the second
dual A∗∗ of A are defined by

(f · a)(b) = f(ab) (a · f)(b) = f(ba)

(F · f)(a) = F (f · a) (f · F )(a) = F (a · f)

(F�G)(f) = F (G · f) (F♦G)(f) = G(f · F ) ,

(2)

for a, b ∈ A, f ∈ A∗ and F,G ∈ A∗∗. Each of these products makes A∗∗

to a Banach algebra, and A is called Arens regular if two products �
and ♦ coincide [2, 6]. We have

F�G = w∗ − lim
α
w∗ − lim

β
(aαbβ)ˆ ,

F♦G = w∗ − lim
β
w∗ − lim

α
(aαbβ)ˆ ,

(3)
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in which â ∈ A∗∗ is defined by â(f) = f(a) for f ∈ A∗. We also
take Â =: {â : a ∈ A}, that is a subalgebra in A∗∗. Therefore, all
even duals of A become Banach algebras with Arens products. But the
essence of A∗ is compelely different. For example if A = C0(X) for a
locally compact Hausdorff space X, then A∗ = M(X) is the space of
regular countably additive Borel measures on X. Now for A∗ (and also
for odd duals of A) the pointwise product is not well defined, so there
are another products on A∗ to make it into a Banach algebra. Let a ∈ A
with ||a|| 6 1 and F ∈ A∗∗ with ||F || 6 1, and define two products ©a

and ©F on A∗ by

f ©a g =: f(a)g , f ©F g =: F (f)g (f, g ∈ A∗) . (4)

It was shown in [12] that with each of above products, A∗ is a Banach
algebra. Also there are similar works in [1, 5, 8, 9, 10, 11]. These kinds
of algebras can be a source of (counter−) examples for various purposes
in functional analysis.

In this paper, A(n) (n ∈ N) denotes the n−th dual of A. We use
the symbols (A∗,©a) and (A∗,©F ) for Banach algebras with products
©a and ©F as in (4), in section 2, we will investigate some properties
of these algebras such as relations between these products and Arens
products, weak or weak-star continuity, commutativity and unit ele-
ments of these algebras. In section 3, we determine the spectrum and
multiplier algebra for (A∗,©a) and (A∗,©F ). In section 4, we calculate
the quasi-inverses, spectrum and spectral radius for elements of these
kinds of algebras. Finally, we will present some examples by using Riesz
representation theorem.

2 Some Algebraic and Analytic Properties

The first proposition shows the relations between the products defined
in (2) and ©a, ©F . Its proof is straightforward.

Proposition 2.1. Let A be a Banach algebra and let n ∈ {1, 2, . . .},
then for a, b ∈ A(2n−2), f, g ∈ A(2n−1) and F,G ∈ A(2n) we have

(i) f ©a g = f ©â g , f̂ ©â ĝ = (f ©a g)ˆ ,
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(ii) f̂ ©F ĝ = (f ©F g)ˆ = f̂ ©F̂ ĝ ,

(iii) b · f ©a g = f ©ab g , f · b©a g = f ©ba g ,

(iv) f ©a b · g = b · (f ©a g) , f ©a g · b = (f ©a g) · b ,

(v) F · f ©a g = f · a©F g , f · F ©a g = a · f ©F g ,

(vi) f ©a F · g = F · (f ©a g) , f ©a g · F = (f ©a g) · F ,

(vii) f ©F a · g = a · (f ©F g) , f ©F g · a = (f ©F g) · a ,

(viii) G · f ©F g = f ©F�G g , f ·G©F g = f ©F♦G g ,

(ix) f ©F G · g = G · (f ©F g) , f ©F g ·G = (f ©F g) ·G .

It is known that the product in a Banach algebra is norm-continuous,
the next proposition shows relations between weak or weak∗ topologies
and products ©F , ©a.

Proposition 2.2. Let A be a Banach algebra and let n ∈ {1, 2, . . .},
then for f, g ∈ A(2n−1)

(i) the map (a 7→ f ©a g) from A(2n−2) to A(2n−1) is linear and
w − w∗−continuous,

(ii) the map (F 7→ f ©F g) from A(2n) to A(2n−1) is linear and
w∗ − w∗−continuous,

(iii) the maps (f 7→ f©a g) and (f 7→ g©a f) from A(2n−1) to A(2n−1)

are linear and w∗ − w∗−continuous for a ∈ A(2n−2),

(iv) the maps (f 7→ f©F g) and (f 7→ g©F f) from A(2n−1) to A(2n−1)

are linear and w − w∗−continuous and w∗ − w∗−continuous, re-
spectively, for F ∈ A(2n),

(v) for F = w∗ − lim
α
âα and G = w∗ − lim

β
b̂β in A(2n) we have the

following formulas
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f ©F g = w∗ − lim
α
f ©aα g ,

f ©F�G g = w∗ − lim
α
w∗ − lim

β
f ©aαbβ g ,

f ©F♦G g = w∗ − lim
β
w∗ − lim

α
f ©aαbβ g .

Proof. It is easy to check that the maps in all parts are linear. Now for
F = w∗− lim

α
Fα and a = w− lim

β
aβ, where (Fα) ∈ A(2n), (aβ) ∈ A(2n−2)

and for x ∈ A(2n−2), one can write

〈f ©a g, x〉 = 〈f(a)g, x〉
= 〈lim

β
f(aβ)g, x〉

= lim
β
〈f ©aβ g, x〉

= 〈w∗ − lim
β

(f ©aβ g), x〉 ,

and this complete the proof of (i). Also we have

〈f ©F g, x〉 = 〈F (f)g, x〉
= 〈lim

α
Fα(f)g, x〉

= lim
α
〈f ©Fα g, x〉

= 〈w∗ − lim
α

(f ©Fα g), x〉 ,

and this proves (ii).
For parts (iii) and (iv) it is easy to check the following equations for the
bounded net (fα) ∈ A(2n−1)

(w∗ − lim
α
fα)©a g = w∗ − lim

α
(fα©a g) ,

g©a (w∗ − lim
α
fα) = w∗ − lim

α
(g©a fα) ,

(w − lim fα)©F g = w∗ − lim
α

(fα©F g) ,

g©F (w∗ − lim
α
fα) = w∗ − lim

α
(g©F fα) .

Finally, part (v) is a consequence of part (ii), the formulas (3) and also
part (i) of proposition 2.1. �
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Now we investigate the third dual A∗∗∗ of A. We use the symbol
(A∗∗)∗ for dual of A∗∗ (with one of its Arens products), and the symbol
(A∗)∗∗ as the second dual of A∗. One can find more details in [7].

Proposition 2.3. Let A∗∗ be the second dual of a Banach algebra A,
with one of Arens products � or ♦. Then we have

(i)
(
(A∗∗)∗,©â

)
= (A∗,©a)

∗∗ ,

(ii)
(
(A∗∗)∗,©F̂

)
= (A∗,©F )∗∗ .

Note that the right sides of each above equations can be considered with
each of Arens products � or ♦.

Proof. Suppose that A∗∗ has the first Arens product � (the proof
with the second Arense product ♦ is similar), and let ϕ = w∗ − lim

α
ĝα,

η = w∗ − lim
β
ĥβ, where (gα) and (hβ) are bounded nets in A∗. Now for

ϕ, η as elements of
(
(A∗∗)∗,©â

)
we have

ϕ©â η = ϕ(â)η = lim
α
gα(a)η .

On the other hand for ϕ, η as elements of (A∗,©a)
∗∗ with first Arens

product � (the proof with second Arens product is similar), we can write

ϕ�η = w∗ − lim
α
w∗ − lim

β
(gα©a hβ)ˆ

= w∗ − lim
α
w∗ − lim

β
gα(a)ĥβ

= lim
α
gα(a)η ,

and this completes the proof. The proof of part (ii) is similar. �
The next two propositions show that how can the algebras (A∗,©a)

or (A∗,©F ) be commutative or unital.

Proposition 2.4. Let A be a Banach algebra, then

(i) (A∗,©F ) is commutative if and only if F is one to one,

(ii) (A∗,©a) is commutative if and only if â is one to one.
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Proof. (i) Let (A∗,©F ) be commutative and F (f) = F (g) for some
f, g ∈ A∗. Since (A∗,©F ) is commutative, we have f ©F g = g©F f ,
so F (f)g = F (g)f . Hence g = f and this proves that F is one to one.
Conversely, let F be one to one. For each f, g ∈ A∗ we have

F (f ©F g) = F
(
F (f)g

)
= F (f)F (g) = F (g)F (f) = F (g©F f) .

Hence f©F g = g©F f , and this proves the commutativity of (A∗,©F ).
(ii) This is a consequence of part (i) for (A∗,©a) = (A∗,©â). �

Proposition 2.5. Let A be a Banach algebra, then

(i) f ∈ (A∗,©F )
[
f ∈ (A∗,©a)

]
is left identity if and only if

F (f) = 1
[
f(a) = 1

]
,

(ii) if f ∈ (A∗,©F )
[
f ∈ (A∗,©a)

]
be right identity, then F (f) = 1[

f(a) = 1
]
. Also (A∗,©F )

[
(A∗,©a)

]
has right identity if and

only if it is one dimensional.

Proof. (i) Let f ∈ (A∗,©F ) be left identity, then for all g ∈ A∗,
f ©F g = g. So F (f)g = g, or F (f) = 1. Conversely, let F (f) = 1 and
g ∈ A∗, then f ©F g = F (f)g = g. Since f ©â g = f ©a g, the proof
for (A∗,©a) is a consequence of the first part of proof.
(ii) Let f ∈ (A∗,©F ) be right identity, then for all g ∈ A∗, g©F f = g.
So F (g)f = g, also for g = f we have F (f)f = f . Hence F (f) = 1. On
the other hand the equality F (g)f = g shows that A∗ is one dimensional.
The converse is obvious. The proof for (A∗,©a) is similar. �

3 Linear, Multiplicative and Multiplier Func-
tions

Proposition 3.1. Let A be a Banach algebra, then

(i) The linear functional F ∈ (A∗,©F )∗ is the only multiplicative
functional on (A∗,©F ).

(ii) The linear functional â ∈ (A∗,©a)
∗ is the only multiplicative func-

tional on (A∗,©a).
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Proof. (i) For f, g ∈ A∗ we can write

F (f ©F g) = F
(
F (f)g

)
= F (f)F (g) ,

so F is multiplicative. Now suppose that G ∈ (A∗,©F )∗ is multiplica-
tive, then G(f ©F g) = G(f)G(g), so F (f)G(g) = G(f)G(g) for all
f, g ∈ A∗. Therefor F (f) = G(f) for all f ∈ A∗, this completes the
proof (i). The proof of part (ii) is similar. �

Corollary 3.2. For a Banach algebra A, we have

(i) σ(A∗,©F ) = {F} ,

(ii) σ(A∗,©a) = {â} .

It is known that the adjoint T ∗ : B∗ → A∗ of a bounded linear map
T : A → B is bounded and linear. Now in the next proposition we
investigate the multiplicativity of T ∗.

Proposition 3.3. Let T : A → B be a bounded linear map between
Banach algebras A and B. Then for f, g ∈ B∗, b ∈ B and G ∈ B∗∗ we
have T ∗(f ©b g) = f(b)T ∗(g) , T ∗(f ©G g) = G(f)T ∗(g) .
If also T is surjective, then T ∗ : (B∗,©b)→ (A∗,©a) is multiplicative,
where b = T (a). If T ∗∗ : A∗∗ → B∗∗ is sujective, then
T ∗ : (B∗,©G)→ (A∗,©F ) is multiplicative, where G = T ∗∗(F ).

Proof. We can write

T ∗(f ©b g) = (f ©b g)oT = f(b)goT = f(b)T ∗(g) .

Thus for b = T (a) we have

T ∗(f©bg) = T ∗(f©T (a)g) = f
(
T (a)

)
T ∗(g) =

(
T ∗f

)
(a)T ∗(g) = T ∗f©aT

∗g ,

and this proves the multiplicativity of T ∗. The rest of proof is similar.
�

Proposition 3.4. Let A be a Banach algebra. Then

(i) RM(A∗,©a) = RM(A∗,©F ) = B(A∗) ,
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(ii) for each T ∈ LM(A∗,©F )
[
T ∈ LM(A∗,©a)

]
and f ∈ A∗, there

exists λf ∈ C such that T (f) = λff ,

where LM and RM stand for the set of all left and right multipli-
ers, respectively, and B(A∗) denotes the set of bounded linear maps
T : A∗ → A∗.

Proof. (i) A direct varification shows that for T ∈ B(A∗) and
f, g ∈ (A∗,©F )

T (f ©F g) = f ©F T (g) , T (f ©a g) = f ©a T (g) .

(ii) Let T ∈ LM(A∗,©F ) and f, g ∈ (A∗,©F ), then we have

T (f ©F g) = T (f)©F g ⇒ F (f)T (g) = F
(
T (f)

)
g ,

and for f = g, T (f) =
F
(
T (f)

)
F (f)

f , in which λf =:
F
(
T (f)

)
F (f)

. A similar

calculating for (A∗,©a) completes the proof. �

4 Spectral Theory in Nonunital Case

According to proposition 2.5 we will focus on nonunital Banach alge-
bras (A∗,©F ) and (A∗,©a).

Proposition 4.1. Let A be a Banach algebra. Then

(i) q − inv(A∗,©F ) = {f ∈ A∗ : F (f) 6= 1} ,

(ii) q − inv(A∗,©a) = {f ∈ A∗ : f(a) 6= 1} ,

and for each f ∈ q − inv(A∗,©F )
[
f ∈ q − inv(A∗,©a)

]
we have

f q =
f

F (f)− 1

[
f q =

f

f(a)− 1

]
.

Proof. Let f ∈ A∗. Then g ∈ A∗ is right quasi-inverse for f if and only if

f + g = f ©F g, so we have f + g = F (f)g. Hence g =
f

F (f)− 1
if

F (f) 6= 1. For the left quasi-inverse g for f we have f + g = g©F f , so
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f + g = F (g)f . Therefore F (f) + F (g) = F (g)F (f) and then

F (g) =
F (f)

F (f)− 1
. By replacing F (g) in F+g = F (g)f we conclude that

g =
( F (f)

F (f)− 1
− 1
)
f =

f

F (f)− 1
. This proves part (i) and the equality

f q =
f

F (f)− 1
. The rest of proof is obvious for (A∗,©a) = (A∗,©â).

�

Corollary 4.2. Let A be a Banach algebra. Then

(i) inv(A∗,©F )# = {(f, λ) : λ 6= 0 , λ 6= −F (f)} ,
(ii) inv(A∗,©a)

# = {(f, λ) : λ 6= 0 , λ 6= −f(a)} ,

and for each (f, λ) ∈ inv(A∗,©F )#
[
(f, λ) ∈ inv(A∗,©a)

#
]

we have

(f, λ)−1 =
( −f
λ
(
F (f) + λ

) , 1

λ

) [
(f, λ)−1

( −f
λ
(
f(a) + λ

) , 1

λ

)]
.

Proof. It is straightforward by using (1). �

Corollary 4.3. For f ∈ A∗ we have

σ(A∗,©F )(f) = {0, F (f)} ,
σ(A∗,©a)(f) = {0, f(a)} ,

and for spectral radius of f we have

r(A∗,©F )(f) = |F (f)| ,
r(A∗,©a)(f) = |f(a)| .

Proof. By corollary 4.2 one can write

σ(A∗,©F )(f) =: σ(A∗,©F )#(f, 0) = {λ ∈ C : λ(0, 1)− (f, 0) /∈ inv(A∗,©F )#}

= {λ ∈ C : (−f, λ) /∈ inv(A∗,©F )#}
= {λ ∈ C : λ = 0 or λ = −F (−f)}
= {0, F (f)} ,

and with a similar proof for σ(A∗,©a)(f). Alse we have

r(A∗,©F )(f) = lim
n→∞

||fn||
1
n = lim

n→∞
|F (f)|

n−1
n ||f ||

1
n = |F (f)| ,

and with a similar proof for r(A∗,©a)(f). �
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Example 4.4. According to Riesz representation theorem we have

(i) the linear isometric isomorphism H∗ ≈ H, where H is a Hilbert space,
so for each T ∈ H∗ there exists a unique yT ∈ H such that

T (x) = (yT , x) (x ∈ H) ,

where (·, ·) denotes the inner product of H. Now if we consider one of
the products ©a or ©F in H∗, with a ∈ H and F ∈ H∗∗ we will have

y
T©aS

= T (a)yS , y
T©F S

= F (T )yS (T, S ∈ H∗) .

(ii) the linear isometric isomorphism C0(X)∗ ≈M(X), where X is a locally
compact Hausdorff space, so for each T ∈ C0(X)∗ there exists a unique
measure µT ∈M(X) such that

T (f) =

∫
X

f dµ
(
f ∈ C0(X)

)
.

Now with one of the products ©h or ©ϕ in C0(X)∗, where
h ∈ C0(X) and ϕ ∈ C0(X)∗∗ it is easy to obtain

µ
T©hS

= T (h)µS , µ
T©ϕS

= ϕ(T )µS (T, S ∈ C0(X)∗
)
.

(iii) the linear isometric isomorphism (Lp)∗ ≈ Lq, where
1

p
+

1

q
= 1,

1 6 p < +∞. For each T ∈ (Lp)∗ there exists a unique gT ∈ Lq

such that

T (f) =

∫
fgT (f ∈ Lp) .

Now for the products ©h and ©ϕ in (Lp)∗ we have

g
T©hS

= T (h)gS , g
T©ϕS

= ϕ(T )gS
(
T, S ∈ (Lp)∗

)
,

where h ∈ Lp and ϕ ∈ (Lp)∗∗.
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