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Abstract. It is known that even duals of a Banach algebra A with
one of Arens products are Banach algebras, these products are natu-
ral multiplications extending the one on A. But the essence of A* is
completely different. By defining new products, we investigate some
algebraic and spectral properties of odd duals of A. We will show re-
lations between these products and Arens products, weak or weak-star
continuity, commutativity and unit elements of these algebras. We also
determine the spectrum and multiplier algebra for A*, and we calculate
the quasi-inverses, spectrum and spectral radius for elements of these
kinds of algebras.
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1 Introduction

Throughout this paper, A is a Banach algebra. The set of all non-zero
characters on A is called the spectrum of A and denoted by o(A). The
spectrum o 4(a) of an element a € A is defined as follows [3];
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(i) If A has unit element e,
oala) ={AeC : le—a¢invA},
where invA is the set of all invertible elements of A.
(ii) If A dose not have unit element, we define
oa(a) =:044(a,0),
where A% = A @ C is the unitization of A.
The spectral radius of a € A, is defined by [3]

L ik
ra(a) = lim [la"|*
The quasi-product of a,b € Aisaob=a+b— ab. An element a € A
is left [right] quasi-invertible if there exists b € A such that boa = 0
[aob = 0], and it is quasi-invertible if it is both left and right quasi-
invertible. So, if a is quasi-invertible, there is a unique element b € A
such that aob=boa =0, b is the quasi-inverse of a, and is denoted by
a?. We write ¢ — invA for the set of all quasi-invertible elements of A
[3, 4]. Clearly a ob = 0 if and only if (—a,1)(—b,1) = e in A#, and so

inwA* = {(—a,1) : aeq—invA},

| .y 1)
g—invA={ac A : (—a,l) € invA™} .

We recall the first and second Arens products [1 and ¢ on the second
dual A** of A are defined by

(f - a)(b) = f(ab) (a- f)(b) = f(ba)
(F'- f)(a) = F(f -a) (f - F)(a) = Fa- [) (2)
(FOG)(f) = F(G - f) (FOG)(f) =G(f-F),

for a,b € A, f € A* and F,G € A**. Each of these products makes A**
to a Banach algebra, and A is called Arens regqular if two products O
and ¢ coincide [2, 6]. We have

FOG = w* — limw* — li[gn(aabg) ,
[0

. 3
FOG = w* — lién w* — lim(aqnbg) )
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in which @ € A* is defined by a(f) = f(a) for f € A*. We also
take A =: {& : a € A}, that is a subalgebra in A**. Therefore, all
even duals of A become Banach algebras with Arens products. But the
essence of A* is compelely different. For example if A = Cy(X) for a
locally compact Hausdorff space X, then A* = M(X) is the space of
regular countably additive Borel measures on X. Now for A* (and also
for odd duals of A) the pointwise product is not well defined, so there
are another products on A* to make it into a Banach algebra. Let a € A
with [|a|]| < 1 and F € A** with ||F|| < 1, and define two products O,
and OF on A* by

fOag=tfla)g , fO"g=F(f)g (f,ge A%) . (4)

It was shown in [12] that with each of above products, A* is a Banach
algebra. Also there are similar works in [1, 5, 8, 9, 10, 11]. These kinds
of algebras can be a source of (counter—) examples for various purposes
in functional analysis.

In this paper, A™ (n € N) denotes the n—th dual of A. We use
the symbols (A%, Oq) and (A*, OF) for Banach algebras with products
Oa and OF as in (4), in section 2, we will investigate some properties
of these algebras such as relations between these products and Arens
products, weak or weak-star continuity, commutativity and unit ele-
ments of these algebras. In section 3, we determine the spectrum and
multiplier algebra for (4*,(0,) and (A*, OF). In section 4, we calculate
the quasi-inverses, spectrum and spectral radius for elements of these
kinds of algebras. Finally, we will present some examples by using Riesz
representation theorem.

2 Some Algebraic and Analytic Properties

The first proposition shows the relations between the products defined
in (2) and Og, OF. Its proof is straightforward.

Proposition 2.1. Let A be a Banach algebra and let n € {1,2,...},
then for a,b € A2 f ge A=Y gnd F,G € AP we have

(i) fOag=fQO%g , f0ag=(fOQa9) .
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(i) fOrg=(fOFg) =fO"q,

(iii) b'ang:anbg ; f'bOag:fOba97
() fOQab-g="b-(f Oag) v fOag-b=(fQayg)-b,
(W) F-fOag=f-aQFg , [ FQag=a-fOg,

i) fOaF-g=F-(fOag) , [fOag-F=(Oag)-F,
(vii) fO"a-g=a-(fO"9) . fO"g-a=(fO"9) a,
(viii) G- fOFg=fO"%g , [-GOFg=f0O"Cg,

(iz) fO"G-g=G-(fO"g9) . fO"g-G=(fO"9) -G .

It is known that the product in a Banach algebra is norm-continuous,
the next proposition shows relations between weak or weak™ topologies

and products OF, Q.

Proposition 2.2. Let A be a Banach algebra and let n € {1,2,...},
then for f,g € A=)

(i) the map (a — f Qa g) from A2 1o A=V s linear and
w — w*—continuous,

(ii) the map (F — f OF g) from A®Y to AP s linear and
w* — w*—continuous,

(iii) the maps (f = f Oag) and (f = g Ou f) from A=Y o A=)

are linear and w* — w*— continuous for a € A2,

(iv) the maps (f — fOF g) and (f = gOF f) from AC=1) to AC—1)
are linear and w — w*—continuous and w* — w*—continuous, re-
spectively, for F e A"

v) for F = w* —lima, and G = w* — limbg in APY we have the
(v) f by

following formulas
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fOFg e w*—liénanagu
FOFFG g — o = 116131 w* — liénf Qoaabs 9
FOFG g — = 1%11 w* — hglf Qoaabs 9 -

Proof. It is easy to check that the maps in all parts are linear. Now for
F=w*-limF, anda =w —lién ag, where (F,) € AP (ag) € A2
(0%

and for z € A2 one can write

(fQagiz) = (fla)g,x)
<1iénf(aﬂ)g,x>

= hén<f Oag g, T)
= <w* _lién(f Oag g)7$> )

and this complete the proof of (i). Also we have
(fO"g,2) = (F(f)g.x)
= (lim Fo(f)g, =)
= lim(f O g,1)
= (' ~lm(f O™ g).)

and this proves (ii).
For parts (iii) and (iv) it is easy to check the following equations for the
bounded net (f,) € A7~V

(fa Ca 9) ,
(9 Oa fa) 7
(w—1limfo) O g = w —lim(fa O g),
gO" (w* —limfo) = w*—lim(g O" fa) -

(w* =lim fo) Oag = w*—lim(f,
gOa(w*_hmfa) = w* —lim

Finally, part (v) is a consequence of part (ii), the formulas (3) and also
part (i) of proposition 2.1. [
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Now we investigate the third dual A*** of A. We use the symbol
(A**)* for dual of A** (with one of its Arens products), and the symbol
(A*)** as the second dual of A*. One can find more details in [7].

Proposition 2.3. Let A be the second dual of a Banach algebra A,
with one of Arens products O or <{>. Then we have

(i) ((A™)*,0a) = (A%, Oa)™ ,
(i) ((A™)*,0F) = (A*,OF)™ .

Note that the right sides of each above equations can be considered with
each of Arens products O or .

Proof. Suppose that A** has the first Arens product O (the proof
with the second Arense product <} is similar), and let ¢ = w* — lim g4,
(0%

n=w"— lién iLg, where (go) and (hg) are bounded nets in A*. Now for
@, 1 as elements of ((A*)*,O;) we have

¢ Qan = p(a)n = lim go(a)y .

On the other hand for ¢, n as elements of (A*, (O,)** with first Arens
product O (the proof with second Arens product is similar), we can write

en = w" —limw" — lién(ga Oa hp)
6
= w —hénw —hénga(a)hﬁ
= limga(a)n ,
e

and this completes the proof. The proof of part (ii) is similar. O
The next two propositions show that how can the algebras (A*, O,)
or (A*, OF) be commutative or unital.

Proposition 2.4. Let A be a Banach algebra, then
(i) (A*,OF) is commutative if and only if F is one to one,

(ii) (A*,Oa) is commutative if and only if a is one to one.
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Proof. (i) Let (A4*,Of) be commutative and F(f) = F(g) for some
f,g € A*. Since (A*, OF) is commutative, we have f Of g = ¢ OF f,
so F(f)g = F(g)f. Hence g = f and this proves that F is one to one.
Conversely, let F' be one to one. For each f,g € A* we have

F(fO"g)=F(F(f)g) = F(f)F(9) = F(9)F(f) = F(gO" f) .

Hence fOF g = ¢gOF f, and this proves the commutativity of (4*, OF).
(ii) This is a consequence of part (i) for (A*, Og) = (A*,O%). O

Proposition 2.5. Let A be a Banach algebra, then

(i) f € (A*,OF) [f € (A*,Qa)] 1s left identity if and only if
F(f)=1[fa)=1] ,

(it) if f € (A*,OF) [f € (4*,Qa)] be right identity, then F(f) =1
[f(a) = 1]. Also (A*,OF) [(4*,Oa)] has right identity if and

only if it is one dimensional.

Proof. (i) Let f € (A*,O) be left identity, then for all g € A*,
fOFg=g. So F(f)g=g,or F(f) =1. Conversely, let F(f) =1 and
g € A* then f OF g = F(f)g = g. Since f O%g = f Oa g, the proof
for (A*,(4) is a consequence of the first part of proof.

(ii) Let f € (A*, OF) be right identity, then for all g € A*, g OF f = g.
So F(g)f = g, also for g = f we have F(f)f = f. Hence F(f) =1. On
the other hand the equality F'(g)f = g shows that A* is one dimensional.
The converse is obvious. The proof for (A%, (,) is similar. O

3 Linear, Multiplicative and Multiplier Func-
tions

Proposition 3.1. Let A be a Banach algebra, then

(i) The linear functional F € (A*, OF)* is the only multiplicative
functional on (A*,OF).

(ii) The linear functional a € (A*,Oq)* is the only multiplicative func-
tional on (A*, Oa)-



M. ETTEFAGH

Proof. (i) For f,g € A* we can write

F(fO" g) = F(F(f)9) = F(f)F(9) ,

so I is multiplicative. Now suppose that G' € (A*, Of)* is multiplica-

tive, then G(f O g) = G(f)G(g), so F(f)G(g9) = G(f)G(g) for all
f,g € A*. Therefor F(f) = G(f) for all f € A*, this completes the
proof (i). The proof of part (ii) is similar. O

Corollary 3.2. For a Banach algebra A, we have
(i) o(A*,OF) = {F},
(i) o(A*,Oa) = {a} .

It is known that the adjoint T : B* — A* of a bounded linear map
T : A — B is bounded and linear. Now in the next proposition we
investigate the multiplicativity of 1.

Proposition 3.3. Let T : A — B be a bounded linear map between
Banach algebras A and B. Then for f,g € B*, b € B and G € B** we

have  T*(f Ovg) = fO)T*(9) , T*(fO%9) =G())T*(g) -
If also T is surjective, then T : (B*,Op) — (A*,Oa) is multiplicative,
where b = T(a). If T* : A™ — B* s sujective, then
T : (B*,Q%) = (A*,OF) is multiplicative, where G = T**(F).

Proof. We can write
T*(f Ob g) = (f Op 9)oT = f(b)goT = f(b)T"(g) -
Thus for b = T(a) we have
T*(fOvg) = T*(fOr(@y9) = F(T(a))T*(9) = (T"f)(@)T"(9) = T"fOaT"g

and this proves the multiplicativity of T*. The rest of proof is similar.
O

Proposition 3.4. Let A be a Banach algebra. Then
(i) RM(A*,Oa) = RM(A*,OF) = B(4*) ,
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(it) for each T € LM(A*,OF) [T € LM(A*,Qa)] and f € A*, there
exists Ay € C such that T(f) = At f,

where LM and RM stand for the set of all left and right multipli-
ers, respectively, and B(A*) denotes the set of bounded linear maps
T:A"— A*.

Proof. (i) A direct varification shows that for 7' € B(A*) and
fr9 € (4%,0F)

T(fO"g)=r0O"T(9) , T(fOag)=10uTlg) -
(ii) Let T € LM(A*,OF) and f,g € (A*,OF), then we have
T(f O ) =T(/) O g = F(f)T(9) = F(T(f))g ,
E(T()) E(T())

F(f) F(f)
calculating for (A*, O,) completes the proof. O

and for f =g, T(f) = [, in which Ay =: . A similar

4 Spectral Theory in Nonunital Case

According to proposition 2.5 we will focus on nonunital Banach alge-

bras (A*, OF) and (4*, Oq).
Proposition 4.1. Let A be a Banach algebra. Then
(i) q—inv(A*,OF) ={f e A* : F(f)#1},
(i) g —inv(A*,Oa) = {f € A" : fla) #1} |
and for each f € q —inv(A*, OF) [f € ¢ — inv(A*, Oa)] we have

f f
fl=——[f1l=—"—].
F(f) - 1[ f(a) — 1]
Proof. Let f € A*. Then g € A* is right quasi-inverse for f if and only if
f+g=1F Fg,Sowehavef—kg:ng‘ Hence g = ———— if
N ) F(f)—1

F(f) # 1. For the left quasi-inverse g for f we have f + g =g O f, so
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f+9g = F(g9)f. Therefore F(f) + F(9) = F(9)F(f) and then
F(g) = (f) . By replacing F(g) in F+g = F(g)f we conclude that

__f
F(f) -
. The rest of proof is obvious for (4*,O,) = (4%, O%).

T This proves part (i) and the equality

Corollary 4.2. Let A be a Banach algebra. Then

(i) inv(A*,ONF ={(f,\) : X#0 , X#-F(f)},

(ii) inv(A*,Qa)* ={(f,A) : A#£0 , A#—f(a)},

and for each (f,\) € inv(A*, OF)# [(f,N) € inv(A*, Oa)¥] we have
_ —f

(f;0)' = (m ) [(f, A7
Proof. It is straightforward by using (1). O
Corollary 4.3. For f € A* we have

oa-or(f) = {0, F()},
oa00(f) = {0,f(a)},
and for spectral radius of f we have
rason(f) = [F(N],
T 00 () = [f(a) .

Proof. By corollary 4.2 one can write

o(ar o) () = 0a- ory#(f,0) = {AeC : M0,1)  (f,0) ¢ inv(A*,O")*}
= {(AeC : (=f)) ¢ inv(A*,OF)*}
= {A€C : A=0orA=—-F(—f)}
= {0, F()},

and with a similar proof for o4« ,)(f). Alse we have

rasom(f) = lim ||f7||w = Jim [F(f)| A = 1E]

n—o0

and with a similar proof for r(4« ~,)(f). O
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Example 4.4. According to Riesz representation theorem we have

the linear isometric isomorphism H* ~ H, where H is a Hilbert space,
so for each T' € H* there exists a unique y,, € H such that

T(:B):(yT’x) ($€H) )

where (-, -) denotes the inner product of H. Now if we consider one of
the products O, or OF in H*, with a € H and F € H** we will have

Y1045 = T(a)ys ) yTOFS = F(T)ys (T,S S H*) .

the linear isometric isomorphism Cy(X)* ~ M (X), where X is a locally
compact Hausdorff space, so for each T' € Cy(X)* there exists a unique
measure j, € M(X) such that

T(f) = /f o (feCox).
X

Now with one of the products (p or (O¥ in Cp(X)*, where
h € Co(X) and ¢ € Cy(X)*™ it is easy to obtain

:U‘TO;LS = T(h)lus 3 MTQLPS = SO(T)MS (T7 S e CO(X)*) :
1
the linear isometric isomorphism (LP)* ~ L%, where — + — = 1,
p q

1 < p < +oo. For each T' € (LP)* there exists a unique g, € L9
such that

T(f) = / fo.  (felr).

Now for the products Oy, and O¥ in (LP)* we have

gTOhS = T(h)gs v Yroes = (P(T)gs (T7S € (Lp)*) >

where h € LP and ¢ € (LP)**.
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