S-2-Absorbing Second Submodules

F. Farshadifar
Farhangian University

Abstract

Let R be a commutative ring with identity, S be a multiplicatively closed subset of R, and let M be an R-module. In this paper, we introduce and investigate some properties of the notion of S-2-absorbing second submodules of M as a generalization of S-second submodules and strongly 2 -absorbing second submodules of M. Also, we obtain some results concerning S-2-absorbing submodules of M.

AMS Subject Classification: 13C13, 13C05
Keywords and Phrases: Second submodule, multiplicatively closed subset, S-second submodule, S-prime submodule, S-2-absorbing submodule, S-2-absorbing second submodule.

1 Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $r m \in P$, we have $m \in P$ or $r \in\left(P:_{R} M\right)$ [14]. A non-zero submodule N of M is said to be second if for each $a \in R$, the homomorphism $N \xrightarrow{a} N$ is either surjective or zero [27]. A proper ideal I of R is called a 2-absorbing ideal of R if whenever

[^0]$a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$ [10]. A proper submodule N of M is called a 2-absorbing submodule of M if whenever $a b m \in N$ for some $a, b \in R$ and $m \in M$, then $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)[13,22]$. A non-zero submodule N of M is said to be a strongly 2-absorbing second submodule of M if whenever $a, b \in R$, K is a submodule of M, and $a b N \subseteq K$, then $a N \subseteq K$ or $b N \subseteq K$ or $a b \in A n n_{R}(N)[8]$.

A non-empty subset S of R is called a multiplicatively closed subset of R if (i) $0 \notin S$, (ii) $1 \in S$, and (iii) $s \dot{s} \in S$ for all $s, \dot{s} \in S$ [26]. Let S be a multiplicatively closed subset of R. A submodule P of an R-module M with $\left(P:_{R} M\right) \cap S=\emptyset$ is said to be an S-prime submodule of M if there exists a fixed $s \in S$, and whenever $a m \in P$, then $s a \in\left(P:_{R} M\right)$ or $s m \in P$ for each $a \in R, m \in M$ [24]. Particularly, an ideal I of R is said to be an S-prime ideal if I is an S-prime submodule of the R-module R. A submodule N of an R-module M with $A n n_{R}(N) \cap S=\emptyset$ is said to be an S-second submodule of M if there exists a fixed $s \in S$, and whenever $r N \subseteq K$, where $r \in R$ and K is a submodule of M, then $r s N=0$ or $s N \subseteq K[17]$.

Let M be an R-module and S be a multiplicatively closed subset of R. In [25], the authors introduced the notion of S-2-absorbing submodules of M which is a generalization of S-prime submodules and 2-absorbing submodules and investigated some properties of this class of submodules. A submodule P of M is said to be an S-2-absorbing if $\left(P:_{R} M\right) \cap S=\emptyset$ and there exists a fixed $s \in S$ such that $a b m \in P$ for some $a, b \in R$ and $m \in M$ implies that $s a b \in\left(P:_{R} M\right)$ or $s a m \in P$ or $s b m \in P$. In particular, an ideal I of R is said to be an S-2-absorbing ideal if I is an S-2-absorbing submodule of the R-module R [25]. Also, for the some recent works on S-version of some algebraic structures, we refer the reader to $[1,16,23,28]$.

The main purpose of this paper is to introduce the notion of $S-2$ absorbing second submodules of an R-module M as a generalization of S-second submodules and strongly 2 -absorbing second submodules of M. Also, this can be regarded as a dual notion of the S-2-absorbing submodules of M. We provide some information about this class of submodules. Moreover, we investigate some properties of S-2-absorbing submodules of M.

2 S-2-Absorbing Submodules

The following theorem gives a useful characterization of S-2-absorbing submodules.

Theorem 2.1. Let S be a multiplicatively closed subset of R and N be a submodule of an R-module M with $\left(N:_{R} M\right) \cap S=\emptyset$. Then N is S-2absorbing if and only if there is a fixed $s \in S$ such that for every $a, b \in R$, we have either $\left(N:_{M} s^{2} a b\right)=\left(N:_{M} s^{2} a\right)$ or $\left(N:_{M} s^{2} a b\right)=\left(N:_{M} s^{2} b\right)$ or $\left(N:_{M} s^{3} a b\right)=M$.

Proof. Let N be an S-2-absorbing submodule of M and $m \in\left(N:_{M}\right.$ $\left.s^{2} a b\right)$. Then $(s a)(s b) m \in N$. Assume that $\left(N:_{M} s^{3} a b\right) \neq M$, that is, $s^{3} a b \notin\left(N:_{R} M\right)$. So by assumption, either $s^{2} a m \in N$ or $s^{2} b m \in N$. This implies that $\left(N:_{M} s^{2} a b\right) \subseteq\left(N:_{M} s^{2} a\right) \cup\left(N:_{M} s^{2} b\right)$. Clearly, $\left(N:_{M} s^{2} a\right) \cup\left(N:_{M} s^{2} b\right) \subseteq\left(N:_{M} s^{2} a b\right)$. So, $\left(N:_{M} s^{2} a\right) \cup\left(N:_{M}\right.$ $\left.s^{2} b\right)=\left(N:_{M} s^{2} a b\right)$. As N is a submodule of M, it cannot be written as union of two distinct submodules. Thus $\left(N:_{M} s^{2} a b\right)=\left(N:_{M} s^{2} a\right)$ or $\left(N:_{M} s^{2} a b\right)=\left(N:_{M} s^{2} b\right)$. Conversely, let $a, b \in R$ and $m \in M$ such that $a b m \in N$. Then $m \in\left(N:_{R} s^{2} a b\right)$. By given hypothesis, we have $\left(N:_{M} s^{2} a b\right)=\left(N:_{M} s^{2} a\right)$ or $\left(N:_{M} s^{2} a b\right)=\left(N:_{M} s^{2} b\right)$ or $\left(N:_{M} s^{3} a b\right)=M$. Thus $s^{2} a m \in N$ or $s^{2} b m \in N$ or $s^{3} a b \in\left(N:_{R} M\right)$. Hence, $s^{3} a m \in N$ or $s^{3} b m \in N$ or $s^{3} a b \in\left(N:_{R} M\right)$. Now by setting $s_{1}=s^{3}$, we get the result.

Lemma 2.2. [9, Lemma 3.2] Let N be a submodule of an R-module M and $r \in R$. Then for every flat R-module F, we have $F \otimes\left(N:_{M} r\right)=$ $\left(F \otimes N::_{F \otimes M} r\right)$.

Theorem 2.3. Let S be a multiplicatively closed subset of R, N be an S-2-absorbing submodule of an R-module M, and F be a flat R-module. If $\left(F \otimes N:_{R} F \otimes M\right) \cap S=\emptyset$, then $F \otimes N$ is an S-2-absorbing submodule of $F \otimes M$.

Proof. Since N is an S-2-absorbing submodule of M, by Theorem 2.1, we have either $\left(N:_{M} s^{2} a b\right)=\left(N:_{M} s^{2} a\right)$ or $\left(N:_{M} s^{2} a b\right)=\left(N:_{M} s^{2} b\right)$ or $\left(N::_{M} s^{3} a b\right)=M$ for $a, b \in R$. Assume that $\left(N:_{M} s^{2} a b\right)=\left(N:_{M}\right.$ $s^{2} a$). Then by Lemma 2.2, we have

$$
\left(F \otimes N:_{F \otimes M} s^{2} a b\right)=F \otimes\left(N:_{M} s^{2} a b\right)=F \otimes\left(N:_{M} s^{2} a\right)=\left(F \otimes N:_{F \otimes M} s^{2} a\right) .
$$

If $\left(N:_{M} s^{3} a b\right)=M$, then by Lemma 2.2, we have

$$
\left(F \otimes N:_{F \otimes M} s^{3} a b\right)=F \otimes\left(N:_{M} s^{3} a b\right)=F \otimes M .
$$

Hence by Theorem 2.1, $F \otimes N$ is S-2-absorbing submodule of $F \otimes M$.

Theorem 2.4. Let S be a multiplicatively closed subset of R and F be a faithfully flat R module. Then N is an S-2-absorbing submodule of M if and only if $F \otimes N$ is an S-2-absorbing submodule of $F \otimes M$.

Proof. Let N be an S-2-absorbing submodule of M. Suppose ($F \otimes N:_{R}$ $F \otimes M) \cap S \neq \emptyset$. Then there is an $t \in\left(F \otimes N:_{R} F \otimes M\right) \cap S$. Thus $F \otimes t M \subseteq F \otimes N$. Hence, $0 \rightarrow F \otimes t M \rightarrow F \otimes N$ is an exact sequence. Since F is a faithfully flat, $0 \rightarrow t M \rightarrow N$ is an exact which implies that $t M \subseteq N$. Thus $\left(N:_{R} M\right) \cap S \neq \emptyset$, this is a contradiction. So $\left(F \otimes N:_{R} F \otimes M\right) \cap S=\emptyset$. Now by Theorem 2.3, we have $F \otimes N$ is an S-2-absorbing submodule of $F \otimes M$. Conversely, suppose $F \otimes N$ is an S-2-absorbing submodule of $F \otimes M$. Then $\left(F \otimes N:_{R} F \otimes M\right) \cap S=\emptyset$ implies that $\left(N:_{R} M\right) \cap S=\emptyset$. Let $a, b \in R$. Then by Theorem 2.1, we can assume that $\left(F \otimes N:_{F \otimes M} s^{2} a b\right)=\left(F \otimes N:_{F \otimes M} s^{2} a\right)$. By Lemma 2.2, we have
$F \otimes\left(N:_{M} s^{2} a b\right)=\left(F \otimes N:_{F \otimes M} s^{2} a b\right)=\left(F \otimes N:_{F \otimes M} s^{2} a\right)=F \otimes\left(N:_{M} s^{2} a\right)$.
So, $0 \rightarrow F \otimes\left(N:_{M} s^{2} a b\right) \rightarrow F \otimes\left(N:_{M} s^{2} a\right) \rightarrow 0$ is an exact sequence. As F is a faithfully flat, $0 \rightarrow\left(N:_{M} s^{2} a b\right) \rightarrow\left(N:_{M} s^{2} a\right) \rightarrow 0$ is an exact sequence. Thus $\left(N:_{M} s^{2} a b\right)=\left(N:_{M} s^{2} a\right)$ and so by Theorem 2.1, N is S-2-absorbing. If $\left(F \otimes N:_{F \otimes M} s^{3} a b\right)=F \otimes M$, then $F \otimes\left(N:_{M} s^{3} a b\right)=$ $\left(F \otimes N:_{F \otimes M} s^{3} a b\right)=F \otimes M$. So,

$$
0 \rightarrow F \otimes\left(N:_{M} a b s^{3}\right) \rightarrow F \otimes M \rightarrow 0
$$

is an exact sequence. As F is a faithfully flat, $0 \rightarrow\left(N:_{M} s^{3} a b\right) \rightarrow$ $M \rightarrow 0$ is an exact sequence. Thus $\left(N:_{M} s^{3} a n\right)=M$. Hence N is an S-2-absorbing submodule of M.

Proposition 2.5. Let S be a multiplicatively closed subset of R and N be an S-2-absorbing submodule of an R-module M. Then the following statements hold for some $s \in S$.
(a) $\left(N:_{M} t h\right) \subseteq\left(N:_{M} t s\right)$ or $\left(N:_{M} t h\right) \subseteq\left(N:_{M} s h\right)$ for all $t, h \in S$.
(b) $\left(\left(N:_{R} M\right):_{R}\right.$ th) $\subseteq\left(\left(N:_{R} M\right):_{R} t s\right)$ or $\left(\left(N:_{R} M\right):_{R} t h\right) \subseteq$ $\left(\left(N:_{R} M\right):_{R} s h\right)$ for all $t, h \in S$.

Proof. (a) Let N be an S-2-absorbing submodule of M. Then there is a fixed $s \in S$. Take an element $m \in\left(N:_{M} t h\right)$, where $t, h \in S$. Then $s t m \in N$ or $s h m \in N$ or $s t h \in\left(N:_{R} M\right)$. As $\left(N:_{R} M\right) \cap S=\emptyset$, we have sth $\notin\left(N:_{R} M\right)$. If for each $m \in\left(N:_{M} t h\right)$, we have $\operatorname{stm} \in N$ (resp. $\operatorname{shm} \in N)$, then we are done. So suppose that there are $m_{1} \in\left(N:_{M} t h\right)$ such that $s t m_{1} \notin N$ and $m_{2} \in\left(N:_{M}\right.$ th) such that $s h m_{2} \notin N$. Then we conclude that $\operatorname{sh} m_{1} \in N$ and $\operatorname{stm}_{2} \in N$. Now $h t\left(m_{1}+m_{2}\right) \in N$ implies that $h s\left(m_{1}+m_{2}\right) \in N$ or $s t\left(m_{1}+m_{2}\right) \in N$. Thus $s t m_{1} \in N$ or $s h m_{2} \in N$, which is a desired contradiction.
(b) This follows from part (a).

Lemma 2.6. Let S be a multiplicatively closed subset of R and I be an S-2-absorbing ideal of R. Then \sqrt{I} is an S-2-absorbing ideal of R and there is a fixed $s \in S$ such that $s a^{2} \in I$ for every $a \in \sqrt{I}$.

Proof. Clearly, as I is an S-2-absorbing ideal of R, there is a fixed $s \in S$ such that $s a^{2} \in I$ for every $a \in \sqrt{I}$. Now let $a, b, c \in R$ such that $a b c \in \sqrt{I}$. Then $s a^{2} b^{2} c^{2}=s(a b c)^{2} \in I$. Since I is a S-2-absorbing ideal of R, we may assume that $s^{2} a^{2} b^{2} \in I$. This implies that $s a b \in \sqrt{I}$, as needed.

Recall that an R-module M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that $N=I M$ [11].

Let N be a proper submodule of an R-module M. Then the M radical of N, denoted by $\operatorname{rad}(N)$, is defined to be the intersection of all prime submodules of M containing N [20].

Theorem 2.7. Let S be a multiplicatively closed subset of R and M a finitely generated multiplication R-module. If N is an S-2-absorbing submodule of M, then $\operatorname{rad}(N)$ is an S-2-absorbing submodule of M.

Proof. Since N is an S-2-absorbing submodule of M, we have ($N:_{R} M$) is a S-2-absorbing ideal of R by [25, Proposition 3]. Thus by Lemma 2.6, $\sqrt{\left(N:_{R} M\right)}$ is an S-2-absorbing ideal of R. By [20, Theorem 4],
$\left.\left(\operatorname{rad}(N):_{R} M\right)\right)=\sqrt{\left(N:_{R} M\right)}$. Therefore, $\left(\operatorname{rad}(N):_{R} M\right)$ is an S-2absorbing ideal of R. Now the result follows from [25, Proposition 3].

$3 \quad S$-2-Absorbing Second Submodules

Definition 3.1. Let S be a multiplicatively closed subset of R and N be a submodule of an R-module M such that $A n n_{R}(N) \cap S=\emptyset$. We say that N is a S-2-absorbing second submodule of M if there exists a fixed $s \in S$ and whenever $a b N \subseteq K$, where $a, b \in R$ and K is a submodule of M, implies either that $s a N \subseteq K$ or $s b N \subseteq K$ or $s a b N=0$. In particular, an ideal I of R is said to be an S-2-absorbing second ideal if I is an S-2-absorbing second submodule of the R-module R. By a S-2absorbing second module, we mean a module which is a S-2-absorbing second submodule of itself.

Lemma 3.2. Let S be a multiplicatively closed subset of R, I an ideal of R, and let N be an S-2-absorbing second submodule of M. Then there exists a fixed $s \in S$ and whenever $a \in R, K$ is a submodule of M, and $I a N \subseteq K$, then $a s N \subseteq K$ or $I s N \subseteq K$ or $\operatorname{Ias} \subseteq \operatorname{Ann}_{R}(N)$.

Proof. Let as $N \nsubseteq K$ and Ias $\nsubseteq A n n_{R}(N)$. Then there exists $b \in I$ such that $a b s N \neq 0$. Now as N is a $S-2$-absorbing second submodule of $M, b a N \subseteq K$ implies that $b s N \subseteq K$. We show that $I s N \subseteq K$. To see this, let c be an arbitrary element of I. Then $(b+c) a N \subseteq K$. Hence, either $(b+c) s N \subseteq K$ or $(b+c) a s \in A n n_{R}(N)$. If $(b+c) s N \subseteq K$, then since $b s N \subseteq K$ we have $c s N \subseteq K$. If $(b+c) a s \in A n n_{R}(N)$, then cas $\notin A n n_{R}(N)$, but $c a N \subseteq K$. Thus $c s N \subseteq K$. So, we conclude that $s I N \subseteq K$, as requested.
Lemma 3.3. Let S be a multiplicatively closed subset of R, I and J be two ideals of R, let and N be a S-2-absorbing second submodule of M. Then there exists a fixed $s \in S$ and whenever K is a submodule of M and $I J N \subseteq K$, then $s I N \subseteq K$ or $s J N \subseteq K$ or $I J s \subseteq A n n_{R}(N)$.

Proof. Let $I s N \nsubseteq K$ and $J s N \nsubseteq K$. We show that $I J s \subseteq \operatorname{Ann}_{R}(N)$. Assume that $c \in I$ and $d \in J$. By assumption there exists $a \in I$ such that as $N \nsubseteq K$ but $a J N \subseteq K$. Now Lemma 3.2 shows that $a J s \subseteq A n n_{R}(N)$
and so $\left(I \backslash\left(K:_{R} N\right)\right) J s \subseteq A n n_{R}(N)$. Similarly there exists $b \in\left(J \backslash\left(K:_{R}\right.\right.$ $N)$) such that $I b s \subseteq A n n_{R}(N)$ and also $I\left(J \backslash\left(K:_{R} N\right)\right) s \subseteq A n n_{R}(N)$. Thus we have abs $\in A n n_{R}(N)$, ads $\in A n n_{R}(N)$ and $c b s \in A n n_{R}(N)$. As $a+c \in I$ and $b+d \in J$, we have $(a+c)(b+d) N \subseteq K$. Therefore, $(a+c) s N \subseteq K$ or $(b+d) s N \subseteq K$ or $(a+c)(b+d) s \in A n n_{R}(N)$. If $(a+c) s N \subseteq K$, then $c s N \nsubseteq K$. Hence $c \in I \backslash\left(K:_{R} N\right)$ which implies that $c d s \in A n n_{R}(N)$. Similarly if $(b+d) s N \subseteq K$, we can deduce that $c d s \in A n n_{R}(N)$. Finally if $(a+c)(b+d) s \in A n n_{R}(N)$, then $(a b+a d+c b+c d) s \in A n n_{R}(N)$ so that $c d s \in A n n_{R}(N)$. Therefore, $I J s \subseteq A n n_{R}(N)$.

Let M be an R-module. A proper submodule N of M is said to be completely irreducible if $N=\bigcap_{i \in I} N_{i}$, where $\left\{N_{i}\right\}_{i \in I}$ is a family of submodules of M, implies that $N=N_{i}$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M. Thus the intersection of all completely irreducible submodules of M is zero. [18].
Remark 3.4. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$ [5].

Let S be a multiplicatively closed subset of R and M be an R-module. S-2-absorbing second submodules of M can be characterized in various ways as we demonstrate in the following theorem.
Theorem 3.5. Let S be a multiplicatively closed subset of R. For a submodule N of an R-module M with $A n n_{R}(N) \cap S=\emptyset$ the following statements are equivalent:
(a) N is an S-2-absorbing second submodule of M;
(b) There exists a fixed $s \in S$ such that $s^{2} a b N=s^{2} a N$ or $s^{2} a b N=$ $s^{2} b N$ or $s^{3} a b N=0$ for each $a, b \in R$;
(c) There exists a fixed $s \in S$ and whenever $a b N \subseteq L_{1} \cap L_{2}$, where $a, b \in R$ and L_{1}, L_{2} are completely irreducible submodules of M, implies either that $a b s N=0$ or $s a N \subseteq L_{1} \cap L_{2}$ or $s b N \subseteq L_{1} \cap L_{2}$.
(d) There exists a fixed $s \in S$, and $I J N \subseteq K$ implies either that $s I J \subseteq A n n_{R}(N)$ or $s I N \subseteq K$ or $s J N \subseteq K$ for each ideals I, J of R and submodule K of M.

Proof. $(b) \Rightarrow(a)$ Let $a, b \in R$ and K be a submodule of M with $a b N \subseteq$ K. By part (b), there exists a fixed $s \in S$ such that $s^{2} a b N=s^{2} a N$ or $s^{2} a b N=s^{2} b N$ or $s^{3} a b N=0$. Thus either $s^{3} a b N=0$ or $s^{3} a N \subseteq$ $s^{2} a N=a b s^{2} N \subseteq s^{2} K \subseteq K$ or $s^{3} b N \subseteq s^{2} b N=a b s^{2} N \subseteq s^{2} K \subseteq K$. Therefore, by setting $s:=s^{3}$, we have either $\dot{s} a N \subseteq K$ or $s ́ b N \subseteq K$ or śab $N=0$, as needed.
$(a) \Rightarrow(c)$ This is clear.
$(c) \Rightarrow(b)$ By part (c), there exists a fixed $s \in S$. Assume that there are $a, b \in R$ such that $s^{2} a b N \neq s^{2} a N$ and $s^{2} a b N \neq s^{2} b N$. Then there exist completely irreducible submodules L_{1} and L_{2} of M such that $s^{2} a b N \subseteq L_{1}, s^{2} a b N \subseteq L_{2}, s^{2} a N \nsubseteq L_{1}$, and $s^{2} b N \nsubseteq L_{2}$ by Remark 3.6. Now (as)(bs) $N=s^{2} a b N \subseteq L_{1} \cap L_{2}$ implies that either $s^{2} a N \subseteq L_{1} \cap L_{2}$ or $s^{2} b N \subseteq L_{1} \cap L_{2}$ or $s^{3} a b N=0$ by part (c). If $s^{2} a N \subseteq L_{1} \cap L_{2}$ or $s^{2} b N \subseteq L_{1} \cap L_{2}$, then $s^{2} a N \subseteq L_{1}$ or $s^{2} b N \subseteq L_{2}$, which are contradiction. Thus $s^{3} a b N=0$, as required.
$(a) \Rightarrow(d)$ By Lemma 3.3.
$(d) \Rightarrow(a)$ Take $a, b \in R$ and K a submodule of M with $a b N \subseteq K$. Now, put $I=R a$ and $J=R b$. Then we have $I J N \subseteq K$. By assumption, there is a fixed $s \in S$ such that either $s I J=s(R a)(R b) \subseteq A n n_{R}(N)$ or $s I N \subseteq K$ or $s J N \subseteq K$ and so either $s a b \in A n n_{R}(N)$ or $s a N \subseteq K$ or $s b N \subseteq K$, as needed.

Remark 3.6. Let M be an R-module and S a multiplicatively closed subset of R. Clearly, every S-second submodule of M and every strongly 2-absorbing second submodule N of M with $A n n_{R}(N) \cap S=\emptyset$ is an S -2-absorbing second submodule of M. But the converse is not true in general, as we can see in the following examples.

Example 3.7. Consider \mathbb{Z}_{4} as an \mathbb{Z}-module. Clearly, \mathbb{Z}_{4} is not a strongly 2 -absorbing second \mathbb{Z}-module. Set $S:=\mathbb{Z} \backslash 2 \mathbb{Z}$. Then for each $s \in S$, $2 \mathbb{Z}_{4}=2 s \mathbb{Z}_{4} \neq s \mathbb{Z}_{4}=\mathbb{Z}_{4}$ and $2 s \mathbb{Z}_{4} \neq 0$ implies that \mathbb{Z}_{4} is not an S-second \mathbb{Z}-module. But, if we consider $s=1$, and $n, m \in \mathbb{Z}$, then we have three cases:

Case 1 If $n \neq 2 k$ and $m \neq 2 k$ for each $k \in \mathbb{N}$, then

$$
n m(1)^{2} \mathbb{Z}_{4}=\mathbb{Z}_{4}=(1)^{2} n \mathbb{Z}_{4}=(1)^{2} m \mathbb{Z}_{4}
$$

Case 2 If $n=2 k_{1}$ and $m=2 k_{2}$ for some $k_{1}, k_{2} \in \mathbb{N}$, then $n m(1)^{3} \mathbb{Z}_{4}=$ 0 .

Case 3 If $n=2 k_{1}$ for some $k_{1} \in \mathbb{N}$ and $m \neq 2 k$ for each $k \in \mathbb{N}$, then

$$
n m(1)^{2} \mathbb{Z}_{4}=\overline{2} \mathbb{Z}_{4}=(1)^{2} n \mathbb{Z}_{4}
$$

Thus by Theorem $3.5(b) \Rightarrow(a), \mathbb{Z}_{4}$ is an S-2-absorbing second \mathbb{Z} module.

Example 3.8. Consider the \mathbb{Z}-module $M=\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p q}$, where $p \neq q$ are prime numbers. Then M is not a strongly 2 -absorbing second \mathbb{Z}-module since

$$
\begin{aligned}
& p q M=\mathbb{Z}_{p^{\infty}} \oplus 0 \neq \mathbb{Z}_{p^{\infty}} \oplus p \mathbb{Z}_{p q}=p M, \\
& p q M=\mathbb{Z}_{p^{\infty}} \oplus 0 \neq \mathbb{Z}_{p^{\infty}} \oplus q \mathbb{Z}_{p q}=q M,
\end{aligned}
$$

and $p q M=\mathbb{Z}_{p^{\infty}} \oplus 0 \neq 0$. Now, take the multiplicatively closed subset $S=\mathbb{Z} \backslash\{0\}$ and put $s=p q$. Then $s^{2} p q M=\mathbb{Z}_{p^{\infty}} \oplus 0=s^{2} p M$ implies that M is an S-2-absorbing second \mathbb{Z}-module by Theorem $3.5(b) \Rightarrow(a)$.

The following lemma is known, but we write it here for the sake of completeness.

Lemma 3.9. Let M be an R-module, S a multiplicatively closed subset of R, and N be a finitely generated submodule of M. If $S^{-1} N \subseteq S^{-1} K$ for a submodule K of M, then there exists an $s \in S$ such that $s N \subseteq K$.

Proof. This is straightforward.
Let S be a multiplicatively closed subset of R. Recall that the saturation S^{*} of S is defined as $S^{*}=\left\{x \in R: x / 1\right.$ is a unit of $\left.S^{-1} R\right\}$. It is obvious that S^{*} is a multiplicatively closed subset of R containing S [19].

Proposition 3.10. Let S be a multiplicatively closed subset of R and M be an R -module. Then we have the following.
(a) If N is a strongly 2 -absorbing second submodule of M such that $S \cap$ $A n n_{R}(N)=\emptyset$, then N is a S-2-absorbing second submodule of M. In fact if $S \subseteq u(R)$ and N is an S-2-absorbing second submodule of M, then N is a strongly 2 -absorbing second submodule of M.
(b) If $S_{1} \subseteq S_{2}$ are multiplicatively closed subsets of R and N is an S_{1-} 2-absorbing second submodule of M, then N is an S_{2}-2-absorbing second submodule of M in case $A n n_{R}(N) \cap S_{2}=\emptyset$.
(c) N is an S-2-absorbing second submodule of M if and only if N is an S^{*}-2-absorbing second submodule of M
(d) If N is a finitely generated S-2-absorbing second submodule of M, then $S^{-1} N$ is a strongly 2-absorbing second submodule of $S^{-1} M$.

Proof. (a) and (b) These are clear.
(c) Assume that N is an S-2-absorbing second submodule of M. We claim that $A n n_{R}(N) \cap S^{*}=\emptyset$. To see this assume that there exists an $x \in A n n_{R}(N) \cap S^{*}$ As $x \in S^{*}, x / 1$ is a unit of $S^{-1} R$ and so $(x / 1)(a / s)=$ 1 for some $a \in R$ and $s \in S$. This yields that us $=u x a$ for some $u \in S$. Now we have that $u s=u x a \in A n n_{R}(N) \cap S$, a contradiction. Thus, $\operatorname{Ann}_{R}(N) \cap S^{*}=\emptyset$. Now as $S \subseteq S^{*}$, by part (b), N is an S^{*}-2-absorbing second submodule of M. Conversely, assume that N is an $S^{*}-2$-absorbing second submodule of M. Let $r t N \subseteq K$ for some $r, t \in R$. As N is an $S^{*}-2$-absorbing second submodule of M, there is a fixed $x \in S^{*}$ such that $x r t \in \operatorname{Ann}_{R}(N)$ or $x r N \subseteq K$ or $x t N \subseteq K$. As $x / 1$ is a unit of $S^{-1} R$, there exist $u, s \in S$ and $a \in R$ such that $u s=u x a$. Then note that (us)rt $=u a x r t \in \operatorname{Ann}_{R}(N)$ or $u s(t x N) \subseteq K$ or $u s(r x N) \subseteq K$. Therefore, N is a S-2-absorbing second submodule of M.
(d) As N is an S-2-absorbing second submodule of M, there is a fixed $s \in S$. If $S^{-1} N=0$, then as N is finitely generated, there is an $t \in S$ such that $t \in A n n_{R}(N)$ by Lemma 3.9. Thus $A n n_{R}(N) \cap$ $S \neq \emptyset$, a contradiction. So, $S^{-1} N \neq 0$. Now let $a / t, b / h \in S^{-1} R$. As N is an S-2-absorbing second submodule of M, we have either $a b s^{2} N=a s^{2} N$ or $a b s^{2} N=b s^{2} N$ or $a b s^{3} N=0$. This implies that either $(a / t)(b / h) S^{-1} N=(a / t) S^{-1} N$ or $(a / t)(b / h) S^{-1} N=(b / h) S^{-1} N$ or $(a / t)(b / h) S^{-1} N=0$, as needed.

The following example shows that the converse of Proposition 3.10 (d) is not true in general.

Example 3.11. Consider the \mathbb{Z}-module $M=\mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q}$, where \mathbb{Q} is the field of rational numbers. Take the submodule $N=\mathbb{Z} \oplus \mathbb{Z} \oplus 0$ and the
multiplicatively closed subset $S=\mathbb{Z} \backslash\{0\}$. Now, take $s \in S$. Then there exist prime numbers $p \neq q$ such that $\operatorname{gcd}(p, s)=\operatorname{gcd}(q, s)=1$. Then one can see that $s^{2} p q N \neq s^{2} p N, s^{2} p q N \neq s^{2} q N$, and $s^{3} p q N \neq 0$. Thus N is not an S-2-absorbing second submodule of M. Since $S^{-1} \mathbb{Z}=\mathbb{Q}$ is a field, $S^{-1}(\mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q})$ is a vector space and so the non-zero submodule $S^{-1} N$ is a strongly 2-absorbing second submodule of $S^{-1}(\mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q})$.
Theorem 3.12. Let S be a multiplicatively closed subset of R and N be a submodule of an R-module M such that $A n n_{R}(N) \cap S=\emptyset$. Then N is an S-2-absorbing second submodule of M if and only if $s^{3} N$ is a strongly 2 -absorbing second submodule of M for some $s \in S$.
Proof. Let $s^{3} N$ be a strongly 2-absorbing second submodule of M for some $s \in S$ and $a, b \in R$. Then $a b s^{3} N=a s^{3} N$ or $a b s^{3} N=b s^{3} N$ or $a b s^{3} N=0$ by [8, Theorem 3.3]. Hence $s^{6} a b N=s^{6} a N$ or $s^{6} a b N=s^{6} b N$ or $s^{9} a b N=0$. Set $t:=s^{3}$. Then $t^{2} a b N=t^{2} a N$ or $t^{2} a b N=t^{2} b N$ or $t^{3} a b N=0$. Thus by Theorem $3.5(b) \Rightarrow(a), N$ is an S-2-absorbing second submodule of M. Conversely, suppose that N is an S-2-absorbing second submodule of M and $a, b \in R$. Then for some $s \in S$ we have $s^{2} a b N=s^{2} a N$ or $s^{2} a b N=s^{2} b N$ or $s^{3} a b N=0$ by Theorem $3.5(b) \Rightarrow$ (a). This implies that $a b s^{3} N=a s^{3} N$ or $a b s^{3} N=b s^{3} N$ or $a b s^{3} N=0$. We not that $A n n_{R}(N) \cap S=\emptyset$, implies that $s^{3} N \neq 0$. Therefore, by [8, Theorem 3.3], $s^{3} N$ is a strongly 2 -absorbing second submodule of M.

Proposition 3.13. Let S be a multiplicatively closed subset of R and M be an R-module. Let $N \subset K$ be two submodules of M and K be a S-2-absorbing second submodule of M. Then K / N is a S-2-absorbing second submodule of M / N.

Proof. This is straightforward.
Proposition 3.14. Let S be a multiplicatively closed subset of R and N be an S-2-absorbing second submodule of an R-module M. Then we have the following.
(a) $A n n_{R}(N)$ is a S-2-absorbing ideal of R.
(b) If K is a submodule of M such that $\left(K:_{R} N\right) \cap S=\emptyset$, then $\left(K:_{R} N\right)$ is a S-2-absorbing ideal of R.
(c) There exists a fixed $s \in S$ such that $s^{n} N=s^{n+1} N$, for all $n \geq 3$.

Proof. (a) Let $a, b, c \in R$ and $a b c \in A n n_{R}(N)$. Then there exists a fixed $s \in S$ and $a b N \subseteq a b N$ implies that $a s N \subseteq a b N$ or $b s N \subseteq a b N$ or $\operatorname{sabN}=0$. If $\operatorname{sabN}=0$, then we are done. If $a s N \subseteq a b N$, then $\operatorname{cas} N \subseteq \operatorname{cabN}=0$. In other case, we do the same.
(b) Let $a, b, c \in R$ and $a b c=(a c) b \in\left(K:_{R} N\right)$. Then there exists a fixed $s \in S$ such that $a c s N \subseteq K$ or $c b s N \subseteq b s N \subseteq K$ or $s a b c \in$ $A n n_{R}(N) \subseteq\left(K:_{R} N\right)$, as needed.
(c) As N is an S-2-absorbing second submodule of M, there exists a fixed $s \in S$. It is enough to show that $s^{3} N=s^{4} N$. It is clear that $s^{4} N \subseteq s^{3} N$. Since N is an S-2-absorbing second submodule, $\left(s^{2}\right)\left(s^{2}\right) N=s^{4} N \subseteq s^{4} N$ implies that either $s^{3} N \subseteq s^{4} N$ or $s^{5} N=0$. If $s^{5} N=0$, then $s^{5} \in \operatorname{Ann}_{R}(N) \cap S=\emptyset$ which is a contradiction. Thus $s^{3} N \subseteq s^{4} N$, as desired.

Proposition 3.15. Let S be a multiplicatively closed subset of R and N be a S-2-absorbing second submodule of M. Then the following statements hold for some $s \in S$.
(a) $t s N \subseteq t h N$ or $h s N \subseteq t h N$ for all $t, h \in S$.
(b) $\left(A n n_{R}(N):_{R} t h\right) \subseteq\left(A n n_{R}(N):_{R} t s\right)$ or $\left(A n n_{R}(N):_{R}\right.$ th) \subseteq $\left(A n n_{R}(N):_{R} s h\right)$ for all $t, h \in S$.

Proof. (a) Let N be a S-2-absorbing second submodule of M. Then there is a fixed $s \in S$. Let L be a completely irreducible submodule of M such that $t h N \subseteq L$, where $t, h \in S$. Then $t s N \subseteq L$ or $s h N \subseteq L$ or sth $\in A n n_{R}(N)$. As $A n n_{R}(N) \cap S=\emptyset$, we have sth $\notin A n n_{R}(N)$. If for each completely irreducible submodule of M, we have $t s N \subseteq L$ (resp. $s h N \subseteq L$), then we are done by Remark 3.6. So suppose that there are completely irreducible submodules L_{1} and L_{2} of M such that $t s N \nsubseteq L_{1}$ and $\operatorname{sh} N \nsubseteq L_{2}$. Then since N is a S-2-absorbing second submodule of M, we conclude that $h s N \subseteq L_{1}$ and $s t N \subseteq L_{2}$. Now $h t N \subseteq L_{1} \cap L_{2}$ implies that $h s N \subseteq L_{1} \cap L_{2}$ or $s t N \subseteq L_{1} \cap L_{2}$. Thus $t s N \subseteq L_{1}$ or $\operatorname{sh} N \subseteq L_{2}$, a contradiction.
(b) This follows from Proposition 3.15 (a) and Proposition 2.5 (a).

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$, equivalently, for each submodule N of M, we have $N=\left(0:_{M} A n n_{R}(N)\right)$ [3].
Lemma 3.16. Let S be a multiplicatively closed subset of R and N be a submodule of a comultiplication R-module M. If $A n n_{R}(N)$ is a S-2-absorbing ideal of R, then N is a S-2-absorbing second submodule of M.

Proof. Let $a, b \in R, K$ be a submodule of M, and $a b N \subseteq K$. Then we have $A n n_{R}(K) a b N=0$. As $A n n_{R}(N)$ is a S-2-absorbing ideal of R, there is a fixed $s \in S$ and so $s A n n_{R}(K) a N=0$ or $s A n n_{R}(K) b N=$ 0 or $s a b N=0$. If $s a b N=0$, we are done. If $s A n n_{R}(K) a N=0$ or $s A n n_{R}(K) b N=0$, then $A n n_{R}(K) \subseteq A n n_{R}(s a N)$ or $A n n_{R}(K) \subseteq$ $A n n_{R}(s b N)$. Hence, $s a N \subseteq K$ or $s b N \subseteq K$ since M is a comultiplication R-module.

The following example shows that the Lemma 3.16 is not satisfied in general.

Example 3.17. By [3, 3.9], the \mathbb{Z}-module \mathbb{Z} is not a comultiplication \mathbb{Z}-module. Take the multiplicatively closed subset $S=\mathbb{Z} \backslash\{0\}$. The submodule $p \mathbb{Z}$ of \mathbb{Z}, where p is a prime number, is not S-2-absorbing second submodule. But $A n n_{\mathbb{Z}}(p \mathbb{Z})=0$ is an S-2-absorbing ideal of \mathbb{Z}.

Proposition 3.18. Let S be a multiplicatively closed subset of R and M be an R-module. Then we have the following.
(a) If M is a multiplication S-2-absorbing second R-module, then every submodule N of M with $\left(N:_{R} M\right) \cap S=\emptyset$ is a S-2-absorbing submodule of M.
(b) If M is a comultiplication R-module such that the zero submodule of M is a S-2-absorbing submodule, then every submodule N of M with $A n n_{R}(N) \cap S=\emptyset$ is a S-2-absorbing second submodule of M.
Proof. (a) Let M is a multiplication S-2-absorbing second R-module and N be a submodule of M with $\left(N:_{R} M\right) \cap S=\emptyset$. Then by Proposition 3.14 (b), $\left(N:_{R} M\right)$ is an S-2-absorbing ideal of R. Now the result follows from [25, Proposition 3].
(b) Let M is a comultiplication R-module with the zero submodule of M is a S-2-absorbing submodule and N be a submodule of M with $A n n_{R}(N) \cap S=\emptyset$. We show that $A n n_{R}(N)$ is an S-2-absorbing ideal of R. To see this let $a, b, c \in R$ and $a b c=(a c) b \in A n n_{R}(N)$. Then there exists a fixed $s \in S$ such that $a c s N=0$ or $\operatorname{cbs} N \subseteq b s N=0$ or $s a b c \in A n n_{R}(M) \subseteq A n n_{R}(N)$. Thus $A n n_{R}(N)$ is an S-2-absorbing ideal of R. Now the result follows from Lemma 3.16.

An R-module M satisfies the double annihilator conditions (DAC for short) if for each ideal I of R we have $I=\operatorname{Ann}_{R}\left(\left(0:_{M} I\right)\right)$ [15]. An R-module M is said to be a strong comultiplication module if M is a comultiplication R-module and satisfies the DAC conditions [7].

Theorem 3.19. Let M be a strong comultiplication R-module and N be a submodule of M such that $A n n_{R}(N) \cap S=\emptyset$, where S is a multiplicatively closed subset of R. Then the following are equivalent:
(a) N is an S-2-absorbing second submodule of M;
(b) $A n n_{R}(N)$ is a S-2-absorbing ideal of R;
(c) $N=\left(0:_{M} I\right)$ for some S-2-absorbing ideal I of R with $A n n_{R}(N) \subseteq$ I.

Proof. $(a) \Rightarrow(b)$ This follows from Proposition 3.14 (a).
$(b) \Rightarrow(c)$ As M is a comultiplication R-module, $N=\left(0:_{M} A n n_{R}(N)\right)$.
Now the result is clear.
$(c) \Rightarrow(a)$ As M satisfies the DAC conditions, $A n n_{R}\left(\left(0:_{M} I\right)\right)=I$. Now the result follows from Lemma 3.16.

Lemma 3.20. Let S be a multiplicatively closed subset of R and M be an R-module. If N is an S-second submodule of M. Then there exists a fixed $s \in S$ such that $a b N \subseteq K$, where $a, b \in R$ and K is a submodule of M implies that either $s a \in A n n_{R}(N)$ or $s b \in A n n_{R}(N)$ or $s N \subseteq K$

Proof. Let N be an S-second submodule of M and $a b N \subseteq K$, where $a, b \in R$ and K is a submodule of M. Then $a N \subseteq\left(K:_{M} b\right)$. Since N is an S-second submodule of M, there exists a fixed $s \in S$ such that $s a \in A n n_{R}(N)$ or $s b N \subseteq K$. Now, we will show that $s b N \subseteq K$ implies that $s b \in A n n_{R}(N)$ or $s N \subseteq K$. Assume that $b N \subseteq\left(K:_{M} s\right)$. Since N
is an S-second submodule, we get either $s b \in A n n_{R}(N)$ or $s^{2} N \subseteq K$. If $s b \in A n n_{R}(N)$, then we are done. So assume that $s^{2} N \subseteq K$. By [17, Lemma 2.13 (a)], we know that $s N \subseteq s^{2} N$. Thus we have $s N \subseteq K$.

Theorem 3.21. Let S be a multiplicatively closed subset of R and M be an R-module. Then the sum of two S-second submodules is an S-2-absorbing second submodule of M.

Proof. Let N_{1}, N_{2} be two S-second submodules of M and $N=N_{1}+N_{2}$. Let $a b N \subseteq K$ for some $a, b \in R$ and submodule K of M. Since N_{1} is an S-second submodule submodule of M, there exists a fixed $s_{1} \in S$ such that $s_{1} a \in A n n_{R}\left(N_{1}\right)$ or $s_{1} b \in A n n_{R}\left(N_{1}\right)$ or $s_{1} N_{1} \subseteq K$ by Lemma 3.20. Also, as N_{2} is an S-second submodule of M, there exists a fixed $s_{2} \in S$ such that $s_{2} a \in A n n_{R}\left(N_{2}\right)$ or $s_{2} b \in A n n_{R}\left(N_{2}\right)$ or $s_{2} N_{2} \subseteq K$ by Lemma 3.20. Without loss of generality, we may assume that $s_{1} a \in \operatorname{Ann} n_{R}\left(N_{1}\right)$ and $s_{2} N_{2} \subseteq K$. Now, put $s=s_{1} s_{2} \in S$. This implies that $s a N \subseteq K$ and hence N is an S-2-absorbing second submodule of M.

The following example shows that sum of two S-2-absorbing second submodules is not necessarily S-2-absorbing second submodule.

Example 3.22. Consider $M=\mathbb{Z}_{p^{n}} \oplus \mathbb{Z}_{q^{n}}$ as \mathbb{Z}-module, where $n \in \mathbb{N}$ and p, q are distinct prime numbers. Set $S=\{x \in \mathbb{Z}: \operatorname{gcd}(x, p q)=$ $1\}$. Then S is a multiplicatively closed subset of \mathbb{Z}. One can see that $\mathbb{Z}_{p^{n}} \oplus 0$ and $0 \oplus \mathbb{Z}_{q^{n}}$ both are S-2-absorbing second submodules. However $p^{n} M \subseteq 0 \oplus \mathbb{Z}_{q^{n}}, p^{n-1} x M \nsubseteq 0 \oplus \mathbb{Z}_{q^{n}}, p x M \nsubseteq 0 \oplus \mathbb{Z}_{q^{n}}$, and $x p^{n} M \neq 0$ for each $x \in S$ implies that M is not an S-2-absorbing second \mathbb{Z}-module.

Let M be an R-module. The idealization $R(+) M=\{(a, m): a \in$ $R, m \in M\}$ of M is a commutative ring whose addition is componentwise and whose multiplication is defined as $(a, m)(b, \dot{m})=(a b, a \dot{m}+b m)$ for each $a, b \in R, m, \dot{m} \in M$ [21]. If S is a multiplicatively closed subset of R and N is a submodule of M, then $S(+) N=\{(s, n): s \in S, n \in N\}$ is a multiplicatively closed subset of $R(+) M$ [2].

Proposition 3.23. Let M be an R-module and let I be an ideal of R such that $I \subseteq A n n_{R}(M)$. Then the following are equivalent:
(a) I is a strongly 2 -absorbing second ideal of R;
(b) $I(+) 0$ is a strongly 2 -absorbing second ideal of $R(+) M$.

Proof. This is straightforward.
Theorem 3.24. Let S be a multiplicatively closed subset of R, M be an R-module, and I be an ideal of R such that $I \subseteq A n n_{R}(M)$ and $I \cap S=\emptyset$. Then the following are equivalent:
(a) I is an S-2-absorbing second ideal of R;
(b) $I(+) 0$ is an $S(+) 0-2$-absorbing second ideal of $R(+) M$;
(c) $I(+) 0$ is an $S(+) M$-2-absorbing second ideal of $R(+) M$.

Proof. $(a) \Rightarrow(b)$ Let $(a, m),(b, \dot{m}) \in R(+) M$. As I is an S-2-absorbing second ideal of R, there exists a fixed $s \in S$ such that $a b s^{2} I=a s^{2} I$ or $a b s^{2} I=b s^{2} I$ or $a b s^{3} I=0$. If $a b s^{3} I=0$, then $(a, m)\left(b, m^{\prime}\right)\left(s^{3}, 0\right)(I(+) 0)=$ 0 . If $a b s^{2} I=a s^{2} I$, then we claim that $(a, m)(b, \dot{m})\left(s^{2}, 0\right)(I(+) 0)=$ $(a, m)\left(s^{2}, 0\right)(I(+) 0)$. To see this let $\left(s^{2} x, 0\right)(a, m)=\left(s^{2}, 0\right)(x, 0)(a, m) \in$ $\left(s^{2}, 0\right)(a, m)(I(+) 0)$. As $a b s^{2} I=a s^{2} I$, we have $s^{2} a x=a b s^{2} y$ for some $y \in I$. Thus as $y \in I \subseteq A n n_{R}(M)$,

$$
\left(s^{2}, 0\right)(x, 0)(a, m)=\left(s^{2} x a, 0\right)=\left(a b s^{2} y, 0\right)=\left(s^{2}, 0\right)(y, 0)(a, m)(b, \dot{m})
$$

Hence, $\left(s^{2}, 0\right)(x, 0)(a, 0) \in(a, m)\left(b, m^{\prime}\right)\left(s^{2}, 0\right)(I(+) 0)$ and so we have $(a, m)\left(s^{2}, 0\right)(I(+) 0) \subseteq(a, m)(b, m)\left(s^{2}, 0\right)(I(+) 0)$. Since the inverse inclusion is clear we reach the claim.
$(b) \Rightarrow(c)$ Since $S(+) 0 \subseteq S(+) M$, the result follows from Proposition 3.10 (b).
$(c) \Rightarrow(a)$ Let $a, b \in R$. As $I(+) 0$ is an $S(+) M$-2-absorbing second ideal of $R(+) M$, there exists a fixed $(s, m) \in S(+) M$ such that

$$
(a, 0)(b, 0)(s, m)^{2}(I(+) 0)=(a, 0)(s, m)^{2}(I(+) 0)
$$

or

$$
(a, 0)(b, 0)(s, m)^{2}(I(+) 0)=(b, 0)(s, m)^{2}(I(+) 0)
$$

or

$$
(a, 0)(b, 0)(s, m)^{3}(I(+) 0)=0
$$

If $(a b, 0)(s, m)^{3}(I(+) 0)=0$, then for each $a b s^{3} x \in a b s^{3} I$ we have

$$
\begin{gathered}
0=(a b, 0)(s, m)^{3}(x, 0)=(a b, 0)\left(s^{3}, 3 s m\right)(x, 0)=\left(a b s^{3}, 3 a b s m\right)(x, 0) \\
=\left(a b s^{3}, 0\right)(x, 0)=\left(a b s^{3} x, 0\right) .
\end{gathered}
$$

Thus $a b s^{3} I=0$. If $(a b, 0)(s, m)^{2}(I(+) 0)=(a, 0)(s, m)^{2}(I(+) 0)$, then we claim that $a b s^{2} I=a s^{2} I$. To see this, let $s^{2} x a \in s^{2} a I$. Then for some $y \in I$, as $x \in I \subseteq A n n_{R}(M)$ we have

$$
\begin{gathered}
\left(s^{2} a x, 0\right)=\left(s^{2} a x, 2 s x m\right)=(s, m)^{2}(a, 0)(x, 0)=(s, m)^{2}(a b y, 0) \\
=\left(s^{2} a b y, 2 s a b m y\right)=\left(s^{2} a b y, 0\right)
\end{gathered}
$$

Hence, $s^{2} a x \in a b s^{2} I$ and so $s^{2} a I \subseteq s^{2} a b I$ Thus $s^{2} a I=s^{2} a b I$. Similarly, if $(a b, 0)(s, m)^{2}(I(+) 0)=(b, 0)(s, m)^{2}(I(+) 0)$, then $s^{2} b I \subseteq s^{2} a b I$, and so $s^{2} b I=s^{2} a b I$.

Let R_{i} be a commutative ring with identity, M_{i} be an R_{i}-module for each $i=1,2, \ldots, n$, and $n \in \mathbb{N}$. Assume that $M=M_{1} \times M_{2} \times$ $\ldots \times M_{n}$ and $R=R_{1} \times R_{2} \times \ldots \times R_{n}$. Then M is clearly an R-module with componentwise addition and scalar multiplication. Also, if S_{i} is a multiplicatively closed subset of R_{i} for each $i=1,2, \ldots, n$, then $S=$ $S_{1} \times S_{2} \times \ldots \times S_{n}$ is a multiplicatively closed subset of R. Furthermore, each submodule N of M is of the form $N=N_{1} \times N_{2} \times \ldots \times N_{n}$, where N_{i} is a submodule of M_{i} for each $i=1,2, \ldots, n$.

Theorem 3.25. Let $R=R_{1} \times R_{2}$ and $S=S_{1} \times S_{2}$ be a multiplicatively closed subset of R, where R_{i} is a commutative ring with $1 \neq 0$ and S_{i} is a multiplicatively closed subset of R_{i} for each $i=1,2$. Let $M=M_{1} \times M_{2}$ be an R-module, where M_{1} is an R_{1}-module and M_{2} is an R_{2}-module. Suppose that $N=N_{1} \times N_{2}$ is a submodule of M. Then the following conditions are equivalent:
(a) N is an S-2-absorbing second submodule of M;
(b) Either $\operatorname{Ann}_{R_{1}}\left(N_{1}\right) \cap S_{1} \neq \emptyset$ and N_{2} is a S_{2}-2-absorbing second submodule of M_{2} or $A n n_{R_{2}}\left(N_{2}\right) \cap S_{2} \neq \emptyset$ and N_{1} is a $S_{1}-2$-absorbing second submodule of M_{1} or N_{1} is an S_{1}-second submodule of M_{1} and N_{2} is an S_{2}-second submodule of M_{2}.

Proof. $(a) \Rightarrow(b)$ Let $N=N_{1} \times N_{2}$ be a S-2-absorbing second submodule of M. Then $A n n_{R}(N)=A n n_{R_{1}}\left(N_{1}\right) \times A n n_{R_{2}}\left(N_{2}\right)$ is an $S-2-$ absorbing ideal of R by Proposition 3.14 (a). Thus, either $\operatorname{Ann}_{R}\left(N_{1}\right) \cap$ $S_{1}=\emptyset$ or $A n n_{R}\left(N_{2}\right) \cap S_{2}=\emptyset$. Assume that $\operatorname{Ann}_{R}\left(N_{1}\right) \cap S_{1} \neq \emptyset$. We show that N_{2} is an S_{2}-2-absorbing second submodule of M_{2}. To see this, let $t_{2} r_{2} N_{2} \subseteq K_{2}$ for some $t_{2}, r_{2} \in R_{2}$ and a submodule K_{2} of M_{2}. Then $\left(1, t_{2}\right)\left(1, r_{2}\right)\left(N_{1} \times N_{2}\right) \subseteq M_{1} \times K_{2}$. As N is an S-2-absorbing second submodule of M, there exists a fixed $\left(s_{1}, s_{2}\right) \in S$ such that $\left(s_{1}, s_{2}\right)\left(1, r_{2}\right)\left(N_{1} \times N_{2}\right) \subseteq M_{1} \times K_{2}$ or $\left(s_{1}, s_{2}\right)\left(1, t_{2}\right)\left(N_{1} \times N_{2}\right) \subseteq M_{1} \times K_{2}$ or $\left(s_{1}, s_{2}\right)\left(1, t_{2}\right)\left(1, r_{2}\right)\left(N_{1} \times N_{2}\right)=0$. It follows that either $s_{2} r_{2} N_{2} \subseteq K_{2}$ or $s_{2} t_{2} N_{2} \subseteq K_{2}$ or $s_{2} t_{2} r_{2} N_{2}=0$ and so N_{2} is an S_{2}-2-absorbing second submodule of M_{2}. Similarly, if $A n n_{R_{2}}\left(N_{2}\right) \cap S_{2} \neq \emptyset$, then one can see that N_{1} is an S_{1}-2-absorbing second submodule of M_{1}. Now assume that $A n n_{R}\left(N_{1}\right) \cap S_{1}=\emptyset$ and $A n n_{R}\left(N_{2}\right) \cap S_{2}=\emptyset$. We will show that N_{1} is an S_{1}-second submodule of M_{1} and N_{2} is an S_{2}-second submodule of M_{2}. First, note that there exists a fixed $s=\left(s_{1}, s_{2}\right) \in S$ satisfying N to be an S-2-absorbing second submodule of M. Suppose that N_{1} is not an S_{1}-second submodule of M_{1}. Then there exists $a \in R_{1}$ and a submodule K_{1} of M_{1} such that $a N_{1} \subseteq K_{1}$ but $s_{1} a \notin A n n_{R}\left(N_{1}\right)$ and $s_{1} N_{1} \nsubseteq K_{1}$. On the other hand $A n n_{R}\left(N_{2}\right) \cap S_{2}=\emptyset$ and $s_{2} \notin A n n_{R}\left(N_{2}\right)$ so that $s_{2} N_{2} \neq 0$. Thus by Remark 3.6, there exists a completely irreducible submodule L_{2} of M_{2} such that $s_{2} N_{2} \nsubseteq L_{2}$. Also note that

$$
(a, 1)(1,0) N=(a, 1)(1,0)\left(N_{1} \times N_{2}\right)=a N_{1} \times 0 \subseteq K_{1} \times 0 \subseteq K_{1} \times L_{2} .
$$

As N is an S-2-absorbing second submodule of M, either $\left(s_{1}, s_{2}\right)(1,0) N \subseteq$ $K_{1} \times L_{2}$ or $\left(s_{1}, s_{2}\right)(a, 1) N \subseteq K_{1} \times L_{2}$ or $\left(s_{1}, s_{2}\right)(a, 1)(1,0) N=0$. Hence, we conclude that either $s_{1} N_{1} \subseteq K_{1}$ or $s_{2} N_{2} \subseteq L_{2}$ or $s_{1} a N_{1}=0$, which them are contradictions. Thus, N_{1} is an S_{1}-second submodule of M_{1}. Similar argument shows that N_{2} is an S_{2}-second submodule of M_{2}.
(b) $\Rightarrow(a)$ Assume that N_{1} is an S_{1}-2-absorbing second submodule of M_{1} and $A n n_{R_{2}}\left(N_{2}\right) \cap S_{2} \neq \emptyset$. we will show that N is an S-2-absorbing second submodule of M. Then there exists an $s_{2} \in A n n_{R_{2}}\left(N_{2}\right) \cap S_{2}$. Let $\left(r_{1}, r_{2}\right)\left(t_{1}, t_{2}\right)\left(N_{1} \times N_{2}\right) \subseteq K_{1} \times K_{2}$ for some $t_{i}, r_{i} \in R_{i}$ and submodule K_{i} of M_{i}, where $i=1,2$. Then $r_{1} t_{1} N_{1} \subseteq K_{1}$. As N_{1} is an $S_{1}-2$ absorbing second submodule of M_{1}, there exists a fixed $s_{1} \in S_{1}$ such that $s_{1} r_{1} N_{1} \subseteq K_{1}$ or $s_{1} t_{1} N_{1} \subseteq K_{1}$ or $s_{1} r_{1} t_{1} N_{1}=0$. Now we set $s=\left(s_{1}, s_{2}\right)$.

Then $s\left(r_{1}, r_{2}\right)\left(N_{1} \times N_{2}\right) \subseteq K_{1} \times K_{2}$ or $s\left(t_{1}, t_{2}\right)\left(N_{1} \times N_{2}\right) \subseteq K_{1} \times K_{2}$ or $s\left(r_{1}, r_{2}\right)\left(t_{1}, t_{2}\right)\left(N_{1} \times N_{2}\right)=0$. Therefore, N is an S-2-absorbing second submodule of M. Similarly one can show that if N_{2} is an $S_{2}-2-$ absorbing second submodule of M_{2} and $A n n_{R_{1}}\left(N_{1}\right) \cap S_{1} \neq \emptyset$, then N is an S-2-absorbing second submodule of M. Now assume that N_{1} is an S_{1}-second submodule of M_{1} and N_{2} is an S_{2}-second submodule of M_{2}. Let $a, b \in R_{1}, x, y \in R_{2}, K_{1}$ is a submodule of M_{1} and K_{2} is a submodule of M_{2} such that

$$
(a, x)(b, y) N=(a, x)(b, y)\left(N_{1} \times N_{2} \subseteq K_{1} \times K_{2} .\right.
$$

Then we have $a b N_{1} \subseteq K_{1}$ and $x y N_{2} \subseteq K_{2}$. Since N_{1} is an S_{1}-second submodule of M_{1}, there exists a fixed $s_{1} \in S_{1}$ such that either $s_{1} a \in$ $A n n_{R_{1}}\left(N_{1}\right)$ or $s_{1} b \in A n n_{R_{1}}\left(N_{1}\right)$ or $s_{1} N_{1} \subseteq K_{1}$ by Lemma 3.20. Similarly, there exists a fixed $s_{2} \in S_{2}$ such that either $s_{2} x \in A n n_{R_{2}}\left(N_{2}\right)$ or $s_{2} y \in A n n_{R_{2}}\left(N_{2}\right)$ or $s_{2} N_{2} \subseteq K_{2}$ by Lemma 3.20. Also without loss of generality, we may assume that $s_{1} a \in A n n_{R_{1}}\left(N_{1}\right)$ and $s_{2} N_{2} \subseteq K_{2}$ or $s_{1} a \in \operatorname{Ann}_{R_{1}}\left(N_{1}\right)$ and $s_{2} x \in \operatorname{Ann}_{R_{2}}\left(N_{2}\right)$ or $s_{1} N_{1} \subseteq K_{1}$ and $s_{2} N_{2} \subseteq K_{2}$. If $s_{1} a \in A n n_{R_{1}}\left(N_{1}\right)$ and $s_{2} N_{2} \subseteq K_{2}$, then we have

$$
\left(s_{1}, s_{2}\right)(a, x)\left(N_{1} \times N_{2}\right)=s_{1} a N_{1} \times s_{2} x N_{2} \subseteq 0 \times K_{2} \subseteq K_{1} \times K_{2} .
$$

If $s_{1} a \in A n n_{R_{1}}\left(N_{1}\right)$ and $s_{2} x \in A n n_{R_{2}}\left(N_{2}\right)$, then $\left(s_{1}, s_{2}\right)(a, x)(b, y)\left(N_{1} \times\right.$ $\left.N_{2}\right)=0$. If $s_{1} N_{1} \subseteq K_{1}$ and $s_{2} N_{2} \subseteq K_{2}$, then

$$
\left(s_{1}, s_{2}\right)(a, x)(b, y)\left(N_{1} \times N_{2}\right) \subseteq\left(s_{1}, s_{2}\right) N \subseteq K_{1} \times K_{2}
$$

Hence, N is an S-2-absorbing second submodule of M.
The following example shows that if N_{1} is an $S_{1}-2$-absorbing second submodule of M_{1} and N_{2} is an S_{2}-2-absorbing second submodule of M_{2}, then $N_{1} \times N_{2}$ may not be an $S_{1} \times S_{2}$-2-absorbing second submodule of $M_{1} \times M_{2}$ in general.

Example 3.26. Consider the \mathbb{Z}-modules $M_{1}=\mathbb{Z}_{9}$ and $M_{2}=\mathbb{Z}_{4}$. Let $S_{1}=\mathbb{Z} \backslash 3 \mathbb{Z}$ and $S_{2}=\mathbb{Z} \backslash 2 \mathbb{Z}$. Then M_{1} and M_{2} are S_{1} and S_{2}-2-absorbing second modules (see Example 3.7). But $M=M_{1} \times M_{2}$ is not an $S=$ $S_{1} \times S_{2}$-2-absorbing second module since $(1,2)(3,1) M \subseteq \overline{3} \mathbb{Z}_{9} \times \overline{2} \mathbb{Z}_{4}$ but for each $s=\left(s_{1}, s_{2}\right) \in S, s(3,1) M \nsubseteq \overline{3} \mathbb{Z}_{9} \times \overline{2} \mathbb{Z}_{4}, s(1,2) M \nsubseteq \overline{3} \mathbb{Z}_{9} \times \overline{2} \mathbb{Z}_{4}$, and $s(1,2)(3,1) M \neq 0$.

Theorem 3.27. Let $M=M_{1} \times M_{2} \times \ldots \times M_{n}$ be an $R=R_{1} \times R_{2} \times \ldots \times R_{n}$ module and $S=S_{1} \times S_{2} \times \ldots \times S_{n}$ be a multiplicatively closed subset of R, where M_{i} is an R_{i}-module and S_{i} is a multiplicatively closed subset of R_{i} for each $i=1,2, \ldots, n$. Let $N=N_{1} \times N_{2} \times \ldots \times N_{n}$ be a submodule of M. Then the following are equivalent:
(a) N is an S-2-absorbing second submodule of M;
(b) N_{k} is an S_{k}-2-absorbing second submodule of M_{k} for some $k \in$ $\{1,2, \ldots, n\}$ and $A n n_{R_{t}}\left(N_{t}\right) \cap S_{t} \neq \emptyset$ for each $t \in\{1,2, \ldots, n\} \backslash\{k\}$ or $N_{k_{1}}$ is an $S_{k_{1}}$-second submodule of $M_{k_{1}}$ and $N_{k_{2}}$ is an $S_{k_{2}-}$ second submodule of $M_{k_{2}}$ for some $k_{1}, k_{2} \in\{1,2, \ldots, n\}\left(k_{1} \neq k_{2}\right)$ and $A n n_{R_{t}}\left(N_{t}\right) \cap S_{t} \neq \emptyset$ for each $t \in\{1,2, \ldots, n\} \backslash\left\{k_{1}, k_{2}\right\}$.

Proof. We apply induction on n. For $n=1$, the result is true. If $n=2$, then the result follows from Theorem 3.25. Now assume that parts (a) and (b) are equal when $k<n$. We shall prove $(b) \Leftrightarrow(a)$ when $k=n$. Put $R=\dot{R} \times R_{n}, M=M^{\prime} \times M_{n}$, and $S=\dot{S} \times S_{n}$, where $\dot{R}=R_{1} \times R_{2} \times \ldots \times R_{n-1}, \dot{M}=M_{1} \times M_{2} \times \ldots \times M_{n-1}$, and $\dot{S}=$ $S_{1} \times S_{2} \times \ldots \times S_{n-1}$. Also, $N=\tilde{N} \times N_{n}$, where $N^{\prime}=N_{1} \times N_{2} \times \ldots \times N_{n-1}$. Then by Theorem 3.25, N is an S-2-absorbing second submodule of M if and only if $A n n_{\dot{R}}(N) \cap S \neq \emptyset$ and N_{n} is an S_{n}-2-absorbing second submodule of M_{n} or N is an \dot{S}-2-absorbing second submodule of \dot{M} and $A n n_{R_{n}}\left(N_{n}\right) \cap S_{n} \neq \emptyset$ or \dot{N} is an \dot{S}-second submodule of \dot{M} and N_{n} is an S_{n}-second submodule of M_{n}. Now the rest follows from induction hypothesis and [17, Theorem 2.12].

For a submodule N of an R-module M the second radical (or second socle) of N is defined as the sum of all second submodules of M contained in N and it is denoted by $\sec (N)$ (or $\operatorname{soc}(N)$). In case N does not contain any second submodule, the second radical of N is defined to be (0) (see [12] and [4]).

Theorem 3.28. Let M be a finitely generated comultiplication R module. If N is a S-2-absorbing second submodule of M, then $\sec (N)$ is a S-2-absorbing second submodule of M.

Proof. Let N be a S-2-absorbing second submodule of M. By Proposition 3.14 (a), $A n n_{R}(N)$ is an S-2-absorbing ideal of R. Thus by

Lemma 2.6, $\sqrt{A n n_{R}(N)}$ is an S-2-absorbing ideal of R. By [6, 2.12], $A n n_{R}(\sec (N))=\sqrt{A n n_{R}(N)}$. Therefore, $A n n_{R}(\sec (N))$ is an $S-2-$ absorbing ideal of R. Now the result follows from Lemma 3.16.

Proposition 3.29. Let S be a multiplicatively closed subset of R and $f: M \rightarrow \bar{M}$ be a monomorphism of R-modules. Then we have the following.
(a) If N is an S-2-absorbing second submodule of M, then $f(N)$ is an S-2-absorbing second submodule of $M_{\text {K }}$.
(b) If \dot{N} is an S-2-absorbing second submodule of \dot{M} and $N^{\prime} \subseteq f(M)$, then $f^{-1}(N)$ is an S-2-absorbing second submodule of M.

Proof. (a) As $A n n_{R}(N) \cap S=\emptyset$ and f is a monomorphism, we have $A n n_{R}(f(N)) \cap S=\emptyset$. Let $a, b \in R$. Since N is an S-2-absorbing second submodule of M, there exists a fixed $s \in S$ such that $s^{2} a b N=s^{2} a N$ or $s^{2} a b N=s^{2} b N$ or $s^{3} a b N=0$. Thus $s^{2} a b f(N)=s^{2} a f(N)$ or $s^{2} a b f(N)=$ $s^{2} b f(N)$ or $s^{3} a b f(N)=0$, as needed.
(b) $A n n_{R}(N) \cap S=\emptyset$ implies that $A n n_{R}\left(f^{-1}(N)\right) \cap S=\emptyset$. Now let $a, b \in R$. As \dot{N} is an S-2-absorbing second submodule of \dot{M}, there exists a fixed $s \in S$ such that $s^{2} a b N^{\prime}=s^{2} a N^{\prime}$ or $s^{2} a b \hat{N}=s^{2} b N^{\prime}$ or $s^{3} a b N^{\prime}=0$. Therefore, $s^{2} a b f^{-1}\left(N^{\prime}\right)=s^{2} a f^{-1}\left(N^{\prime}\right)$ or $s^{2} a b f^{-1}\left(N^{\prime}\right)=s^{2} b f^{-1}\left(N^{\prime}\right)$ or $s^{3} a b f^{-1}(N)=0$, as requested.

Theorem 3.30. Let S be a multiplicatively closed subset of R and let M be an R-module. If E is an injective R-module and N is an $S-2$ absorbing submodule of M such that $A n n_{R}\left(\operatorname{Hom}_{R}(M / N, E)\right) \cap S \neq \emptyset$, then $\operatorname{Hom}_{R}(M / N, E)$ is a S-2-absorbing second R-module.

Proof. Let $a, b \in R$. Since N is an S-2-absorbing submodule of M, there is a fixed $s \in S$ such that either $\left(N:_{M} a b s^{2}\right)=\left(N:_{M} a s^{2}\right)$ or $\left(N:_{M}\right.$ $\left.a b s^{2}\right)=\left(N:_{M} b s^{2}\right)$ or $\left(N:_{M} a b s^{3}\right)=M$ by Theorem 2.1. Since E is an injective R-module, by replacing M with M / N in [5, Theorem 3.13 (a)], we have $\operatorname{Hom}_{R}\left(M /\left(N:_{M} a\right), E\right)=a \operatorname{Hom}_{R}(M / N, E)$. Therefore,

$$
\begin{gathered}
a b s^{2} \operatorname{Hom}_{R}(M / N, E)=\operatorname{Hom}_{R}\left(M /\left(N:_{M} a b s^{2}\right), E\right)= \\
\operatorname{Hom}_{R}\left(M /\left(N:_{M} a s^{2}\right), E\right)=a s^{2} \operatorname{Hom}_{R}(M / N, E)
\end{gathered}
$$

or

$$
\begin{gathered}
a b s^{2} \operatorname{Hom}_{R}(M / N, E)=\operatorname{Hom}_{R}\left(M /\left(N:_{M} a b s^{2}\right), E\right)= \\
\operatorname{Hom}_{R}\left(M /\left(N:_{M} b s^{2}\right), E\right)=b s^{2} \operatorname{Hom}_{R}(M / N, E)
\end{gathered}
$$

or

$$
\begin{gathered}
a b s^{3} \operatorname{Hom}_{R}(M / N, E)=\operatorname{Hom}_{R}\left(M /\left(N:_{M} a b s^{3}\right), E\right)= \\
\operatorname{Hom}_{R}(M / M, E)=0
\end{gathered}
$$

as needed
Theorem 3.31. Let M be a S-2-absorbing second R-module and F be a right exact linear covariant functor over the category of R-modules. Then $F(M)$ is a S-2-absorbing second R-module if $A n n_{R}(F(M)) \cap S \neq \emptyset$.

Proof. This follows from [5, Lemma 3.14] and Theorem $3.5(a) \Leftrightarrow(b)$.

Acknowledgements

This research was supported with a grant from Farhangian University. The author would like to thank the referees for their valuable comments and suggestions.

References

[1] D.D. Anderson, T. Arabaci, Ü. Tekir and S. Koç, On S multiplication modules, Comm. Algebra, 48 (8) (2020), 1-10.
[2] D.D. Anderson and M. Winders, Idealization of a module, Journal of Commutative Algebra 1 (1) (2009), 3-56.
[3] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11 (4) (2007), 1189-1201.
[4] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq., 19 (Spec 1) (2012), 1109-1116.
[5] H. Ansari-Toroghy and F. Farshadifar, The dual notion of some generalizations of prime submodules, Comm. Algebra, 39 (2011), 2396-2416.
[6] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime radicals of submodules, Asian Eur. J. Math., 6(2) (2013), 1350024 (11 pages).
[7] H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci. 8 (1) (2009), 105-113.
[8] H. Ansari-Toroghy and F. Farshadifar, Some generalizations of second submodules, Palestine Journal of Mathematics, 8 (2) (2019), 1-10.
[9] A. Azizi, Weakly prime submodules and prime submodules, Glasgow Math. J. 48 (2) (2006), 343-346.
[10] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
[11] A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174-178.
[12] S. Ceken, M. Alkan, and P.F. Smith, The dual notion of the prime radical of a module, J. Algebra, 392, 265-275 (2013).
[13] A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math. 9 (3) (2011), 577-584.
[14] J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156181.
[15] C. Faith, Rings whose modules have maximal submodules, Publ. Mat. 39 (1995), 201-214.
[16] F. Farshadifar, S-secondary submodules of a module, Comm. Algebra, (2020), DOI: 10.1080/00927872.2020.1836189.
[17] F. Farshadifar, S-second submodules of a module, Algebra and Discrete Mathematics, to appear.
[18] L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249 (2006), 121-145.
[19] R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, No. 90. Kingston, Canada: Queen's University, 1992.
[20] R. McCasland and M. Moore, On radicals of submodules of finitely generated modules, Canad. Math Bull, 29 (1)(1986), 37-39.
[21] M. Nagata, Local Rings, New York, NY, USA: Interscience, 1962.
[22] Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Collq., 19 (2012), 913-920.
[23] E.S. Sevim, Ü. Tekir and S. Koc, S-Artinian rings and finitely S cogenerated rings, Journal of Algebra and Its Applications, 19 (3) (2020), 2050051.
[24] E.S. Sevim, T. Arabaci, Ü. Tekir, and S. Koc, On S-prime submodules, Turkish Journal of Mathematics, 43 (2) (2019), 1036-1046.
[25] G. Ulucak, Ü. Tekir, and S. Koc, On S-2-absorbing submodules and vn-regular modules, An. St. Univ. Ovidius Constanta, 28 (2) (2020), 239-257.
[26] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Singapore: Springer, 2016.
[27] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37 (2001), 273-278.
[28] E. Yildiz, B.A. Ersoy, Ü. Tekir and S. Koç, On S-Zariski topology, Comm. Algebra, (2020), 1-13.

Faranak Farshadifar
Assistant Professor of Mathematics
Department of Mathematics
Farhangian University
Tehran, Iran.
E-mail: f.farshadifar@cfu.ac.ir

[^0]: Received: May 2020; Accepted: January 2021

