Journal of Mathematical Extension Vol. 16, No. 8, (2022) (3)1-24 URL: https://doi.org/10.30495/JME.2022.1690 ISSN: 1735-8299 Original Research Paper

S-2-Absorbing Second Submodules

F. Farshadifar

Farhangian University

Abstract. Let R be a commutative ring with identity, S be a multiplicatively closed subset of R, and let M be an R-module. In this paper, we introduce and investigate some properties of the notion of S-2-absorbing second submodules of M as a generalization of S-second submodules and strongly 2-absorbing second submodules of M. Also, we obtain some results concerning S-2-absorbing submodules of M.

AMS Subject Classification: 13C13, 13C05

Keywords and Phrases: Second submodule, multiplicatively closed subset, *S*-second submodule, *S*-prime submodule, *S*-2-absorbing submodule, *S*-2-absorbing second submodule.

1 Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [14]. A non-zero submodule N of M is said to be second if for each $a \in R$, the homomorphism $N \xrightarrow{a} N$ is either surjective or zero [27]. A proper ideal I of R is called a 2-absorbing ideal of R if whenever

Received: May 2020; Accepted: January 2021

 $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$ [10]. A proper submodule N of M is called a 2-absorbing submodule of M if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$ [13, 22]. A non-zero submodule N of M is said to be a strongly 2-absorbing second submodule of M if whenever $a, b \in R$, K is a submodule of M, and $abN \subseteq K$, then $aN \subseteq K$ or $bN \subseteq K$ or $ab \in Ann_R(N)$ [8].

A non-empty subset S of R is called a multiplicatively closed subset of R if (i) $0 \notin S$, (ii) $1 \in S$, and (iii) $ss \in S$ for all $s, s \in S$ [26]. Let S be a multiplicatively closed subset of R. A submodule P of an R-module M with $(P :_R M) \cap S = \emptyset$ is said to be an S-prime submodule of M if there exists a fixed $s \in S$, and whenever $am \in P$, then $sa \in (P :_R M)$ or $sm \in P$ for each $a \in R, m \in M$ [24]. Particularly, an ideal I of R is said to be an S-prime ideal if I is an S-prime submodule of the R-module R. A submodule N of an R-module M with $Ann_R(N) \cap S = \emptyset$ is said to be an S-second submodule of M if there exists a fixed $s \in S$, and whenever $rN \subseteq K$, where $r \in R$ and K is a submodule of M, then rsN = 0 or $sN \subseteq K$ [17].

Let M be an R-module and S be a multiplicatively closed subset of R. In [25], the authors introduced the notion of S-2-absorbing submodules of M which is a generalization of S-prime submodules and 2-absorbing submodules and investigated some properties of this class of submodules. A submodule P of M is said to be an S-2-absorbing if $(P :_R M) \cap S = \emptyset$ and there exists a fixed $s \in S$ such that $abm \in P$ for some $a, b \in R$ and $m \in M$ implies that $sab \in (P :_R M)$ or $sam \in P$ or $sbm \in P$. In particular, an ideal I of R is said to be an S-2-absorbing ideal if Iis an S-2-absorbing submodule of the R-module R [25]. Also, for the some recent works on S-version of some algebraic structures, we refer the reader to [1, 16, 23, 28].

The main purpose of this paper is to introduce the notion of S-2absorbing second submodules of an R-module M as a generalization of S-second submodules and strongly 2-absorbing second submodules of M. Also, this can be regarded as a dual notion of the S-2-absorbing submodules of M. We provide some information about this class of submodules. Moreover, we investigate some properties of S-2-absorbing submodules of M.

2 S-2-Absorbing Submodules

The following theorem gives a useful characterization of S-2-absorbing submodules.

Theorem 2.1. Let *S* be a multiplicatively closed subset of *R* and *N* be a submodule of an *R*-module *M* with $(N :_R M) \cap S = \emptyset$. Then *N* is *S*-2absorbing if and only if there is a fixed $s \in S$ such that for every $a, b \in R$, we have either $(N :_M s^2 ab) = (N :_M s^2 a)$ or $(N :_M s^2 ab) = (N :_M s^2 b)$ or $(N :_M s^3 ab) = M$.

Proof. Let N be an S-2-absorbing submodule of M and $m \in (N :_M s^2 ab)$. Then $(sa)(sb)m \in N$. Assume that $(N :_M s^3 ab) \neq M$, that is, $s^3 ab \notin (N :_R M)$. So by assumption, either $s^2 am \in N$ or $s^2 bm \in N$. This implies that $(N :_M s^2 ab) \subseteq (N :_M s^2 a) \cup (N :_M s^2 b)$. Clearly, $(N :_M s^2 a) \cup (N :_M s^2 b) \subseteq (N :_M s^2 ab)$. So, $(N :_M s^2 a) \cup (N :_M s^2 b) = (N :_M s^2 ab)$. As N is a submodule of M, it cannot be written as union of two distinct submodules. Thus $(N :_M s^2 ab) = (N :_M s^2 a)$ or $(N :_M s^2 ab) = (N :_M s^2 b)$. Conversely, let $a, b \in R$ and $m \in M$ such that $abm \in N$. Then $m \in (N :_R s^2 ab)$. By given hypothesis, we have $(N :_M s^2 ab) = (N :_M s^2 a)$ or $(N :_M s^2 ab) = (N :_M s^2 a)$ or $(N :_M s^2 ab) = (N :_M s^2 a)$ or $(N :_M s^2 ab) = (N :_M s^2 a)$. Hence, $s^3 am \in N$ or $s^3 bm \in N$ or $s^3 ab \in (N :_R M)$. Now by setting $s_1 = s^3$, we get the result. □

Lemma 2.2. [9, Lemma 3.2] Let N be a submodule of an R-module M and $r \in R$. Then for every flat R-module F, we have $F \otimes (N :_M r) = (F \otimes N :_{F \otimes M} r)$.

Theorem 2.3. Let *S* be a multiplicatively closed subset of *R*, *N* be an *S*-2-absorbing submodule of an *R*-module *M*, and *F* be a flat *R*-module. If $(F \otimes N :_R F \otimes M) \cap S = \emptyset$, then $F \otimes N$ is an *S*-2-absorbing submodule of $F \otimes M$.

Proof. Since N is an S-2-absorbing submodule of M, by Theorem 2.1, we have either $(N :_M s^2 ab) = (N :_M s^2 a)$ or $(N :_M s^2 ab) = (N :_M s^2 b)$ or $(N :_M s^3 ab) = M$ for $a, b \in R$. Assume that $(N :_M s^2 ab) = (N :_M s^2 a)$. Then by Lemma 2.2, we have

$$(F \otimes N :_{F \otimes M} s^2 ab) = F \otimes (N :_M s^2 ab) = F \otimes (N :_M s^2 a) = (F \otimes N :_{F \otimes M} s^2 a)$$

If $(N:_M s^3 ab) = M$, then by Lemma 2.2, we have

$$(F \otimes N :_{F \otimes M} s^{3}ab) = F \otimes (N :_{M} s^{3}ab) = F \otimes M.$$

Hence by Theorem 2.1, $F \otimes N$ is S-2-absorbing submodule of $F \otimes M$.

Theorem 2.4. Let S be a multiplicatively closed subset of R and F be a faithfully flat R module. Then N is an S-2-absorbing submodule of M if and only if $F \otimes N$ is an S-2-absorbing submodule of $F \otimes M$.

Proof. Let N be an S-2-absorbing submodule of M. Suppose $(F \otimes N :_R F \otimes M) \cap S \neq \emptyset$. Then there is an $t \in (F \otimes N :_R F \otimes M) \cap S$. Thus $F \otimes tM \subseteq F \otimes N$. Hence, $0 \to F \otimes tM \to F \otimes N$ is an exact sequence. Since F is a faithfully flat, $0 \to tM \to N$ is an exact which implies that $tM \subseteq N$. Thus $(N :_R M) \cap S \neq \emptyset$, this is a contradiction. So $(F \otimes N :_R F \otimes M) \cap S = \emptyset$. Now by Theorem 2.3, we have $F \otimes N$ is an S-2-absorbing submodule of $F \otimes M$. Conversely, suppose $F \otimes N$ is an S-2-absorbing submodule of $F \otimes M$. Then $(F \otimes N :_R F \otimes M) \cap S = \emptyset$ implies that $(N :_R M) \cap S = \emptyset$. Let $a, b \in R$. Then by Theorem 2.1, we can assume that $(F \otimes N :_{F \otimes M} s^2 ab) = (F \otimes N :_{F \otimes M} s^2 a)$. By Lemma 2.2, we have

$$F \otimes (N :_M s^2 ab) = (F \otimes N :_{F \otimes M} s^2 ab) = (F \otimes N :_{F \otimes M} s^2 a) = F \otimes (N :_M s^2 a)$$

So, $0 \to F \otimes (N :_M s^2 ab) \to F \otimes (N :_M s^2 a) \to 0$ is an exact sequence. As F is a faithfully flat, $0 \to (N :_M s^2 ab) \to (N :_M s^2 a) \to 0$ is an exact sequence. Thus $(N :_M s^2 ab) = (N :_M s^2 a)$ and so by Theorem 2.1, N is S-2-absorbing. If $(F \otimes N :_{F \otimes M} s^3 ab) = F \otimes M$, then $F \otimes (N :_M s^3 ab) = (F \otimes N :_{F \otimes M} s^3 ab) = F \otimes M$. So,

$$0 \to F \otimes (N :_M abs^3) \to F \otimes M \to 0$$

is an exact sequence. As F is a faithfully flat, $0 \to (N :_M s^3 ab) \to M \to 0$ is an exact sequence. Thus $(N :_M s^3 an) = M$. Hence N is an S-2-absorbing submodule of M. \Box

Proposition 2.5. Let S be a multiplicatively closed subset of R and N be an S-2-absorbing submodule of an R-module M. Then the following statements hold for some $s \in S$.

- (a) $(N:_M th) \subseteq (N:_M ts)$ or $(N:_M th) \subseteq (N:_M sh)$ for all $t, h \in S$.
- (b) $((N :_R M) :_R th) \subseteq ((N :_R M) :_R ts)$ or $((N :_R M) :_R th) \subseteq ((N :_R M) :_R sh)$ for all $t, h \in S$.

Proof. (a) Let N be an S-2-absorbing submodule of M. Then there is a fixed $s \in S$. Take an element $m \in (N :_M th)$, where $t, h \in S$. Then $stm \in N$ or $shm \in N$ or $sth \in (N :_R M)$. As $(N :_R M) \cap S = \emptyset$, we have $sth \notin (N :_R M)$. If for each $m \in (N :_M th)$, we have $stm \in N$ (resp. $shm \in N$), then we are done. So suppose that there are $m_1 \in (N :_M th)$ such that $stm_1 \notin N$ and $m_2 \in (N :_M th)$ such that $shm_2 \notin N$. Then we conclude that $shm_1 \in N$ and $stm_2 \in N$. Now $ht(m_1 + m_2) \in N$ implies that $hs(m_1 + m_2) \in N$ or $st(m_1 + m_2) \in N$. Thus $stm_1 \in N$ or $shm_2 \in N$, which is a desired contradiction.

(b) This follows from part (a). \Box

Lemma 2.6. Let S be a multiplicatively closed subset of R and I be an S-2-absorbing ideal of R. Then \sqrt{I} is an S-2-absorbing ideal of R and there is a fixed $s \in S$ such that $sa^2 \in I$ for every $a \in \sqrt{I}$.

Proof. Clearly, as I is an S-2-absorbing ideal of R, there is a fixed $s \in S$ such that $sa^2 \in I$ for every $a \in \sqrt{I}$. Now let $a, b, c \in R$ such that $abc \in \sqrt{I}$. Then $sa^2b^2c^2 = s(abc)^2 \in I$. Since I is a S-2-absorbing ideal of R, we may assume that $s^2a^2b^2 \in I$. This implies that $sab \in \sqrt{I}$, as needed. \Box

Recall that an *R*-module *M* is said to be a *multiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM [11].

Let N be a proper submodule of an R-module M. Then the Mradical of N, denoted by rad(N), is defined to be the intersection of all prime submodules of M containing N [20].

Theorem 2.7. Let S be a multiplicatively closed subset of R and M a finitely generated multiplication R-module. If N is an S-2-absorbing submodule of M, then rad(N) is an S-2-absorbing submodule of M.

Proof. Since N is an S-2-absorbing submodule of M, we have $(N :_R M)$ is a S-2-absorbing ideal of R by [25, Proposition 3]. Thus by Lemma 2.6, $\sqrt{(N :_R M)}$ is an S-2-absorbing ideal of R. By [20, Theorem 4],

 $(rad(N) :_R M)) = \sqrt{(N :_R M)}$. Therefore, $(rad(N) :_R M)$ is an S-2-absorbing ideal of R. Now the result follows from [25, Proposition 3].

3 S-2-Absorbing Second Submodules

Definition 3.1. Let S be a multiplicatively closed subset of R and N be a submodule of an R-module M such that $Ann_R(N) \cap S = \emptyset$. We say that N is a S-2-absorbing second submodule of M if there exists a fixed $s \in S$ and whenever $abN \subseteq K$, where $a, b \in R$ and K is a submodule of M, implies either that $saN \subseteq K$ or $sbN \subseteq K$ or sabN = 0. In particular, an ideal I of R is said to be an S-2-absorbing second ideal if I is an S-2-absorbing second submodule of the R-module R. By a S-2-absorbing second module, we mean a module which is a S-2-absorbing second submodule of the second submodule of the R-module R. By a S-2-absorbing second module, we mean a module which is a S-2-absorbing second submodule of the R-module R. By a S-2-absorbing second submodule of itself.

Lemma 3.2. Let S be a multiplicatively closed subset of R, I an ideal of R, and let N be an S-2-absorbing second submodule of M. Then there exists a fixed $s \in S$ and whenever $a \in R$, K is a submodule of M, and $IaN \subseteq K$, then $asN \subseteq K$ or $IsN \subseteq K$ or $Ias \subseteq Ann_R(N)$.

Proof. Let $asN \not\subseteq K$ and $Ias \not\subseteq Ann_R(N)$. Then there exists $b \in I$ such that $absN \neq 0$. Now as N is a S-2-absorbing second submodule of M, $baN \subseteq K$ implies that $bsN \subseteq K$. We show that $IsN \subseteq K$. To see this, let c be an arbitrary element of I. Then $(b + c)aN \subseteq K$. Hence, either $(b + c)sN \subseteq K$ or $(b + c)as \in Ann_R(N)$. If $(b + c)sN \subseteq K$, then since $bsN \subseteq K$ we have $csN \subseteq K$. If $(b + c)as \in Ann_R(N)$, then $cas \notin Ann_R(N)$, but $caN \subseteq K$. Thus $csN \subseteq K$. So, we conclude that $sIN \subseteq K$, as requested. \Box

Lemma 3.3. Let S be a multiplicatively closed subset of R, I and J be two ideals of R, let and N be a S-2-absorbing second submodule of M. Then there exists a fixed $s \in S$ and whenever K is a submodule of M and $IJN \subseteq K$, then $sIN \subseteq K$ or $sJN \subseteq K$ or $IJs \subseteq Ann_R(N)$.

Proof. Let $IsN \not\subseteq K$ and $JsN \not\subseteq K$. We show that $IJs \subseteq Ann_R(N)$. Assume that $c \in I$ and $d \in J$. By assumption there exists $a \in I$ such that $asN \not\subseteq K$ but $aJN \subseteq K$. Now Lemma 3.2 shows that $aJs \subseteq Ann_R(N)$ and so $(I \setminus (K :_R N)) Js \subseteq Ann_R(N)$. Similarly there exists $b \in (J \setminus (K :_R N))$ such that $Ibs \subseteq Ann_R(N)$ and also $I(J \setminus (K :_R N))s \subseteq Ann_R(N)$. Thus we have $abs \in Ann_R(N)$, $ads \in Ann_R(N)$ and $cbs \in Ann_R(N)$. As $a + c \in I$ and $b + d \in J$, we have $(a + c)(b + d)N \subseteq K$. Therefore, $(a + c)sN \subseteq K$ or $(b + d)sN \subseteq K$ or $(a + c)(b + d)s \in Ann_R(N)$. If $(a + c)sN \subseteq K$, then $csN \not\subseteq K$. Hence $c \in I \setminus (K :_R N)$ which implies that $cds \in Ann_R(N)$. Similarly if $(b + d)sN \subseteq K$, we can deduce that $cds \in Ann_R(N)$. Finally if $(a + c)(b + d)s \in Ann_R(N)$, then $(ab + ad + cb + cd)s \in Ann_R(N)$ so that $cds \in Ann_R(N)$. Therefore, $IJs \subseteq Ann_R(N)$. \Box

Let M be an R-module. A proper submodule N of M is said to be *completely irreducible* if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M. Thus the intersection of all completely irreducible submodules of M is zero. [18].

Remark 3.4. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$ [5].

Let S be a multiplicatively closed subset of R and M be an R-module. S-2-absorbing second submodules of M can be characterized in various ways as we demonstrate in the following theorem.

Theorem 3.5. Let S be a multiplicatively closed subset of R. For a submodule N of an R-module M with $Ann_R(N) \cap S = \emptyset$ the following statements are equivalent:

- (a) N is an S-2-absorbing second submodule of M;
- (b) There exists a fixed $s \in S$ such that $s^2abN = s^2aN$ or $s^2abN = s^2bN$ or $s^3abN = 0$ for each $a, b \in R$;
- (c) There exists a fixed $s \in S$ and whenever $abN \subseteq L_1 \cap L_2$, where $a, b \in R$ and L_1, L_2 are completely irreducible submodules of M, implies either that absN = 0 or $saN \subseteq L_1 \cap L_2$ or $sbN \subseteq L_1 \cap L_2$.
- (d) There exists a fixed $s \in S$, and $IJN \subseteq K$ implies either that $sIJ \subseteq Ann_R(N)$ or $sIN \subseteq K$ or $sJN \subseteq K$ for each ideals I, J of R and submodule K of M.

Proof. $(b) \Rightarrow (a)$ Let $a, b \in R$ and K be a submodule of M with $abN \subseteq K$. By part (b), there exists a fixed $s \in S$ such that $s^2abN = s^2aN$ or $s^2abN = s^2bN$ or $s^3abN = 0$. Thus either $s^3abN = 0$ or $s^3aN \subseteq s^2aN = abs^2N \subseteq s^2K \subseteq K$ or $s^3bN \subseteq s^2bN = abs^2N \subseteq s^2K \subseteq K$. Therefore, by setting $s := s^3$, we have either $saN \subseteq K$ or $sbN \subseteq K$ or sabN = 0, as needed.

 $(a) \Rightarrow (c)$ This is clear.

 $(c) \Rightarrow (b)$ By part (c), there exists a fixed $s \in S$. Assume that there are $a, b \in R$ such that $s^2 abN \neq s^2 aN$ and $s^2 abN \neq s^2 bN$. Then there exist completely irreducible submodules L_1 and L_2 of M such that $s^2 abN \subseteq L_1, s^2 abN \subseteq L_2, s^2 aN \not\subseteq L_1$, and $s^2 bN \not\subseteq L_2$ by Remark 3.6. Now $(as)(bs)N = s^2 abN \subseteq L_1 \cap L_2$ implies that either $s^2 aN \subseteq L_1 \cap L_2$ or $s^2 bN \subseteq L_1 \cap L_2$ or $s^3 abN = 0$ by part (c). If $s^2 aN \subseteq L_1 \cap L_2$ or $s^2 bN \subseteq L_1 \cap L_2$, then $s^2 aN \subseteq L_1$ or $s^2 bN \subseteq L_2$, which are contradiction. Thus $s^3 abN = 0$, as required.

 $(a) \Rightarrow (d)$ By Lemma 3.3.

 $(d) \Rightarrow (a)$ Take $a, b \in R$ and K a submodule of M with $abN \subseteq K$. Now, put I = Ra and J = Rb. Then we have $IJN \subseteq K$. By assumption, there is a fixed $s \in S$ such that either $sIJ = s(Ra)(Rb) \subseteq Ann_R(N)$ or $sIN \subseteq K$ or $sJN \subseteq K$ and so either $sab \in Ann_R(N)$ or $saN \subseteq K$ or $sbN \subseteq K$, as needed. \Box

Remark 3.6. Let M be an R-module and S a multiplicatively closed subset of R. Clearly, every S-second submodule of M and every strongly 2-absorbing second submodule N of M with $Ann_R(N) \cap S = \emptyset$ is an S-2-absorbing second submodule of M. But the converse is not true in general, as we can see in the following examples.

Example 3.7. Consider \mathbb{Z}_4 as an \mathbb{Z} -module. Clearly, \mathbb{Z}_4 is not a strongly 2-absorbing second \mathbb{Z} -module. Set $S := \mathbb{Z} \setminus 2\mathbb{Z}$. Then for each $s \in S$, $2\mathbb{Z}_4 = 2s\mathbb{Z}_4 \neq s\mathbb{Z}_4 = \mathbb{Z}_4$ and $2s\mathbb{Z}_4 \neq 0$ implies that \mathbb{Z}_4 is not an S-second \mathbb{Z} -module. But, if we consider s = 1, and $n, m \in \mathbb{Z}$, then we have three cases:

Case 1 If $n \neq 2k$ and $m \neq 2k$ for each $k \in \mathbb{N}$, then

$$nm(1)^2\mathbb{Z}_4 = \mathbb{Z}_4 = (1)^2n\mathbb{Z}_4 = (1)^2m\mathbb{Z}_4.$$

Case 2 If $n = 2k_1$ and $m = 2k_2$ for some $k_1, k_2 \in \mathbb{N}$, then $nm(1)^3\mathbb{Z}_4 = 0$.

Case 3 If $n = 2k_1$ for some $k_1 \in \mathbb{N}$ and $m \neq 2k$ for each $k \in \mathbb{N}$, then

$$nm(1)^2\mathbb{Z}_4 = \bar{2}\mathbb{Z}_4 = (1)^2n\mathbb{Z}_4.$$

Thus by Theorem 3.5 $(b) \Rightarrow (a)$, \mathbb{Z}_4 is an S-2-absorbing second \mathbb{Z} -module.

Example 3.8. Consider the \mathbb{Z} -module $M = \mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{pq}$, where $p \neq q$ are prime numbers. Then M is not a strongly 2-absorbing second \mathbb{Z} -module since

$$pqM = \mathbb{Z}_{p^{\infty}} \oplus 0 \neq \mathbb{Z}_{p^{\infty}} \oplus p\mathbb{Z}_{pq} = pM,$$
$$pqM = \mathbb{Z}_{p^{\infty}} \oplus 0 \neq \mathbb{Z}_{p^{\infty}} \oplus q\mathbb{Z}_{pq} = qM,$$

and $pqM = \mathbb{Z}_{p^{\infty}} \oplus 0 \neq 0$. Now, take the multiplicatively closed subset $S = \mathbb{Z} \setminus \{0\}$ and put s = pq. Then $s^2 pqM = \mathbb{Z}_{p^{\infty}} \oplus 0 = s^2 pM$ implies that M is an S-2-absorbing second \mathbb{Z} -module by Theorem 3.5 $(b) \Rightarrow (a)$.

The following lemma is known, but we write it here for the sake of completeness.

Lemma 3.9. Let M be an R-module, S a multiplicatively closed subset of R, and N be a finitely generated submodule of M. If $S^{-1}N \subseteq S^{-1}K$ for a submodule K of M, then there exists an $s \in S$ such that $sN \subseteq K$.

Proof. This is straightforward. \Box

Let S be a multiplicatively closed subset of R. Recall that the saturation S^* of S is defined as $S^* = \{x \in R : x/1 \text{ is a unit of } S^{-1}R\}$. It is obvious that S^* is a multiplicatively closed subset of R containing S [19].

Proposition 3.10. Let S be a multiplicatively closed subset of R and M be an R-module. Then we have the following.

(a) If N is a strongly 2-absorbing second submodule of M such that $S \cap Ann_R(N) = \emptyset$, then N is a S-2-absorbing second submodule of M. In fact if $S \subseteq u(R)$ and N is an S-2-absorbing second submodule of M, then N is a strongly 2-absorbing second submodule of M.

- (b) If $S_1 \subseteq S_2$ are multiplicatively closed subsets of R and N is an S_1 -2-absorbing second submodule of M, then N is an S_2 -2-absorbing second submodule of M in case $Ann_R(N) \cap S_2 = \emptyset$.
- (c) N is an S-2-absorbing second submodule of M if and only if N is an S^* -2-absorbing second submodule of M
- (d) If N is a finitely generated S-2-absorbing second submodule of M, then $S^{-1}N$ is a strongly 2-absorbing second submodule of $S^{-1}M$.

Proof. (a) and (b) These are clear.

(c) Assume that N is an S-2-absorbing second submodule of M. We claim that $Ann_R(N) \cap S^* = \emptyset$. To see this assume that there exists an $x \in Ann_R(N) \cap S^*$ As $x \in S^*$, x/1 is a unit of $S^{-1}R$ and so (x/1)(a/s) = 1 for some $a \in R$ and $s \in S$. This yields that us = uxa for some $u \in S$. Now we have that $us = uxa \in Ann_R(N) \cap S$, a contradiction. Thus, $Ann_R(N) \cap S^* = \emptyset$. Now as $S \subseteq S^*$, by part (b), N is an S^* -2-absorbing second submodule of M. Conversely, assume that N is an S^* -2-absorbing second submodule of M. Let $rtN \subseteq K$ for some $r, t \in R$. As N is an S^* -2-absorbing second submodule of M. Let $rtN \subseteq K$ for some $r, t \in R$. As N is an S^* -2-absorbing second submodule of M, there is a fixed $x \in S^*$ such that $xrt \in Ann_R(N)$ or $xrN \subseteq K$ or $xtN \subseteq K$. As x/1 is a unit of $S^{-1}R$, there exist $u, s \in S$ and $a \in R$ such that us = uxa. Then note that $(us)rt = uaxrt \in Ann_R(N)$ or $us(txN) \subseteq K$ or $us(rxN) \subseteq K$. Therefore, N is a S-2-absorbing second submodule of M.

(d) As N is an S-2-absorbing second submodule of M, there is a fixed $s \in S$. If $S^{-1}N = 0$, then as N is finitely generated, there is an $t \in S$ such that $t \in Ann_R(N)$ by Lemma 3.9. Thus $Ann_R(N) \cap S \neq \emptyset$, a contradiction. So, $S^{-1}N \neq 0$. Now let $a/t, b/h \in S^{-1}R$. As N is an S-2-absorbing second submodule of M, we have either $abs^2N = as^2N$ or $abs^2N = bs^2N$ or $abs^3N = 0$. This implies that either $(a/t)(b/h)S^{-1}N = (a/t)S^{-1}N$ or $(a/t)(b/h)S^{-1}N = (b/h)S^{-1}N$ or $(a/t)(b/h)S^{-1}N = 0$, as needed.

The following example shows that the converse of Proposition 3.10 (d) is not true in general.

Example 3.11. Consider the \mathbb{Z} -module $M = \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q}$, where \mathbb{Q} is the field of rational numbers. Take the submodule $N = \mathbb{Z} \oplus \mathbb{Z} \oplus 0$ and the

multiplicatively closed subset $S = \mathbb{Z} \setminus \{0\}$. Now, take $s \in S$. Then there exist prime numbers $p \neq q$ such that gcd(p,s) = gcd(q,s) = 1. Then one can see that $s^2pqN \neq s^2pN$, $s^2pqN \neq s^2qN$, and $s^3pqN \neq 0$. Thus N is not an S-2-absorbing second submodule of M. Since $S^{-1}\mathbb{Z} = \mathbb{Q}$ is a field, $S^{-1}(\mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q})$ is a vector space and so the non-zero submodule $S^{-1}N$ is a strongly 2-absorbing second submodule of $S^{-1}(\mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q})$.

Theorem 3.12. Let S be a multiplicatively closed subset of R and N be a submodule of an R-module M such that $Ann_R(N) \cap S = \emptyset$. Then N is an S-2-absorbing second submodule of M if and only if s^3N is a strongly 2-absorbing second submodule of M for some $s \in S$.

Proof. Let s^3N be a strongly 2-absorbing second submodule of M for some $s \in S$ and $a, b \in R$. Then $abs^3N = as^3N$ or $abs^3N = bs^3N$ or $abs^3N = 0$ by [8, Theorem 3.3]. Hence $s^6abN = s^6aN$ or $s^6abN = s^6bN$ or $s^9abN = 0$. Set $t := s^3$. Then $t^2abN = t^2aN$ or $t^2abN = t^2bN$ or $t^3abN = 0$. Thus by Theorem 3.5 (b) \Rightarrow (a), N is an S-2-absorbing second submodule of M. Conversely, suppose that N is an S-2-absorbing second submodule of M and $a, b \in R$. Then for some $s \in S$ we have $s^2abN = s^2aN$ or $s^2abN = s^2bN$ or $s^3abN = 0$ by Theorem 3.5 (b) \Rightarrow (a). This implies that $abs^3N = as^3N$ or $abs^3N = bs^3N$ or $abs^3N = 0$. We not that $Ann_R(N) \cap S = \emptyset$, implies that $s^3N \neq 0$. Therefore, by [8, Theorem 3.3], s^3N is a strongly 2-absorbing second submodule of M.

Proposition 3.13. Let S be a multiplicatively closed subset of R and M be an R-module. Let $N \subset K$ be two submodules of M and K be a S-2-absorbing second submodule of M. Then K/N is a S-2-absorbing second submodule of M/N.

Proof. This is straightforward. \Box

Proposition 3.14. Let S be a multiplicatively closed subset of R and N be an S-2-absorbing second submodule of an R-module M. Then we have the following.

- (a) $Ann_R(N)$ is a S-2-absorbing ideal of R.
- (b) If K is a submodule of M such that $(K :_R N) \cap S = \emptyset$, then $(K :_R N)$ is a S-2-absorbing ideal of R.

(c) There exists a fixed $s \in S$ such that $s^n N = s^{n+1}N$, for all $n \ge 3$.

Proof. (a) Let $a, b, c \in R$ and $abc \in Ann_R(N)$. Then there exists a fixed $s \in S$ and $abN \subseteq abN$ implies that $asN \subseteq abN$ or $bsN \subseteq abN$ or sabN = 0. If sabN = 0, then we are done. If $asN \subseteq abN$, then $casN \subseteq cabN = 0$. In other case, we do the same.

(b) Let $a, b, c \in R$ and $abc = (ac)b \in (K :_R N)$. Then there exists a fixed $s \in S$ such that $acsN \subseteq K$ or $cbsN \subseteq bsN \subseteq K$ or $sabc \in Ann_R(N) \subseteq (K :_R N)$, as needed.

(c) As N is an S-2-absorbing second submodule of M, there exists a fixed $s \in S$. It is enough to show that $s^3N = s^4N$. It is clear that $s^4N \subseteq s^3N$. Since N is an S-2-absorbing second submodule, $(s^2)(s^2)N = s^4N \subseteq s^4N$ implies that either $s^3N \subseteq s^4N$ or $s^5N = 0$. If $s^5N = 0$, then $s^5 \in Ann_R(N) \cap S = \emptyset$ which is a contradiction. Thus $s^3N \subseteq s^4N$, as desired. \Box

Proposition 3.15. Let S be a multiplicatively closed subset of R and N be a S-2-absorbing second submodule of M. Then the following statements hold for some $s \in S$.

- (a) $tsN \subseteq thN$ or $hsN \subseteq thN$ for all $t, h \in S$.
- (b) $(Ann_R(N) :_R th) \subseteq (Ann_R(N) :_R ts)$ or $(Ann_R(N) :_R th) \subseteq (Ann_R(N) :_R sh)$ for all $t, h \in S$.

Proof. (a) Let N be a S-2-absorbing second submodule of M. Then there is a fixed $s \in S$. Let L be a completely irreducible submodule of M such that $thN \subseteq L$, where $t, h \in S$. Then $tsN \subseteq L$ or $shN \subseteq L$ or $sth \in Ann_R(N)$. As $Ann_R(N) \cap S = \emptyset$, we have $sth \notin Ann_R(N)$. If for each completely irreducible submodule of M, we have $tsN \subseteq L$ (resp. $shN \subseteq L$), then we are done by Remark 3.6. So suppose that there are completely irreducible submodules L_1 and L_2 of M such that $tsN \not\subseteq L_1$ and $shN \not\subseteq L_2$. Then since N is a S-2-absorbing second submodule of M, we conclude that $hsN \subseteq L_1$ and $stN \subseteq L_2$. Now $htN \subseteq L_1 \cap L_2$ implies that $hsN \subseteq L_1 \cap L_2$ or $stN \subseteq L_1 \cap L_2$. Thus $tsN \subseteq L_1$ or $shN \subseteq L_2$, a contradiction.

(b) This follows from Proposition 3.15 (a) and Proposition 2.5 (a). \Box

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0:_M I)$, equivalently, for each submodule *N* of *M*, we have $N = (0:_M Ann_R(N))$ [3].

Lemma 3.16. Let S be a multiplicatively closed subset of R and N be a submodule of a comultiplication R-module M. If $Ann_R(N)$ is a S-2-absorbing ideal of R, then N is a S-2-absorbing second submodule of M.

Proof. Let $a, b \in R$, K be a submodule of M, and $abN \subseteq K$. Then we have $Ann_R(K)abN = 0$. As $Ann_R(N)$ is a S-2-absorbing ideal of R, there is a fixed $s \in S$ and so $sAnn_R(K)aN = 0$ or $sAnn_R(K)bN =$ 0 or sabN = 0. If sabN = 0, we are done. If $sAnn_R(K)aN = 0$ or $sAnn_R(K)bN = 0$, then $Ann_R(K) \subseteq Ann_R(saN)$ or $Ann_R(K) \subseteq$ $Ann_R(sbN)$. Hence, $saN \subseteq K$ or $sbN \subseteq K$ since M is a comultiplication R-module. \square

The following example shows that the Lemma 3.16 is not satisfied in general.

Example 3.17. By [3, 3.9], the \mathbb{Z} -module \mathbb{Z} is not a comultiplication \mathbb{Z} -module. Take the multiplicatively closed subset $S = \mathbb{Z} \setminus \{0\}$. The submodule $p\mathbb{Z}$ of \mathbb{Z} , where p is a prime number, is not S-2-absorbing second submodule. But $Ann_{\mathbb{Z}}(p\mathbb{Z}) = 0$ is an S-2-absorbing ideal of \mathbb{Z} .

Proposition 3.18. Let S be a multiplicatively closed subset of R and M be an R-module. Then we have the following.

- (a) If M is a multiplication S-2-absorbing second R-module, then every submodule N of M with $(N :_R M) \cap S = \emptyset$ is a S-2-absorbing submodule of M.
- (b) If M is a comultiplication R-module such that the zero submodule of M is a S-2-absorbing submodule, then every submodule N of M with Ann_R(N) ∩ S = Ø is a S-2-absorbing second submodule of M.

Proof. (a) Let M is a multiplication S-2-absorbing second R-module and N be a submodule of M with $(N :_R M) \cap S = \emptyset$. Then by Proposition 3.14 (b), $(N :_R M)$ is an S-2-absorbing ideal of R. Now the result follows from [25, Proposition 3].

(b) Let M is a comultiplication R-module with the zero submodule of M is a S-2-absorbing submodule and N be a submodule of M with $Ann_R(N) \cap S = \emptyset$. We show that $Ann_R(N)$ is an S-2-absorbing ideal of R. To see this let $a, b, c \in R$ and $abc = (ac)b \in Ann_R(N)$. Then there exists a fixed $s \in S$ such that acsN = 0 or $cbsN \subseteq bsN = 0$ or $sabc \in Ann_R(M) \subseteq Ann_R(N)$. Thus $Ann_R(N)$ is an S-2-absorbing ideal of R. Now the result follows from Lemma 3.16. \Box

An *R*-module *M* satisfies the *double annihilator conditions* (DAC for short) if for each ideal *I* of *R* we have $I = Ann_R((0 :_M I))$ [15]. An *R*-module *M* is said to be a *strong comultiplication module* if *M* is a comultiplication *R*-module and satisfies the DAC conditions [7].

Theorem 3.19. Let M be a strong comultiplication R-module and N be a submodule of M such that $Ann_R(N) \cap S = \emptyset$, where S is a multiplicatively closed subset of R. Then the following are equivalent:

- (a) N is an S-2-absorbing second submodule of M;
- (b) $Ann_R(N)$ is a S-2-absorbing ideal of R;
- (c) $N = (0:_M I)$ for some S-2-absorbing ideal I of R with $Ann_R(N) \subseteq I$.

Proof. $(a) \Rightarrow (b)$ This follows from Proposition 3.14 (a).

 $(b) \Rightarrow (c)$ As M is a comultiplication R-module, $N = (0:_M Ann_R(N))$. Now the result is clear.

 $(c) \Rightarrow (a)$ As M satisfies the DAC conditions, $Ann_R((0:_M I)) = I$. Now the result follows from Lemma 3.16. \Box

Lemma 3.20. Let *S* be a multiplicatively closed subset of *R* and *M* be an *R*-module. If *N* is an *S*-second submodule of *M*. Then there exists a fixed $s \in S$ such that $abN \subseteq K$, where $a, b \in R$ and *K* is a submodule of *M* implies that either $sa \in Ann_R(N)$ or $sb \in Ann_R(N)$ or $sN \subseteq K$

Proof. Let N be an S-second submodule of M and $abN \subseteq K$, where $a, b \in R$ and K is a submodule of M. Then $aN \subseteq (K :_M b)$. Since N is an S-second submodule of M, there exists a fixed $s \in S$ such that $sa \in Ann_R(N)$ or $sbN \subseteq K$. Now, we will show that $sbN \subseteq K$ implies that $sb \in Ann_R(N)$ or $sN \subseteq K$. Assume that $bN \subseteq (K :_M s)$. Since N

is an S-second submodule, we get either $sb \in Ann_R(N)$ or $s^2N \subseteq K$. If $sb \in Ann_R(N)$, then we are done. So assume that $s^2N \subseteq K$. By [17, Lemma 2.13 (a)], we know that $sN \subseteq s^2N$. Thus we have $sN \subseteq K$. \Box

Theorem 3.21. Let S be a multiplicatively closed subset of R and M be an R-module. Then the sum of two S-second submodules is an S-2-absorbing second submodule of M.

Proof. Let N_1, N_2 be two S-second submodules of M and $N = N_1 + N_2$. Let $abN \subseteq K$ for some $a, b \in R$ and submodule K of M. Since N_1 is an S-second submodule submodule of M, there exists a fixed $s_1 \in S$ such that $s_1a \in Ann_R(N_1)$ or $s_1b \in Ann_R(N_1)$ or $s_1N_1 \subseteq K$ by Lemma 3.20. Also, as N_2 is an S-second submodule of M, there exists a fixed $s_2 \in S$ such that $s_2a \in Ann_R(N_2)$ or $s_2b \in Ann_R(N_2)$ or $s_2N_2 \subseteq K$ by Lemma 3.20. Without loss of generality, we may assume that $s_1a \in Ann_R(N_1)$ and $s_2N_2 \subseteq K$. Now, put $s = s_1s_2 \in S$. This implies that $saN \subseteq K$ and hence N is an S-2-absorbing second submodule of M.

The following example shows that sum of two S-2-absorbing second submodules is not necessarily S-2-absorbing second submodule.

Example 3.22. Consider $M = \mathbb{Z}_{p^n} \oplus \mathbb{Z}_{q^n}$ as \mathbb{Z} -module, where $n \in \mathbb{N}$ and p, q are distinct prime numbers. Set $S = \{x \in \mathbb{Z} : gcd(x, pq) = 1\}$. Then S is a multiplicatively closed subset of \mathbb{Z} . One can see that $\mathbb{Z}_{p^n} \oplus 0$ and $0 \oplus \mathbb{Z}_{q^n}$ both are S-2-absorbing second submodules. However $p^n M \subseteq 0 \oplus \mathbb{Z}_{q^n}$, $p^{n-1}xM \not\subseteq 0 \oplus \mathbb{Z}_{q^n}$, $pxM \not\subseteq 0 \oplus \mathbb{Z}_{q^n}$, and $xp^n M \neq 0$ for each $x \in S$ implies that M is not an S-2-absorbing second \mathbb{Z} -module.

Let M be an R-module. The idealization $R(+)M = \{(a, m) : a \in R, m \in M\}$ of M is a commutative ring whose addition is componentwise and whose multiplication is defined as $(a, m)(b, \acute{m}) = (ab, a\acute{m} + bm)$ for each $a, b \in R, m, \acute{m} \in M$ [21]. If S is a multiplicatively closed subset of R and N is a submodule of M, then $S(+)N = \{(s, n) : s \in S, n \in N\}$ is a multiplicatively closed subset of R(+)M [2].

Proposition 3.23. Let M be an R-module and let I be an ideal of R such that $I \subseteq Ann_R(M)$. Then the following are equivalent:

(a) I is a strongly 2-absorbing second ideal of R;

(b) I(+)0 is a strongly 2-absorbing second ideal of R(+)M.

Proof. This is straightforward. \Box

Theorem 3.24. Let S be a multiplicatively closed subset of R, M be an R-module, and I be an ideal of R such that $I \subseteq Ann_R(M)$ and $I \cap S = \emptyset$. Then the following are equivalent:

- (a) I is an S-2-absorbing second ideal of R;
- (b) I(+)0 is an S(+)0-2-absorbing second ideal of R(+)M;
- (c) I(+)0 is an S(+)M-2-absorbing second ideal of R(+)M.

Proof. $(a) \Rightarrow (b)$ Let $(a, m), (b, \acute{m}) \in R(+)M$. As I is an S-2-absorbing second ideal of R, there exists a fixed $s \in S$ such that $abs^2I = as^2I$ or $abs^2I = bs^2I$ or $abs^3I = 0$. If $abs^3I = 0$, then $(a, m)(b, \acute{m})(s^3, 0)(I(+)0) = 0$. If $abs^2I = as^2I$, then we claim that $(a, m)(b, \acute{m})(s^2, 0)(I(+)0) = (a, m)(s^2, 0)(I(+)0)$. To see this let $(s^2x, 0)(a, m) = (s^2, 0)(x, 0)(a, m) \in (s^2, 0)(a, m)(I(+)0)$. As $abs^2I = as^2I$, we have $s^2ax = abs^2y$ for some $y \in I$. Thus as $y \in I \subseteq Ann_R(M)$,

$$(s^2, 0)(x, 0)(a, m) = (s^2xa, 0) = (abs^2y, 0) = (s^2, 0)(y, 0)(a, m)(b, m).$$

Hence, $(s^2, 0)(x, 0)(a, 0) \in (a, m)(b, \acute{m})(s^2, 0)(I(+)0)$ and so we have $(a, m)(s^2, 0)(I(+)0) \subseteq (a, m)(b, \acute{m})(s^2, 0)(I(+)0)$. Since the inverse inclusion is clear we reach the claim.

 $(b) \Rightarrow (c)$ Since $S(+)0 \subseteq S(+)M$, the result follows from Proposition 3.10 (b).

 $(c) \Rightarrow (a)$ Let $a, b \in R$. As I(+)0 is an S(+)M-2-absorbing second ideal of R(+)M, there exists a fixed $(s,m) \in S(+)M$ such that

$$(a,0)(b,0)(s,m)^2(I(+)0) = (a,0)(s,m)^2(I(+)0)$$

or

$$(a,0)(b,0)(s,m)^2(I(+)0) = (b,0)(s,m)^2(I(+)0)$$

or

$$(a,0)(b,0)(s,m)^3(I(+)0) = 0.$$

If $(ab, 0)(s, m)^3(I(+)0) = 0$, then for each $abs^3x \in abs^3I$ we have

$$0 = (ab, 0)(s, m)^{3}(x, 0) = (ab, 0)(s^{3}, 3sm)(x, 0) = (abs^{3}, 3absm)(x, 0)$$
$$= (abs^{3}, 0)(x, 0) = (abs^{3}x, 0).$$

Thus $abs^3I = 0$. If $(ab, 0)(s, m)^2(I(+)0) = (a, 0)(s, m)^2(I(+)0)$, then we claim that $abs^2I = as^2I$. To see this, let $s^2xa \in s^2aI$. Then for some $y \in I$, as $x \in I \subseteq Ann_R(M)$ we have

$$(s^{2}ax, 0) = (s^{2}ax, 2sxm) = (s, m)^{2}(a, 0)(x, 0) = (s, m)^{2}(aby, 0)$$

= $(s^{2}aby, 2sabmy) = (s^{2}aby, 0).$

Hence, $s^2ax \in abs^2I$ and so $s^2aI \subseteq s^2abI$ Thus $s^2aI = s^2abI$. Similarly, if $(ab, 0)(s, m)^2(I(+)0) = (b, 0)(s, m)^2(I(+)0)$, then $s^2bI \subseteq s^2abI$, and so $s^2bI = s^2abI$. \Box

Let R_i be a commutative ring with identity, M_i be an R_i -module for each i = 1, 2, ..., n, and $n \in \mathbb{N}$. Assume that $M = M_1 \times M_2 \times$ $... \times M_n$ and $R = R_1 \times R_2 \times ... \times R_n$. Then M is clearly an R-module with componentwise addition and scalar multiplication. Also, if S_i is a multiplicatively closed subset of R_i for each i = 1, 2, ..., n, then S = $S_1 \times S_2 \times ... \times S_n$ is a multiplicatively closed subset of R. Furthermore, each submodule N of M is of the form $N = N_1 \times N_2 \times ... \times N_n$, where N_i is a submodule of M_i for each i = 1, 2, ..., n.

Theorem 3.25. Let $R = R_1 \times R_2$ and $S = S_1 \times S_2$ be a multiplicatively closed subset of R, where R_i is a commutative ring with $1 \neq 0$ and S_i is a multiplicatively closed subset of R_i for each i = 1, 2. Let $M = M_1 \times M_2$ be an R-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that $N = N_1 \times N_2$ is a submodule of M. Then the following conditions are equivalent:

- (a) N is an S-2-absorbing second submodule of M;
- (b) Either $Ann_{R_1}(N_1) \cap S_1 \neq \emptyset$ and N_2 is a S_2 -2-absorbing second submodule of M_2 or $Ann_{R_2}(N_2) \cap S_2 \neq \emptyset$ and N_1 is a S_1 -2-absorbing second submodule of M_1 or N_1 is an S_1 -second submodule of M_1 and N_2 is an S_2 -second submodule of M_2 .

Proof. (a) \Rightarrow (b) Let $N = N_1 \times N_2$ be a S-2-absorbing second submodule of M. Then $Ann_R(N) = Ann_{R_1}(N_1) \times Ann_{R_2}(N_2)$ is an S-2absorbing ideal of R by Proposition 3.14 (a). Thus, either $Ann_R(N_1) \cap$ $S_1 = \emptyset$ or $Ann_R(N_2) \cap S_2 = \emptyset$. Assume that $Ann_R(N_1) \cap S_1 \neq \emptyset$. We show that N_2 is an S_2 -2-absorbing second submodule of M_2 . To see this, let $t_2r_2N_2 \subseteq K_2$ for some $t_2, r_2 \in R_2$ and a submodule K_2 of M_2 . Then $(1, t_2)(1, r_2)(N_1 \times N_2) \subseteq M_1 \times K_2$. As N is an S-2-absorbing second submodule of M, there exists a fixed $(s_1, s_2) \in S$ such that $(s_1, s_2)(1, r_2)(N_1 \times N_2) \subseteq M_1 \times K_2$ or $(s_1, s_2)(1, t_2)(N_1 \times N_2) \subseteq M_1 \times K_2$ or $(s_1, s_2)(1, t_2)(1, r_2)(N_1 \times N_2) = 0$. It follows that either $s_2 r_2 N_2 \subseteq K_2$ or $s_2t_2N_2 \subseteq K_2$ or $s_2t_2r_2N_2 = 0$ and so N_2 is an S_2 -2-absorbing second submodule of M_2 . Similarly, if $Ann_{R_2}(N_2) \cap S_2 \neq \emptyset$, then one can see that N_1 is an S_1 -2-absorbing second submodule of M_1 . Now assume that $Ann_R(N_1) \cap S_1 = \emptyset$ and $Ann_R(N_2) \cap S_2 = \emptyset$. We will show that N_1 is an S_1 -second submodule of M_1 and N_2 is an S_2 -second submodule of M_2 . First, note that there exists a fixed $s = (s_1, s_2) \in S$ satisfying N to be an S-2-absorbing second submodule of M. Suppose that N_1 is not an S_1 -second submodule of M_1 . Then there exists $a \in R_1$ and a submodule K_1 of M_1 such that $aN_1 \subseteq K_1$ but $s_1a \notin Ann_R(N_1)$ and $s_1N_1 \not\subseteq K_1$. On the other hand $Ann_R(N_2) \cap S_2 = \emptyset$ and $s_2 \notin Ann_R(N_2)$ so that $s_2N_2 \neq 0$. Thus by Remark 3.6, there exists a completely irreducible submodule L_2 of M_2 such that $s_2N_2 \not\subseteq L_2$. Also note that

$$(a,1)(1,0)N = (a,1)(1,0)(N_1 \times N_2) = aN_1 \times 0 \subseteq K_1 \times 0 \subseteq K_1 \times L_2.$$

As N is an S-2-absorbing second submodule of M, either $(s_1, s_2)(1, 0)N \subseteq K_1 \times L_2$ or $(s_1, s_2)(a, 1)N \subseteq K_1 \times L_2$ or $(s_1, s_2)(a, 1)(1, 0)N = 0$. Hence, we conclude that either $s_1N_1 \subseteq K_1$ or $s_2N_2 \subseteq L_2$ or $s_1aN_1 = 0$, which them are contradictions. Thus, N_1 is an S₁-second submodule of M_1 . Similar argument shows that N_2 is an S₂-second submodule of M_2 .

 $(b) \Rightarrow (a)$ Assume that N_1 is an S_1 -2-absorbing second submodule of M_1 and $Ann_{R_2}(N_2) \cap S_2 \neq \emptyset$. we will show that N is an S-2-absorbing second submodule of M. Then there exists an $s_2 \in Ann_{R_2}(N_2) \cap S_2$. Let $(r_1, r_2)(t_1, t_2)(N_1 \times N_2) \subseteq K_1 \times K_2$ for some $t_i, r_i \in R_i$ and submodule K_i of M_i , where i = 1, 2. Then $r_1 t_1 N_1 \subseteq K_1$. As N_1 is an S_1 -2-absorbing second submodule of M_1 , there exists a fixed $s_1 \in S_1$ such that $s_1 r_1 N_1 \subseteq K_1$ or $s_1 t_1 N_1 \subseteq K_1$ or $s_1 r_1 t_1 N_1 = 0$. Now we set $s = (s_1, s_2)$.

Then $s(r_1, r_2)(N_1 \times N_2) \subseteq K_1 \times K_2$ or $s(t_1, t_2)(N_1 \times N_2) \subseteq K_1 \times K_2$ or $s(r_1, r_2)(t_1, t_2)(N_1 \times N_2) = 0$. Therefore, N is an S-2-absorbing second submodule of M. Similarly one can show that if N_2 is an S_2 -2absorbing second submodule of M_2 and $Ann_{R_1}(N_1) \cap S_1 \neq \emptyset$, then Nis an S-2-absorbing second submodule of M. Now assume that N_1 is an S_1 -second submodule of M_1 and N_2 is an S_2 -second submodule of M_2 . Let $a, b \in R_1, x, y \in R_2, K_1$ is a submodule of M_1 and K_2 is a submodule of M_2 such that

$$(a, x)(b, y)N = (a, x)(b, y)(N_1 \times N_2 \subseteq K_1 \times K_2.$$

Then we have $abN_1 \subseteq K_1$ and $xyN_2 \subseteq K_2$. Since N_1 is an S_1 -second submodule of M_1 , there exists a fixed $s_1 \in S_1$ such that either $s_1a \in$ $Ann_{R_1}(N_1)$ or $s_1b \in Ann_{R_1}(N_1)$ or $s_1N_1 \subseteq K_1$ by Lemma 3.20. Similarly, there exists a fixed $s_2 \in S_2$ such that either $s_2x \in Ann_{R_2}(N_2)$ or $s_2y \in Ann_{R_2}(N_2)$ or $s_2N_2 \subseteq K_2$ by Lemma 3.20. Also without loss of generality, we may assume that $s_1a \in Ann_{R_1}(N_1)$ and $s_2N_2 \subseteq K_2$ or $s_1a \in Ann_{R_1}(N_1)$ and $s_2x \in Ann_{R_2}(N_2)$ or $s_1N_1 \subseteq K_1$ and $s_2N_2 \subseteq K_2$. If $s_1a \in Ann_{R_1}(N_1)$ and $s_2N_2 \subseteq K_2$, then we have

$$(s_1, s_2)(a, x)(N_1 \times N_2) = s_1 a N_1 \times s_2 x N_2 \subseteq 0 \times K_2 \subseteq K_1 \times K_2.$$

If $s_1a \in Ann_{R_1}(N_1)$ and $s_2x \in Ann_{R_2}(N_2)$, then $(s_1, s_2)(a, x)(b, y)(N_1 \times N_2) = 0$. If $s_1N_1 \subseteq K_1$ and $s_2N_2 \subseteq K_2$, then

$$(s_1, s_2)(a, x)(b, y)(N_1 \times N_2) \subseteq (s_1, s_2)N \subseteq K_1 \times K_2.$$

Hence, N is an S-2-absorbing second submodule of M.

The following example shows that if N_1 is an S_1 -2-absorbing second submodule of M_1 and N_2 is an S_2 -2-absorbing second submodule of M_2 , then $N_1 \times N_2$ may not be an $S_1 \times S_2$ -2-absorbing second submodule of $M_1 \times M_2$ in general.

Example 3.26. Consider the \mathbb{Z} -modules $M_1 = \mathbb{Z}_9$ and $M_2 = \mathbb{Z}_4$. Let $S_1 = \mathbb{Z} \setminus 3\mathbb{Z}$ and $S_2 = \mathbb{Z} \setminus 2\mathbb{Z}$. Then M_1 and M_2 are S_1 and S_2 -2-absorbing second modules (see Example 3.7). But $M = M_1 \times M_2$ is not an $S = S_1 \times S_2$ -2-absorbing second module since $(1, 2)(3, 1)M \subseteq \overline{3}\mathbb{Z}_9 \times \overline{2}\mathbb{Z}_4$ but for each $s = (s_1, s_2) \in S$, $s(3, 1)M \not\subseteq \overline{3}\mathbb{Z}_9 \times \overline{2}\mathbb{Z}_4$, $s(1, 2)M \not\subseteq \overline{3}\mathbb{Z}_9 \times \overline{2}\mathbb{Z}_4$, and $s(1, 2)(3, 1)M \neq 0$.

Theorem 3.27. Let $M = M_1 \times M_2 \times ... \times M_n$ be an $R = R_1 \times R_2 \times ... \times R_n$ module and $S = S_1 \times S_2 \times ... \times S_n$ be a multiplicatively closed subset of R, where M_i is an R_i -module and S_i is a multiplicatively closed subset of R_i for each i = 1, 2, ..., n. Let $N = N_1 \times N_2 \times ... \times N_n$ be a submodule of M. Then the following are equivalent:

- (a) N is an S-2-absorbing second submodule of M;
- (b) N_k is an S_k -2-absorbing second submodule of M_k for some $k \in \{1, 2, ..., n\}$ and $Ann_{R_t}(N_t) \cap S_t \neq \emptyset$ for each $t \in \{1, 2, ..., n\} \setminus \{k\}$ or N_{k_1} is an S_{k_1} -second submodule of M_{k_1} and N_{k_2} is an S_{k_2} -second submodule of M_{k_2} for some $k_1, k_2 \in \{1, 2, ..., n\}$ $(k_1 \neq k_2)$ and $Ann_{R_t}(N_t) \cap S_t \neq \emptyset$ for each $t \in \{1, 2, ..., n\} \setminus \{k_1, k_2\}$.

Proof. We apply induction on n. For n = 1, the result is true. If n = 2, then the result follows from Theorem 3.25. Now assume that parts (a) and (b) are equal when k < n. We shall prove (b) \Leftrightarrow (a) when k = n. Put $R = \hat{K} \times R_n$, $M = \hat{M} \times M_n$, and $S = \hat{S} \times S_n$, where $\hat{K} = R_1 \times R_2 \times \ldots \times R_{n-1}$, $\hat{M} = M_1 \times M_2 \times \ldots \times M_{n-1}$, and $\hat{S} = S_1 \times S_2 \times \ldots \times S_{n-1}$. Also, $N = \hat{N} \times N_n$, where $\hat{N} = N_1 \times N_2 \times \ldots \times N_{n-1}$. Then by Theorem 3.25, N is an S-2-absorbing second submodule of M if and only if $Ann_{\hat{K}}(\hat{N}) \cap \hat{S} \neq \emptyset$ and N_n is an S_n -2-absorbing second submodule of \hat{M} and $Ann_{R_n}(N_n) \cap S_n \neq \emptyset$ or \hat{N} is an \hat{S} -second submodule of \hat{M} and N_n is an S_n -second submodule of M_n . Now the rest follows from induction hypothesis and [17, Theorem 2.12]. \Box

For a submodule N of an R-module M the second radical (or second socle) of N is defined as the sum of all second submodules of M contained in N and it is denoted by sec(N) (or soc(N)). In case N does not contain any second submodule, the second radical of N is defined to be (0) (see [12] and [4]).

Theorem 3.28. Let M be a finitely generated comultiplication R-module. If N is a S-2-absorbing second submodule of M, then sec(N) is a S-2-absorbing second submodule of M.

Proof. Let N be a S-2-absorbing second submodule of M. By Proposition 3.14 (a), $Ann_R(N)$ is an S-2-absorbing ideal of R. Thus by

Lemma 2.6, $\sqrt{Ann_R(N)}$ is an S-2-absorbing ideal of R. By [6, 2.12], $Ann_R(sec(N)) = \sqrt{Ann_R(N)}$. Therefore, $Ann_R(sec(N))$ is an S-2absorbing ideal of R. Now the result follows from Lemma 3.16.

Proposition 3.29. Let S be a multiplicatively closed subset of R and $f: M \to M$ be a monomorphism of R-modules. Then we have the following.

- (a) If N is an S-2-absorbing second submodule of M, then f(N) is an S-2-absorbing second submodule of M.
- (b) If \hat{N} is an S-2-absorbing second submodule of \hat{M} and $\hat{N} \subseteq f(M)$, then $f^{-1}(\hat{N})$ is an S-2-absorbing second submodule of M.

Proof. (a) As $Ann_R(N) \cap S = \emptyset$ and f is a monomorphism, we have $Ann_R(f(N)) \cap S = \emptyset$. Let $a, b \in R$. Since N is an S-2-absorbing second submodule of M, there exists a fixed $s \in S$ such that $s^2abN = s^2aN$ or $s^2abN = s^2bN$ or $s^3abN = 0$. Thus $s^2abf(N) = s^2af(N)$ or $s^2abf(N) = s^2bf(N)$ or $s^3abf(N) = 0$, as needed.

(b) $Ann_R(\dot{N}) \cap S = \emptyset$ implies that $Ann_R(f^{-1}(\dot{N})) \cap S = \emptyset$. Now let $a, b \in R$. As \dot{N} is an S-2-absorbing second submodule of \dot{M} , there exists a fixed $s \in S$ such that $s^2ab\dot{N} = s^2a\dot{N}$ or $s^2ab\dot{N} = s^2b\dot{N}$ or $s^3ab\dot{N} = 0$. Therefore, $s^2abf^{-1}(\dot{N}) = s^2af^{-1}(\dot{N})$ or $s^2abf^{-1}(\dot{N}) = s^2bf^{-1}(\dot{N})$ or $s^3abf^{-1}(\dot{N}) = 0$, as requested. \Box

Theorem 3.30. Let S be a multiplicatively closed subset of R and let M be an R-module. If E is an injective R-module and N is an S-2-absorbing submodule of M such that $Ann_R(Hom_R(M/N, E)) \cap S \neq \emptyset$, then $Hom_R(M/N, E)$ is a S-2-absorbing second R-module.

Proof. Let $a, b \in R$. Since N is an S-2-absorbing submodule of M, there is a fixed $s \in S$ such that either $(N :_M abs^2) = (N :_M as^2)$ or $(N :_M abs^2) = (N :_M bs^2)$ or $(N :_M abs^3) = M$ by Theorem 2.1. Since E is an injective R-module, by replacing M with M/N in [5, Theorem 3.13 (a)], we have $Hom_R(M/(N :_M a), E) = aHom_R(M/N, E)$. Therefore,

$$abs^{2}Hom_{R}(M/N, E) = Hom_{R}(M/(N:_{M} abs^{2}), E) =$$

 $Hom_{R}(M/(N:_{M} as^{2}), E) = as^{2}Hom_{R}(M/N, E)$

or

$$abs^{2}Hom_{R}(M/N, E) = Hom_{R}(M/(N:_{M} abs^{2}), E) =$$
$$Hom_{R}(M/(N:_{M} bs^{2}), E) = bs^{2}Hom_{R}(M/N, E)$$

or

$$abs^{3}Hom_{R}(M/N, E) = Hom_{R}(M/(N:_{M} abs^{3}), E) =$$

 $Hom_{R}(M/M, E) = 0,$

as needed \Box

Theorem 3.31. Let M be a S-2-absorbing second R-module and F be a right exact linear covariant functor over the category of R-modules. Then F(M) is a S-2-absorbing second R-module if $Ann_R(F(M)) \cap S \neq \emptyset$.

Proof. This follows from [5, Lemma 3.14] and Theorem 3.5 (*a*) \Leftrightarrow (*b*).

Acknowledgements

This research was supported with a grant from Farhangian University. The author would like to thank the referees for their valuable comments and suggestions.

References

- D.D. Anderson, T. Arabaci, Ü. Tekir and S. Koç, On Smultiplication modules, Comm. Algebra, 48 (8) (2020), 1-10.
- [2] D.D. Anderson and M. Winders, Idealization of a module, Journal of Commutative Algebra 1 (1) (2009), 3-56.
- [3] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, *Taiwanese J. Math.*, **11** (4) (2007), 1189–1201.
- [4] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, *Algebra Colloq.*, **19** (Spec 1) (2012), 1109-1116.
- [5] H. Ansari-Toroghy and F. Farshadifar, The dual notion of some generalizations of prime submodules, *Comm. Algebra*, **39** (2011), 2396-2416.

- [6] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime radicals of submodules, Asian Eur. J. Math., 6(2) (2013), 1350024 (11 pages).
- [7] H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci. 8 (1) (2009), 105–113.
- [8] H. Ansari-Toroghy and F. Farshadifar, Some generalizations of second submodules, *Palestine Journal of Mathematics*, 8 (2) (2019), 1-10.
- [9] A. Azizi, Weakly prime submodules and prime submodules, *Glas-gow Math. J.* 48 (2) (2006), 343–346.
- [10] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
- [11] A. Barnard, Multiplication modules, J. Algebra **71** (1981), 174–178.
- [12] S. Ceken, M. Alkan, and P.F. Smith, The dual notion of the prime radical of a module, J. Algebra, 392, 265-275 (2013).
- [13] A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, *Thai J. Math.* 9 (3) (2011), 577-584.
- [14] J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156-181.
- [15] C. Faith, Rings whose modules have maximal submodules, *Publ. Mat.* **39** (1995), 201-214.
- [16] F. Farshadifar, S-secondary submodules of a module, Comm. Algebra, (2020), DOI: 10.1080/00927872.2020.1836189.
- [17] F. Farshadifar, S-second submodules of a module, Algebra and Discrete Mathematics, to appear.
- [18] L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249 (2006), 121–145.

- [19] R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, No. 90. Kingston, Canada: Queen's University, 1992.
- [20] R. McCasland and M. Moore, On radicals of submodules of finitely generated modules, *Canad. Math Bull*, **29** (1)(1986), 37-39.
- [21] M. Nagata, Local Rings, New York, NY, USA: Interscience, 1962.
- [22] Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Collq., 19 (2012), 913-920.
- [23] E.S. Sevim, U. Tekir and S. Koc, S-Artinian rings and finitely Scogenerated rings, Journal of Algebra and Its Applications, 19 (3) (2020), 2050051.
- [24] E.S. Sevim, T. Arabaci, Ü. Tekir, and S. Koc, On S-prime submodules, *Turkish Journal of Mathematics*, 43 (2) (2019), 1036-1046.
- [25] G. Ulucak, Ü. Tekir, and S. Koc, On S-2-absorbing submodules and vn-regular modules, An. St. Univ. Ovidius Constanta, 28 (2) (2020), 239-257.
- [26] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Singapore: Springer, 2016.
- [27] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37 (2001), 273–278.
- [28] E. Yildiz, B.A. Ersoy, Ü. Tekir and S. Koç, On S-Zariski topology, Comm. Algebra, (2020), 1-13.

Faranak Farshadifar

Assistant Professor of Mathematics Department of Mathematics Farhangian University Tehran, Iran. E-mail: f.farshadifar@cfu.ac.ir