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Abstract. Let R be a commutative ring with identity, S be a mul-
tiplicatively closed subset of R, and let M be an R-module. In this
paper, we introduce and investigate some properties of the notion of
S-2-absorbing second submodules of M as a generalization of S-second
submodules and strongly 2-absorbing second submodules of M . Also,
we obtain some results concerning S-2-absorbing submodules of M .
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1 Introduction

Throughout this paper, R will denote a commutative ring with identity
and Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be
prime if for any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or
r ∈ (P :R M) [14]. A non-zero submodule N of M is said to be second
if for each a ∈ R, the homomorphism N

a→ N is either surjective or zero
[27]. A proper ideal I of R is called a 2-absorbing ideal of R if whenever
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a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I [10]. A proper
submodule N of M is called a 2-absorbing submodule of M if whenever
abm ∈ N for some a, b ∈ R and m ∈ M , then am ∈ N or bm ∈ N
or ab ∈ (N :R M) [13, 22]. A non-zero submodule N of M is said to
be a strongly 2-absorbing second submodule of M if whenever a, b ∈ R,
K is a submodule of M , and abN ⊆ K, then aN ⊆ K or bN ⊆ K or
ab ∈ AnnR(N) [8].

A non-empty subset S of R is called a multiplicatively closed subset
of R if (i) 0 6∈ S, (ii) 1 ∈ S, and (iii) sś ∈ S for all s, ś ∈ S [26]. Let S be
a multiplicatively closed subset of R. A submodule P of an R-module
M with (P :R M) ∩ S = ∅ is said to be an S-prime submodule of M if
there exists a fixed s ∈ S, and whenever am ∈ P , then sa ∈ (P :R M) or
sm ∈ P for each a ∈ R, m ∈M [24]. Particularly, an ideal I of R is said
to be an S-prime ideal if I is an S-prime submodule of the R-module R.
A submodule N of an R-module M with AnnR(N)∩S = ∅ is said to be
an S-second submodule of M if there exists a fixed s ∈ S, and whenever
rN ⊆ K, where r ∈ R and K is a submodule of M , then rsN = 0 or
sN ⊆ K [17].

Let M be an R-module and S be a multiplicatively closed subset of R.
In [25], the authors introduced the notion of S-2-absorbing submodules
of M which is a generalization of S-prime submodules and 2-absorbing
submodules and investigated some properties of this class of submodules.
A submodule P of M is said to be an S-2-absorbing if (P :R M)∩S = ∅
and there exists a fixed s ∈ S such that abm ∈ P for some a, b ∈ R
and m ∈ M implies that sab ∈ (P :R M) or sam ∈ P or sbm ∈ P .
In particular, an ideal I of R is said to be an S-2-absorbing ideal if I
is an S-2-absorbing submodule of the R-module R [25]. Also, for the
some recent works on S-version of some algebraic structures, we refer
the reader to [1, 16, 23, 28].

The main purpose of this paper is to introduce the notion of S-2-
absorbing second submodules of an R-module M as a generalization of
S-second submodules and strongly 2-absorbing second submodules of
M . Also, this can be regarded as a dual notion of the S-2-absorbing
submodules of M . We provide some information about this class of
submodules. Moreover, we investigate some properties of S-2-absorbing
submodules of M .
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2 S-2-Absorbing Submodules

The following theorem gives a useful characterization of S-2-absorbing
submodules.

Theorem 2.1. Let S be a multiplicatively closed subset of R and N be
a submodule of an R-module M with (N :R M)∩S = ∅. Then N is S-2-
absorbing if and only if there is a fixed s ∈ S such that for every a, b ∈ R,
we have either (N :M s2ab) = (N :M s2a) or (N :M s2ab) = (N :M s2b)
or (N :M s3ab) = M .

Proof. Let N be an S-2-absorbing submodule of M and m ∈ (N :M
s2ab). Then (sa)(sb)m ∈ N . Assume that (N :M s3ab) 6= M , that is,
s3ab 6∈ (N :R M). So by assumption, either s2am ∈ N or s2bm ∈ N .
This implies that (N :M s2ab) ⊆ (N :M s2a) ∪ (N :M s2b). Clearly,
(N :M s2a) ∪ (N :M s2b) ⊆ (N :M s2ab). So, (N :M s2a) ∪ (N :M
s2b) = (N :M s2ab). As N is a submodule of M , it cannot be written
as union of two distinct submodules. Thus (N :M s2ab) = (N :M s2a)
or (N :M s2ab) = (N :M s2b). Conversely, let a, b ∈ R and m ∈ M
such that abm ∈ N . Then m ∈ (N :R s2ab). By given hypothesis,
we have (N :M s2ab) = (N :M s2a) or (N :M s2ab) = (N :M s2b) or
(N :M s3ab) = M . Thus s2am ∈ N or s2bm ∈ N or s3ab ∈ (N :R M).
Hence, s3am ∈ N or s3bm ∈ N or s3ab ∈ (N :R M). Now by setting
s1 = s3, we get the result. �

Lemma 2.2. [9, Lemma 3.2] Let N be a submodule of an R-module M
and r ∈ R. Then for every flat R-module F , we have F ⊗ (N :M r) =
(F ⊗N :F⊗M r).

Theorem 2.3. Let S be a multiplicatively closed subset of R, N be an
S-2-absorbing submodule of an R-module M , and F be a flat R-module.
If (F ⊗N :R F ⊗M)∩S = ∅, then F ⊗N is an S-2-absorbing submodule
of F ⊗M .

Proof. Since N is an S-2-absorbing submodule of M , by Theorem 2.1,
we have either (N :M s2ab) = (N :M s2a) or (N :M s2ab) = (N :M s2b)
or (N :M s3ab) = M for a, b ∈ R. Assume that (N :M s2ab) = (N :M
s2a). Then by Lemma 2.2, we have

(F⊗N :F⊗M s2ab) = F⊗(N :M s2ab) = F⊗(N :M s2a) = (F⊗N :F⊗M s2a).
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If (N :M s3ab) = M , then by Lemma 2.2, we have

(F ⊗N :F⊗M s3ab) = F ⊗ (N :M s3ab) = F ⊗M.

Hence by Theorem 2.1, F ⊗ N is S-2-absorbing submodule of F ⊗M .
�

Theorem 2.4. Let S be a multiplicatively closed subset of R and F be
a faithfully flat Rmodule. Then N is an S-2-absorbing submodule of M
if and only if F ⊗N is an S-2-absorbing submodule of F ⊗M .

Proof. Let N be an S-2-absorbing submodule of M . Suppose (F⊗N :R
F ⊗M) ∩ S 6= ∅. Then there is an t ∈ (F ⊗ N :R F ⊗M) ∩ S. Thus
F ⊗ tM ⊆ F ⊗N . Hence, 0→ F ⊗ tM → F ⊗N is an exact sequence.
Since F is a faithfully flat, 0 → tM → N is an exact which implies
that tM ⊆ N . Thus (N :R M) ∩ S 6= ∅, this is a contradiction. So
(F ⊗N :R F ⊗M)∩ S = ∅. Now by Theorem 2.3, we have F ⊗N is an
S-2-absorbing submodule of F ⊗M . Conversely, suppose F ⊗ N is an
S-2-absorbing submodule of F ⊗M . Then (F ⊗N :R F ⊗M) ∩ S = ∅
implies that (N :R M) ∩ S = ∅. Let a, b ∈ R. Then by Theorem 2.1, we
can assume that (F ⊗N :F⊗M s2ab) = (F ⊗N :F⊗M s2a). By Lemma
2.2, we have

F⊗(N :M s2ab) = (F⊗N :F⊗M s2ab) = (F⊗N :F⊗M s2a) = F⊗(N :M s2a).

So, 0→ F ⊗ (N :M s2ab)→ F ⊗ (N :M s2a)→ 0 is an exact sequence.
As F is a faithfully flat, 0→ (N :M s2ab)→ (N :M s2a)→ 0 is an exact
sequence. Thus (N :M s2ab) = (N :M s2a) and so by Theorem 2.1, N is
S-2-absorbing. If (F ⊗N :F⊗M s3ab) = F ⊗M , then F ⊗ (N :M s3ab) =
(F ⊗N :F⊗M s3ab) = F ⊗M . So,

0→ F ⊗ (N :M abs3)→ F ⊗M → 0

is an exact sequence. As F is a faithfully flat, 0 → (N :M s3ab) →
M → 0 is an exact sequence. Thus (N :M s3an) = M . Hence N is an
S-2-absorbing submodule of M . �

Proposition 2.5. Let S be a multiplicatively closed subset of R and N
be an S-2-absorbing submodule of an R-module M . Then the following
statements hold for some s ∈ S.
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(a) (N :M th) ⊆ (N :M ts) or (N :M th) ⊆ (N :M sh) for all t, h ∈ S.

(b) ((N :R M) :R th) ⊆ ((N :R M) :R ts) or ((N :R M) :R th) ⊆
((N :R M) :R sh) for all t, h ∈ S.

Proof. (a) Let N be an S-2-absorbing submodule of M . Then there is
a fixed s ∈ S. Take an element m ∈ (N :M th), where t, h ∈ S. Then
stm ∈ N or shm ∈ N or sth ∈ (N :R M). As (N :R M)∩S = ∅, we have
sth 6∈ (N :R M). If for each m ∈ (N :M th), we have stm ∈ N (resp.
shm ∈ N), then we are done. So suppose that there are m1 ∈ (N :M th)
such that stm1 6∈ N and m2 ∈ (N :M th) such that shm2 6∈ N . Then
we conclude that shm1 ∈ N and stm2 ∈ N . Now ht(m1 + m2) ∈ N
implies that hs(m1 + m2) ∈ N or st(m1 + m2) ∈ N . Thus stm1 ∈ N or
shm2 ∈ N , which is a desired contradiction.

(b) This follows from part (a). �

Lemma 2.6. Let S be a multiplicatively closed subset of R and I be
an S-2-absorbing ideal of R. Then

√
I is an S-2-absorbing ideal of R

and there is a fixed s ∈ S such that sa2 ∈ I for every a ∈
√
I.

Proof. Clearly, as I is an S-2-absorbing ideal of R, there is a fixed
s ∈ S such that sa2 ∈ I for every a ∈

√
I. Now let a, b, c ∈ R such that

abc ∈
√
I. Then sa2b2c2 = s(abc)2 ∈ I. Since I is a S-2-absorbing ideal

of R, we may assume that s2a2b2 ∈ I. This implies that sab ∈
√
I, as

needed. �
Recall that an R-module M is said to be a multiplication module

if for every submodule N of M there exists an ideal I of R such that
N = IM [11].

Let N be a proper submodule of an R-module M . Then the M -
radical of N , denoted by rad(N), is defined to be the intersection of all
prime submodules of M containing N [20].

Theorem 2.7. Let S be a multiplicatively closed subset of R and M
a finitely generated multiplication R-module. If N is an S-2-absorbing
submodule of M , then rad(N) is an S-2-absorbing submodule of M .

Proof. Since N is an S-2-absorbing submodule of M , we have (N :R M)
is a S-2-absorbing ideal of R by [25, Proposition 3]. Thus by Lemma
2.6,

√
(N :R M) is an S-2-absorbing ideal of R. By [20, Theorem 4],
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(rad(N) :R M)) =
√

(N :R M). Therefore, (rad(N) :R M) is an S-2-
absorbing ideal of R. Now the result follows from [25, Proposition 3].
�

3 S-2-Absorbing Second Submodules

Definition 3.1. Let S be a multiplicatively closed subset of R and N
be a submodule of an R-module M such that AnnR(N)∩S = ∅. We say
that N is a S-2-absorbing second submodule of M if there exists a fixed
s ∈ S and whenever abN ⊆ K, where a, b ∈ R and K is a submodule
of M , implies either that saN ⊆ K or sbN ⊆ K or sabN = 0. In
particular, an ideal I of R is said to be an S-2-absorbing second ideal if
I is an S-2-absorbing second submodule of the R-module R. By a S-2-
absorbing second module, we mean a module which is a S-2-absorbing
second submodule of itself.

Lemma 3.2. Let S be a multiplicatively closed subset of R, I an ideal
of R, and let N be an S-2-absorbing second submodule of M . Then
there exists a fixed s ∈ S and whenever a ∈ R, K is a submodule of M ,
and IaN ⊆ K, then asN ⊆ K or IsN ⊆ K or Ias ⊆ AnnR(N).

Proof. Let asN 6⊆ K and Ias 6⊆ AnnR(N). Then there exists b ∈ I
such that absN 6= 0. Now as N is a S-2-absorbing second submodule of
M , baN ⊆ K implies that bsN ⊆ K. We show that IsN ⊆ K. To see
this, let c be an arbitrary element of I. Then (b + c)aN ⊆ K. Hence,
either (b + c)sN ⊆ K or (b + c)as ∈ AnnR(N). If (b + c)sN ⊆ K,
then since bsN ⊆ K we have csN ⊆ K. If (b + c)as ∈ AnnR(N), then
cas 6∈ AnnR(N), but caN ⊆ K. Thus csN ⊆ K. So, we conclude that
sIN ⊆ K, as requested. �

Lemma 3.3. Let S be a multiplicatively closed subset of R, I and J
be two ideals of R, let and N be a S-2-absorbing second submodule of
M . Then there exists a fixed s ∈ S and whenever K is a submodule of
M and IJN ⊆ K, then sIN ⊆ K or sJN ⊆ K or IJs ⊆ AnnR(N).

Proof. Let IsN 6⊆ K and JsN 6⊆ K. We show that IJs ⊆ AnnR(N).
Assume that c ∈ I and d ∈ J . By assumption there exists a ∈ I such that
asN 6⊆ K but aJN ⊆ K. Now Lemma 3.2 shows that aJs ⊆ AnnR(N)
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and so (I\(K :R N))Js ⊆ AnnR(N). Similarly there exists b ∈ (J\(K :R
N)) such that Ibs ⊆ AnnR(N) and also I(J \ (K :R N))s ⊆ AnnR(N).
Thus we have abs ∈ AnnR(N), ads ∈ AnnR(N) and cbs ∈ AnnR(N).
As a + c ∈ I and b + d ∈ J , we have (a + c)(b + d)N ⊆ K. Therefore,
(a + c)sN ⊆ K or (b + d)sN ⊆ K or (a + c)(b + d)s ∈ AnnR(N).
If (a + c)sN ⊆ K, then csN 6⊆ K. Hence c ∈ I \ (K :R N) which
implies that cds ∈ AnnR(N). Similarly if (b + d)sN ⊆ K, we can
deduce that cds ∈ AnnR(N). Finally if (a+c)(b+d)s ∈ AnnR(N), then
(ab + ad + cb + cd)s ∈ AnnR(N) so that cds ∈ AnnR(N). Therefore,
IJs ⊆ AnnR(N). �

Let M be an R-module. A proper submodule N of M is said to
be completely irreducible if N =

⋂
i∈I Ni, where {Ni}i∈I is a family of

submodules of M , implies that N = Ni for some i ∈ I. It is easy to see
that every submodule of M is an intersection of completely irreducible
submodules of M . Thus the intersection of all completely irreducible
submodules of M is zero. [18].

Remark 3.4. Let N and K be two submodules of an R-module M . To
prove N ⊆ K, it is enough to show that if L is a completely irreducible
submodule of M such that K ⊆ L, then N ⊆ L [5].

Let S be a multiplicatively closed subset of R and M be an R-module.
S-2-absorbing second submodules of M can be characterized in various
ways as we demonstrate in the following theorem.

Theorem 3.5. Let S be a multiplicatively closed subset of R. For a
submodule N of an R-module M with AnnR(N) ∩ S = ∅ the following
statements are equivalent:

(a) N is an S-2-absorbing second submodule of M ;

(b) There exists a fixed s ∈ S such that s2abN = s2aN or s2abN =
s2bN or s3abN = 0 for each a, b ∈ R;

(c) There exists a fixed s ∈ S and whenever abN ⊆ L1 ∩ L2, where
a, b ∈ R and L1, L2 are completely irreducible submodules of M ,
implies either that absN = 0 or saN ⊆ L1 ∩L2 or sbN ⊆ L1 ∩L2.

(d) There exists a fixed s ∈ S, and IJN ⊆ K implies either that
sIJ ⊆ AnnR(N) or sIN ⊆ K or sJN ⊆ K for each ideals I, J of
R and submodule K of M .
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Proof. (b)⇒ (a) Let a, b ∈ R and K be a submodule of M with abN ⊆
K. By part (b), there exists a fixed s ∈ S such that s2abN = s2aN
or s2abN = s2bN or s3abN = 0. Thus either s3abN = 0 or s3aN ⊆
s2aN = abs2N ⊆ s2K ⊆ K or s3bN ⊆ s2bN = abs2N ⊆ s2K ⊆ K.
Therefore, by setting ś := s3, we have either śaN ⊆ K or śbN ⊆ K or
śabN = 0, as needed.

(a)⇒ (c) This is clear.

(c) ⇒ (b) By part (c), there exists a fixed s ∈ S. Assume that
there are a, b ∈ R such that s2abN 6= s2aN and s2abN 6= s2bN . Then
there exist completely irreducible submodules L1 and L2 of M such that
s2abN ⊆ L1, s2abN ⊆ L2, s2aN 6⊆ L1, and s2bN 6⊆ L2 by Remark 3.6.
Now (as)(bs)N = s2abN ⊆ L1 ∩ L2 implies that either s2aN ⊆ L1 ∩ L2

or s2bN ⊆ L1 ∩ L2 or s3abN = 0 by part (c). If s2aN ⊆ L1 ∩ L2 or
s2bN ⊆ L1∩L2, then s2aN ⊆ L1 or s2bN ⊆ L2, which are contradiction.
Thus s3abN = 0, as required.

(a)⇒ (d) By Lemma 3.3.

(d) ⇒ (a) Take a, b ∈ R and K a submodule of M with abN ⊆ K.
Now, put I = Ra and J = Rb. Then we have IJN ⊆ K. By assumption,
there is a fixed s ∈ S such that either sIJ = s(Ra)(Rb) ⊆ AnnR(N) or
sIN ⊆ K or sJN ⊆ K and so either sab ∈ AnnR(N) or saN ⊆ K or
sbN ⊆ K, as needed. �

Remark 3.6. Let M be an R-module and S a multiplicatively closed
subset of R. Clearly, every S-second submodule of M and every strongly
2-absorbing second submodule N of M with AnnR(N)∩ S = ∅ is an S-
2-absorbing second submodule of M . But the converse is not true in
general, as we can see in the following examples.

Example 3.7. Consider Z4 as an Z-module. Clearly, Z4 is not a strongly
2-absorbing second Z-module. Set S := Z \ 2Z. Then for each s ∈ S,
2Z4 = 2sZ4 6= sZ4 = Z4 and 2sZ4 6= 0 implies that Z4 is not an S-second
Z-module. But, if we consider s = 1, and n,m ∈ Z, then we have three
cases:

Case 1 If n 6= 2k and m 6= 2k for each k ∈ N, then

nm(1)2Z4 = Z4 = (1)2nZ4 = (1)2mZ4.
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Case 2 If n = 2k1 and m = 2k2 for some k1, k2 ∈ N, then nm(1)3Z4 =
0.

Case 3 If n = 2k1 for some k1 ∈ N and m 6= 2k for each k ∈ N, then

nm(1)2Z4 = 2̄Z4 = (1)2nZ4.

Thus by Theorem 3.5 (b) ⇒ (a), Z4 is an S-2-absorbing second Z-
module.

Example 3.8. Consider the Z-module M = Zp∞⊕Zpq, where p 6= q are
prime numbers. Then M is not a strongly 2-absorbing second Z-module
since

pqM = Zp∞ ⊕ 0 6= Zp∞ ⊕ pZpq = pM,

pqM = Zp∞ ⊕ 0 6= Zp∞ ⊕ qZpq = qM,

and pqM = Zp∞ ⊕ 0 6= 0. Now, take the multiplicatively closed subset
S = Z \ {0} and put s = pq. Then s2pqM = Zp∞ ⊕ 0 = s2pM implies
that M is an S-2-absorbing second Z-module by Theorem 3.5 (b)⇒ (a).

The following lemma is known, but we write it here for the sake of
completeness.

Lemma 3.9. Let M be an R-module, S a multiplicatively closed subset
of R, and N be a finitely generated submodule of M . If S−1N ⊆ S−1K
for a submodule K of M , then there exists an s ∈ S such that sN ⊆ K.

Proof. This is straightforward. �
Let S be a multiplicatively closed subset of R. Recall that the satu-

ration S∗ of S is defined as S∗ = {x ∈ R : x/1 is a unit of S−1R}. It
is obvious that S∗ is a multiplicatively closed subset of R containing S
[19].

Proposition 3.10. Let S be a multiplicatively closed subset of R and
M be an R-module. Then we have the following.

(a) If N is a strongly 2-absorbing second submodule of M such that S∩
AnnR(N) = ∅, then N is a S-2-absorbing second submodule of M .
In fact if S ⊆ u(R) and N is an S-2-absorbing second submodule
of M , then N is a strongly 2-absorbing second submodule of M .
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(b) If S1 ⊆ S2 are multiplicatively closed subsets of R and N is an S1-
2-absorbing second submodule of M , then N is an S2-2-absorbing
second submodule of M in case AnnR(N) ∩ S2 = ∅.

(c) N is an S-2-absorbing second submodule of M if and only if N is
an S∗-2-absorbing second submodule of M

(d) If N is a finitely generated S-2-absorbing second submodule of M ,
then S−1N is a strongly 2-absorbing second submodule of S−1M .

Proof. (a) and (b) These are clear.

(c) Assume that N is an S-2-absorbing second submodule of M . We
claim that AnnR(N) ∩ S∗ = ∅. To see this assume that there exists an
x ∈ AnnR(N)∩S∗ As x ∈ S∗, x/1 is a unit of S−1R and so (x/1)(a/s) =
1 for some a ∈ R and s ∈ S. This yields that us = uxa for some
u ∈ S. Now we have that us = uxa ∈ AnnR(N) ∩ S, a contradiction.
Thus, AnnR(N) ∩ S∗ = ∅. Now as S ⊆ S∗, by part (b), N is an
S∗-2-absorbing second submodule of M . Conversely, assume that N
is an S∗-2-absorbing second submodule of M . Let rtN ⊆ K for some
r, t ∈ R. As N is an S∗-2-absorbing second submodule of M , there is
a fixed x ∈ S∗ such that xrt ∈ AnnR(N) or xrN ⊆ K or xtN ⊆ K.
As x/1 is a unit of S−1R, there exist u, s ∈ S and a ∈ R such that
us = uxa. Then note that (us)rt = uaxrt ∈ AnnR(N) or us(txN) ⊆ K
or us(rxN) ⊆ K. Therefore, N is a S-2-absorbing second submodule of
M .

(d) As N is an S-2-absorbing second submodule of M , there is a
fixed s ∈ S. If S−1N = 0, then as N is finitely generated, there is
an t ∈ S such that t ∈ AnnR(N) by Lemma 3.9. Thus AnnR(N) ∩
S 6= ∅, a contradiction. So, S−1N 6= 0. Now let a/t, b/h ∈ S−1R.
As N is an S-2-absorbing second submodule of M , we have either
abs2N = as2N or abs2N = bs2N or abs3N = 0. This implies that
either (a/t)(b/h)S−1N = (a/t)S−1N or (a/t)(b/h)S−1N = (b/h)S−1N
or (a/t)(b/h)S−1N = 0, as needed. �

The following example shows that the converse of Proposition 3.10
(d) is not true in general.

Example 3.11. Consider the Z-module M = Q⊕Q⊕Q, where Q is the
field of rational numbers. Take the submodule N = Z ⊕ Z ⊕ 0 and the



S-2-ABSORBING SECOND SUBMODULES 11

multiplicatively closed subset S = Z\{0}. Now, take s ∈ S. Then there
exist prime numbers p 6= q such that gcd(p, s) = gcd(q, s) = 1. Then
one can see that s2pqN 6= s2pN , s2pqN 6= s2qN , and s3pqN 6= 0. Thus
N is not an S-2-absorbing second submodule of M . Since S−1Z = Q is
a field, S−1(Q⊕Q⊕Q) is a vector space and so the non-zero submodule
S−1N is a strongly 2-absorbing second submodule of S−1(Q⊕Q⊕Q).

Theorem 3.12. Let S be a multiplicatively closed subset of R and N
be a submodule of an R-module M such that AnnR(N) ∩ S = ∅. Then
N is an S-2-absorbing second submodule of M if and only if s3N is a
strongly 2-absorbing second submodule of M for some s ∈ S.

Proof. Let s3N be a strongly 2-absorbing second submodule of M for
some s ∈ S and a, b ∈ R. Then abs3N = as3N or abs3N = bs3N or
abs3N = 0 by [8, Theorem 3.3]. Hence s6abN = s6aN or s6abN = s6bN
or s9abN = 0. Set t := s3. Then t2abN = t2aN or t2abN = t2bN
or t3abN = 0. Thus by Theorem 3.5 (b) ⇒ (a), N is an S-2-absorbing
second submodule of M . Conversely, suppose that N is an S-2-absorbing
second submodule of M and a, b ∈ R. Then for some s ∈ S we have
s2abN = s2aN or s2abN = s2bN or s3abN = 0 by Theorem 3.5 (b) ⇒
(a). This implies that abs3N = as3N or abs3N = bs3N or abs3N = 0.
We not that AnnR(N)∩ S = ∅, implies that s3N 6= 0. Therefore, by [8,
Theorem 3.3], s3N is a strongly 2-absorbing second submodule of M .
�

Proposition 3.13. Let S be a multiplicatively closed subset of R and
M be an R-module. Let N ⊂ K be two submodules of M and K be a
S-2-absorbing second submodule of M . Then K/N is a S-2-absorbing
second submodule of M/N .

Proof. This is straightforward. �

Proposition 3.14. Let S be a multiplicatively closed subset of R and
N be an S-2-absorbing second submodule of an R-module M . Then we
have the following.

(a) AnnR(N) is a S-2-absorbing ideal of R.

(b) If K is a submodule of M such that (K :R N) ∩ S = ∅, then
(K :R N) is a S-2-absorbing ideal of R.
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(c) There exists a fixed s ∈ S such that snN = sn+1N , for all n ≥ 3.

Proof. (a) Let a, b, c ∈ R and abc ∈ AnnR(N). Then there exists a
fixed s ∈ S and abN ⊆ abN implies that asN ⊆ abN or bsN ⊆ abN
or sabN = 0. If sabN = 0, then we are done. If asN ⊆ abN , then
casN ⊆ cabN = 0. In other case, we do the same.

(b) Let a, b, c ∈ R and abc = (ac)b ∈ (K :R N). Then there exists
a fixed s ∈ S such that acsN ⊆ K or cbsN ⊆ bsN ⊆ K or sabc ∈
AnnR(N) ⊆ (K :R N), as needed.

(c) As N is an S-2-absorbing second submodule of M , there ex-
ists a fixed s ∈ S. It is enough to show that s3N = s4N . It is
clear that s4N ⊆ s3N . Since N is an S-2-absorbing second submodule,
(s2)(s2)N = s4N ⊆ s4N implies that either s3N ⊆ s4N or s5N = 0. If
s5N = 0, then s5 ∈ AnnR(N) ∩ S = ∅ which is a contradiction. Thus
s3N ⊆ s4N , as desired. �

Proposition 3.15. Let S be a multiplicatively closed subset of R and
N be a S-2-absorbing second submodule of M . Then the following
statements hold for some s ∈ S.

(a) tsN ⊆ thN or hsN ⊆ thN for all t, h ∈ S.

(b) (AnnR(N) :R th) ⊆ (AnnR(N) :R ts) or (AnnR(N) :R th) ⊆
(AnnR(N) :R sh) for all t, h ∈ S.

Proof. (a) Let N be a S-2-absorbing second submodule of M . Then
there is a fixed s ∈ S. Let L be a completely irreducible submodule of
M such that thN ⊆ L, where t, h ∈ S. Then tsN ⊆ L or shN ⊆ L or
sth ∈ AnnR(N). As AnnR(N) ∩ S = ∅, we have sth 6∈ AnnR(N). If for
each completely irreducible submodule of M , we have tsN ⊆ L (resp.
shN ⊆ L), then we are done by Remark 3.6. So suppose that there are
completely irreducible submodules L1 and L2 of M such that tsN 6⊆ L1

and shN 6⊆ L2. Then since N is a S-2-absorbing second submodule of
M , we conclude that hsN ⊆ L1 and stN ⊆ L2. Now htN ⊆ L1 ∩ L2

implies that hsN ⊆ L1 ∩ L2 or stN ⊆ L1 ∩ L2. Thus tsN ⊆ L1 or
shN ⊆ L2, a contradiction.

(b) This follows from Proposition 3.15 (a) and Proposition 2.5 (a).
�
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An R-module M is said to be a comultiplication module if for every
submodule N of M there exists an ideal I of R such that N = (0 :M I),
equivalently, for each submodule N of M , we have N = (0 :M AnnR(N))
[3].

Lemma 3.16. Let S be a multiplicatively closed subset of R and N
be a submodule of a comultiplication R-module M . If AnnR(N) is a
S-2-absorbing ideal of R, then N is a S-2-absorbing second submodule
of M .

Proof. Let a, b ∈ R, K be a submodule of M , and abN ⊆ K. Then
we have AnnR(K)abN = 0. As AnnR(N) is a S-2-absorbing ideal of
R, there is a fixed s ∈ S and so sAnnR(K)aN = 0 or sAnnR(K)bN =
0 or sabN = 0. If sabN = 0, we are done. If sAnnR(K)aN = 0
or sAnnR(K)bN = 0, then AnnR(K) ⊆ AnnR(saN) or AnnR(K) ⊆
AnnR(sbN). Hence, saN ⊆ K or sbN ⊆ K since M is a comultiplication
R-module. �

The following example shows that the Lemma 3.16 is not satisfied in
general.

Example 3.17. By [3, 3.9], the Z-module Z is not a comultiplication
Z-module. Take the multiplicatively closed subset S = Z \ {0}. The
submodule pZ of Z, where p is a prime number, is not S-2-absorbing
second submodule. But AnnZ(pZ) = 0 is an S-2-absorbing ideal of Z.

Proposition 3.18. Let S be a multiplicatively closed subset of R and
M be an R-module. Then we have the following.

(a) If M is a multiplication S-2-absorbing second R-module, then ev-
ery submodule N of M with (N :R M)∩ S = ∅ is a S-2-absorbing
submodule of M .

(b) If M is a comultiplication R-module such that the zero submodule
of M is a S-2-absorbing submodule, then every submodule N of
M with AnnR(N) ∩ S = ∅ is a S-2-absorbing second submodule
of M .

Proof. (a) Let M is a multiplication S-2-absorbing second R-module
and N be a submodule of M with (N :R M)∩S = ∅. Then by Proposi-
tion 3.14 (b), (N :R M) is an S-2-absorbing ideal of R. Now the result
follows from [25, Proposition 3].
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(b) Let M is a comultiplication R-module with the zero submodule
of M is a S-2-absorbing submodule and N be a submodule of M with
AnnR(N) ∩ S = ∅. We show that AnnR(N) is an S-2-absorbing ideal
of R. To see this let a, b, c ∈ R and abc = (ac)b ∈ AnnR(N). Then
there exists a fixed s ∈ S such that acsN = 0 or cbsN ⊆ bsN = 0
or sabc ∈ AnnR(M) ⊆ AnnR(N). Thus AnnR(N) is an S-2-absorbing
ideal of R. Now the result follows from Lemma 3.16. �

An R-module M satisfies the double annihilator conditions (DAC for
short) if for each ideal I of R we have I = AnnR((0 :M I)) [15]. An
R-module M is said to be a strong comultiplication module if M is a
comultiplication R-module and satisfies the DAC conditions [7].

Theorem 3.19. Let M be a strong comultiplication R-module and
N be a submodule of M such that AnnR(N) ∩ S = ∅, where S is a
multiplicatively closed subset of R. Then the following are equivalent:

(a) N is an S-2-absorbing second submodule of M ;

(b) AnnR(N) is a S-2-absorbing ideal of R;

(c) N = (0 :M I) for some S-2-absorbing ideal I of R with AnnR(N) ⊆
I.

Proof. (a)⇒ (b) This follows from Proposition 3.14 (a).
(b)⇒ (c) As M is a comultiplication R-module, N = (0 :M AnnR(N)).

Now the result is clear.
(c) ⇒ (a) As M satisfies the DAC conditions, AnnR((0 :M I)) = I.

Now the result follows from Lemma 3.16. �

Lemma 3.20. Let S be a multiplicatively closed subset of R and M be
an R-module. If N is an S-second submodule of M . Then there exists
a fixed s ∈ S such that abN ⊆ K, where a, b ∈ R and K is a submodule
of M implies that either sa ∈ AnnR(N) or sb ∈ AnnR(N) or sN ⊆ K

Proof. Let N be an S-second submodule of M and abN ⊆ K, where
a, b ∈ R and K is a submodule of M . Then aN ⊆ (K :M b). Since N
is an S-second submodule of M , there exists a fixed s ∈ S such that
sa ∈ AnnR(N) or sbN ⊆ K. Now, we will show that sbN ⊆ K implies
that sb ∈ AnnR(N) or sN ⊆ K. Assume that bN ⊆ (K :M s). Since N
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is an S-second submodule, we get either sb ∈ AnnR(N) or s2N ⊆ K. If
sb ∈ AnnR(N), then we are done. So assume that s2N ⊆ K. By [17,
Lemma 2.13 (a)], we know that sN ⊆ s2N . Thus we have sN ⊆ K.
�

Theorem 3.21. Let S be a multiplicatively closed subset of R and
M be an R-module. Then the sum of two S-second submodules is an
S-2-absorbing second submodule of M .

Proof. Let N1, N2 be two S-second submodules of M and N = N1+N2.
Let abN ⊆ K for some a, b ∈ R and submodule K of M . Since N1 is an
S-second submodule submodule of M , there exists a fixed s1 ∈ S such
that s1a ∈ AnnR(N1) or s1b ∈ AnnR(N1) or s1N1 ⊆ K by Lemma 3.20.
Also, as N2 is an S-second submodule of M , there exists a fixed s2 ∈ S
such that s2a ∈ AnnR(N2) or s2b ∈ AnnR(N2) or s2N2 ⊆ K by Lemma
3.20. Without loss of generality, we may assume that s1a ∈ AnnR(N1)
and s2N2 ⊆ K. Now, put s = s1s2 ∈ S. This implies that saN ⊆ K
and hence N is an S-2-absorbing second submodule of M . �

The following example shows that sum of two S-2-absorbing second
submodules is not necessarily S-2-absorbing second submodule.

Example 3.22. Consider M = Zpn ⊕ Zqn as Z-module, where n ∈ N
and p, q are distinct prime numbers. Set S = {x ∈ Z : gcd(x, pq) =
1}. Then S is a multiplicatively closed subset of Z. One can see that
Zpn⊕0 and 0⊕Zqn both are S-2-absorbing second submodules. However
pnM ⊆ 0⊕Zqn , pn−1xM 6⊆ 0⊕Zqn , pxM 6⊆ 0⊕Zqn , and xpnM 6= 0 for
each x ∈ S implies that M is not an S-2-absorbing second Z-module.

Let M be an R-module. The idealization R(+)M = {(a,m) : a ∈
R,m ∈M} of M is a commutative ring whose addition is componentwise
and whose multiplication is defined as (a,m)(b, ḿ) = (ab, aḿ + bm) for
each a, b ∈ R, m, ḿ ∈M [21]. If S is a multiplicatively closed subset of
R and N is a submodule of M , then S(+)N = {(s, n) : s ∈ S, n ∈ N} is
a multiplicatively closed subset of R(+)M [2].

Proposition 3.23. Let M be an R-module and let I be an ideal of R
such that I ⊆ AnnR(M). Then the following are equivalent:

(a) I is a strongly 2-absorbing second ideal of R;
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(b) I(+)0 is a strongly 2-absorbing second ideal of R(+)M .

Proof. This is straightforward. �

Theorem 3.24. Let S be a multiplicatively closed subset of R, M be
an R-module, and I be an ideal of R such that I ⊆ AnnR(M) and
I ∩ S = ∅. Then the following are equivalent:

(a) I is an S-2-absorbing second ideal of R;

(b) I(+)0 is an S(+)0-2-absorbing second ideal of R(+)M ;

(c) I(+)0 is an S(+)M -2-absorbing second ideal of R(+)M .

Proof. (a)⇒ (b) Let (a,m), (b, ḿ) ∈ R(+)M . As I is an S-2-absorbing
second ideal of R, there exists a fixed s ∈ S such that abs2I = as2I or
abs2I = bs2I or abs3I = 0. If abs3I = 0, then (a,m)(b, ḿ)(s3, 0)(I(+)0) =
0. If abs2I = as2I, then we claim that (a,m)(b, ḿ)(s2, 0)(I(+)0) =
(a,m)(s2, 0)(I(+)0). To see this let (s2x, 0)(a,m) = (s2, 0)(x, 0)(a,m) ∈
(s2, 0)(a,m)(I(+)0). As abs2I = as2I, we have s2ax = abs2y for some
y ∈ I. Thus as y ∈ I ⊆ AnnR(M),

(s2, 0)(x, 0)(a,m) = (s2xa, 0) = (abs2y, 0) = (s2, 0)(y, 0)(a,m)(b, ḿ).

Hence, (s2, 0)(x, 0)(a, 0) ∈ (a,m)(b, ḿ)(s2, 0)(I(+)0) and so we have
(a,m)(s2, 0)(I(+)0) ⊆ (a,m)(b, ḿ)(s2, 0)(I(+)0). Since the inverse in-
clusion is clear we reach the claim.

(b)⇒ (c) Since S(+)0 ⊆ S(+)M , the result follows from Proposition
3.10 (b).

(c) ⇒ (a) Let a, b ∈ R. As I(+)0 is an S(+)M -2-absorbing second
ideal of R(+)M , there exists a fixed (s,m) ∈ S(+)M such that

(a, 0)(b, 0)(s,m)2(I(+)0) = (a, 0)(s,m)2(I(+)0)

or

(a, 0)(b, 0)(s,m)2(I(+)0) = (b, 0)(s,m)2(I(+)0)

or

(a, 0)(b, 0)(s,m)3(I(+)0) = 0.
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If (ab, 0)(s,m)3(I(+)0) = 0, then for each abs3x ∈ abs3I we have

0 = (ab, 0)(s,m)3(x, 0) = (ab, 0)(s3, 3sm)(x, 0) = (abs3, 3absm)(x, 0)

= (abs3, 0)(x, 0) = (abs3x, 0).

Thus abs3I = 0. If (ab, 0)(s,m)2(I(+)0) = (a, 0)(s,m)2(I(+)0), then
we claim that abs2I = as2I. To see this, let s2xa ∈ s2aI. Then for some
y ∈ I, as x ∈ I ⊆ AnnR(M) we have

(s2ax, 0) = (s2ax, 2sxm) = (s,m)2(a, 0)(x, 0) = (s,m)2(aby, 0)

= (s2aby, 2sabmy) = (s2aby, 0).

Hence, s2ax ∈ abs2I and so s2aI ⊆ s2abI Thus s2aI = s2abI. Similarly,
if (ab, 0)(s,m)2(I(+)0) = (b, 0)(s,m)2(I(+)0), then s2bI ⊆ s2abI, and
so s2bI = s2abI. �

Let Ri be a commutative ring with identity, Mi be an Ri-module
for each i = 1, 2, ..., n, and n ∈ N. Assume that M = M1 × M2 ×
... ×Mn and R = R1 × R2 × ... × Rn. Then M is clearly an R-module
with componentwise addition and scalar multiplication. Also, if Si is
a multiplicatively closed subset of Ri for each i = 1, 2, ..., n, then S =
S1 × S2 × ...× Sn is a multiplicatively closed subset of R. Furthermore,
each submodule N of M is of the form N = N1 ×N2 × ...×Nn, where
Ni is a submodule of Mi for each i = 1, 2, ..., n.

Theorem 3.25. Let R = R1×R2 and S = S1×S2 be a multiplicatively
closed subset of R, where Ri is a commutative ring with 1 6= 0 and Si is a
multiplicatively closed subset of Ri for each i = 1, 2. Let M = M1×M2

be an R-module, where M1 is an R1-module and M2 is an R2-module.
Suppose that N = N1 × N2 is a submodule of M . Then the following
conditions are equivalent:

(a) N is an S-2-absorbing second submodule of M ;

(b) Either AnnR1(N1)∩S1 6= ∅ and N2 is a S2-2-absorbing second sub-
module of M2 or AnnR2(N2) ∩ S2 6= ∅ and N1 is a S1-2-absorbing
second submodule of M1 or N1 is an S1-second submodule of M1

and N2 is an S2-second submodule of M2 .
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Proof. (a) ⇒ (b) Let N = N1 × N2 be a S-2-absorbing second sub-
module of M . Then AnnR(N) = AnnR1(N1) × AnnR2(N2) is an S-2-
absorbing ideal of R by Proposition 3.14 (a). Thus, either AnnR(N1) ∩
S1 = ∅ or AnnR(N2) ∩ S2 = ∅. Assume that AnnR(N1) ∩ S1 6= ∅. We
show that N2 is an S2-2-absorbing second submodule of M2. To see
this, let t2r2N2 ⊆ K2 for some t2, r2 ∈ R2 and a submodule K2 of M2.
Then (1, t2)(1, r2)(N1 × N2) ⊆ M1 × K2. As N is an S-2-absorbing
second submodule of M , there exists a fixed (s1, s2) ∈ S such that
(s1, s2)(1, r2)(N1×N2) ⊆M1×K2 or (s1, s2)(1, t2)(N1×N2) ⊆M1×K2

or (s1, s2)(1, t2)(1, r2)(N1×N2) = 0. It follows that either s2r2N2 ⊆ K2

or s2t2N2 ⊆ K2 or s2t2r2N2 = 0 and so N2 is an S2-2-absorbing second
submodule of M2. Similarly, if AnnR2(N2) ∩ S2 6= ∅, then one can see
that N1 is an S1-2-absorbing second submodule of M1. Now assume
that AnnR(N1)∩S1 = ∅ and AnnR(N2)∩S2 = ∅. We will show that N1

is an S1-second submodule of M1 and N2 is an S2-second submodule of
M2. First, note that there exists a fixed s = (s1, s2) ∈ S satisfying N to
be an S-2-absorbing second submodule of M . Suppose that N1 is not an
S1-second submodule of M1. Then there exists a ∈ R1 and a submodule
K1 of M1 such that aN1 ⊆ K1 but s1a 6∈ AnnR(N1) and s1N1 6⊆ K1.
On the other hand AnnR(N2) ∩ S2 = ∅ and s2 6∈ AnnR(N2) so that
s2N2 6= 0. Thus by Remark 3.6, there exists a completely irreducible
submodule L2 of M2 such that s2N2 6⊆ L2. Also note that

(a, 1)(1, 0)N = (a, 1)(1, 0)(N1 ×N2) = aN1 × 0 ⊆ K1 × 0 ⊆ K1 × L2.

As N is an S-2-absorbing second submodule of M , either (s1, s2)(1, 0)N ⊆
K1×L2 or (s1, s2)(a, 1)N ⊆ K1×L2 or (s1, s2)(a, 1)(1, 0)N = 0. Hence,
we conclude that either s1N1 ⊆ K1 or s2N2 ⊆ L2 or s1aN1 = 0, which
them are contradictions. Thus, N1 is an S1-second submodule of M1.
Similar argument shows that N2 is an S2-second submodule of M2.

(b)⇒ (a) Assume that N1 is an S1-2-absorbing second submodule of
M1 and AnnR2(N2) ∩ S2 6= ∅. we will show that N is an S-2-absorbing
second submodule of M . Then there exists an s2 ∈ AnnR2(N2)∩S2. Let
(r1, r2)(t1, t2)(N1 ×N2) ⊆ K1 ×K2 for some ti, ri ∈ Ri and submodule
Ki of Mi, where i = 1, 2. Then r1t1N1 ⊆ K1. As N1 is an S1-2-
absorbing second submodule of M1, there exists a fixed s1 ∈ S1 such that
s1r1N1 ⊆ K1 or s1t1N1 ⊆ K1 or s1r1t1N1 = 0. Now we set s = (s1, s2).
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Then s(r1, r2)(N1 × N2) ⊆ K1 × K2 or s(t1, t2)(N1 × N2) ⊆ K1 × K2

or s(r1, r2)(t1, t2)(N1 × N2) = 0. Therefore, N is an S-2-absorbing
second submodule of M . Similarly one can show that if N2 is an S2-2-
absorbing second submodule of M2 and AnnR1(N1) ∩ S1 6= ∅, then N
is an S-2-absorbing second submodule of M . Now assume that N1 is
an S1-second submodule of M1 and N2 is an S2-second submodule of
M2 . Let a, b ∈ R1, x, y ∈ R2, K1 is a submodule of M1 and K2 is a
submodule of M2 such that

(a, x)(b, y)N = (a, x)(b, y)(N1 ×N2 ⊆ K1 ×K2.

Then we have abN1 ⊆ K1 and xyN2 ⊆ K2. Since N1 is an S1-second
submodule of M1, there exists a fixed s1 ∈ S1 such that either s1a ∈
AnnR1(N1) or s1b ∈ AnnR1(N1) or s1N1 ⊆ K1 by Lemma 3.20. Simi-
larly, there exists a fixed s2 ∈ S2 such that either s2x ∈ AnnR2(N2) or
s2y ∈ AnnR2(N2) or s2N2 ⊆ K2 by Lemma 3.20. Also without loss of
generality, we may assume that s1a ∈ AnnR1(N1) and s2N2 ⊆ K2 or
s1a ∈ AnnR1(N1) and s2x ∈ AnnR2(N2) or s1N1 ⊆ K1 and s2N2 ⊆ K2.
If s1a ∈ AnnR1(N1) and s2N2 ⊆ K2, then we have

(s1, s2)(a, x)(N1 ×N2) = s1aN1 × s2xN2 ⊆ 0×K2 ⊆ K1 ×K2.

If s1a ∈ AnnR1(N1) and s2x ∈ AnnR2(N2), then (s1, s2)(a, x)(b, y)(N1×
N2) = 0. If s1N1 ⊆ K1 and s2N2 ⊆ K2, then

(s1, s2)(a, x)(b, y)(N1 ×N2) ⊆ (s1, s2)N ⊆ K1 ×K2.

Hence, N is an S-2-absorbing second submodule of M . �
The following example shows that if N1 is an S1-2-absorbing second

submodule of M1 and N2 is an S2-2-absorbing second submodule of M2,
then N1 ×N2 may not be an S1 × S2-2-absorbing second submodule of
M1 ×M2 in general.

Example 3.26. Consider the Z-modules M1 = Z9 and M2 = Z4. Let
S1 = Z\3Z and S2 = Z\2Z. Then M1 and M2 are S1 and S2-2-absorbing
second modules (see Example 3.7). But M = M1 ×M2 is not an S =
S1 × S2-2-absorbing second module since (1, 2)(3, 1)M ⊆ 3̄Z9 × 2̄Z4 but
for each s = (s1, s2) ∈ S, s(3, 1)M 6⊆ 3̄Z9 × 2̄Z4, s(1, 2)M 6⊆ 3̄Z9 × 2̄Z4,
and s(1, 2)(3, 1)M 6= 0.
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Theorem 3.27. Let M = M1×M2×...×Mn be an R = R1×R2×...×Rn-
module and S = S1×S2× ...×Sn be a multiplicatively closed subset of
R, where Mi is an Ri-module and Si is a multiplicatively closed subset
of Ri for each i = 1, 2, ..., n. Let N = N1×N2× ...×Nn be a submodule
of M . Then the following are equivalent:

(a) N is an S-2-absorbing second submodule of M ;

(b) Nk is an Sk-2-absorbing second submodule of Mk for some k ∈
{1, 2, ..., n} and AnnRt(Nt) ∩ St 6= ∅ for each t ∈ {1, 2, ..., n} \ {k}
or Nk1 is an Sk1-second submodule of Mk1 and Nk2 is an Sk2-
second submodule of Mk2 for some k1, k2 ∈ {1, 2, ..., n} (k1 6= k2)
and AnnRt(Nt) ∩ St 6= ∅ for each t ∈ {1, 2, ..., n} \ {k1, k2}.

Proof. We apply induction on n. For n = 1, the result is true. If
n = 2, then the result follows from Theorem 3.25. Now assume that
parts (a) and (b) are equal when k < n. We shall prove (b) ⇔ (a)
when k = n. Put R = Ŕ × Rn, M = Ḿ × Mn, and S = Ś × Sn,
where Ŕ = R1 ×R2 × ...×Rn−1, Ḿ = M1 ×M2 × ...×Mn−1, and Ś =
S1×S2× ...×Sn−1. Also, N = Ń×Nn, where Ń = N1×N2× ...×Nn−1.
Then by Theorem 3.25, N is an S-2-absorbing second submodule of M
if and only if AnnŔ(Ń) ∩ Ś 6= ∅ and Nn is an Sn-2-absorbing second

submodule of Mn or Ń is an Ś-2-absorbing second submodule of Ḿ and
AnnRn(Nn) ∩ Sn 6= ∅ or Ń is an Ś-second submodule of Ḿ and Nn is
an Sn-second submodule of Mn. Now the rest follows from induction
hypothesis and [17, Theorem 2.12]. �

For a submodule N of an R-module M the second radical (or second
socle) of N is defined as the sum of all second submodules of M contained
in N and it is denoted by sec(N) (or soc(N)). In case N does not contain
any second submodule, the second radical of N is defined to be (0) (see
[12] and [4]).

Theorem 3.28. Let M be a finitely generated comultiplication R-
module. If N is a S-2-absorbing second submodule of M , then sec(N)
is a S-2-absorbing second submodule of M .

Proof. Let N be a S-2-absorbing second submodule of M . By Propo-
sition 3.14 (a), AnnR(N) is an S-2-absorbing ideal of R. Thus by
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Lemma 2.6,
√

AnnR(N) is an S-2-absorbing ideal of R. By [6, 2.12],
AnnR(sec(N)) =

√
AnnR(N). Therefore, AnnR(sec(N)) is an S-2-

absorbing ideal of R. Now the result follows from Lemma 3.16. �

Proposition 3.29. Let S be a multiplicatively closed subset of R and
f : M → Ḿ be a monomorphism of R-modules. Then we have the
following.

(a) If N is an S-2-absorbing second submodule of M , then f(N) is an
S-2-absorbing second submodule of Ḿ .

(b) If Ń is an S-2-absorbing second submodule of Ḿ and Ń ⊆ f(M),
then f−1(Ń) is an S-2-absorbing second submodule of M .

Proof. (a) As AnnR(N) ∩ S = ∅ and f is a monomorphism, we have
AnnR(f(N))∩S = ∅. Let a, b ∈ R. Since N is an S-2-absorbing second
submodule of M , there exists a fixed s ∈ S such that s2abN = s2aN or
s2abN = s2bN or s3abN = 0. Thus s2abf(N) = s2af(N) or s2abf(N) =
s2bf(N) or s3abf(N) = 0, as needed.

(b) AnnR(Ń)∩ S = ∅ implies that AnnR(f−1(Ń))∩ S = ∅. Now let
a, b ∈ R. As Ń is an S-2-absorbing second submodule of Ḿ , there exists
a fixed s ∈ S such that s2abŃ = s2aŃ or s2abŃ = s2bŃ or s3abŃ = 0.
Therefore, s2abf−1(Ń) = s2af−1(Ń) or s2abf−1(Ń) = s2bf−1(Ń) or
s3abf−1(Ń) = 0, as requested. �

Theorem 3.30. Let S be a multiplicatively closed subset of R and let
M be an R-module. If E is an injective R-module and N is an S-2-
absorbing submodule of M such that AnnR(HomR(M/N,E)) ∩ S 6= ∅,
then HomR(M/N,E) is a S-2-absorbing second R-module.

Proof. Let a, b ∈ R. Since N is an S-2-absorbing submodule of M , there
is a fixed s ∈ S such that either (N :M abs2) = (N :M as2) or (N :M
abs2) = (N :M bs2) or (N :M abs3) = M by Theorem 2.1. Since E is
an injective R-module, by replacing M with M/N in [5, Theorem 3.13
(a)], we have HomR(M/(N :M a), E) = aHomR(M/N,E). Therefore,

abs2HomR(M/N,E) = HomR(M/(N :M abs2), E) =

HomR(M/(N :M as2), E) = as2HomR(M/N,E)
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or
abs2HomR(M/N,E) = HomR(M/(N :M abs2), E) =

HomR(M/(N :M bs2), E) = bs2HomR(M/N,E)

or
abs3HomR(M/N,E) = HomR(M/(N :M abs3), E) =

HomR(M/M,E) = 0,

as needed �

Theorem 3.31. Let M be a S-2-absorbing second R-module and F be
a right exact linear covariant functor over the category of R-modules.
Then F (M) is a S-2-absorbing second R-module if AnnR(F (M))∩S 6= ∅.

Proof. This follows from [5, Lemma 3.14] and Theorem 3.5 (a) ⇔ (b).
�
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