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Abstract. Let R be a commutative ring with identity, S be a mul-
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paper, we introduce and investigate some properties of the notion of
S-2-absorbing second submodules of M as a generalization of S-second
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we obtain some results concerning S-2-absorbing submodules of M.

AMS Subject Classification: 13C13, 13C05

Keywords and Phrases: Second submodule, multiplicatively closed
subset, S-second submodule, S-prime submodule, S-2-absorbing sub-
module, S-2-absorbing second submodule.

1 Introduction

Throughout this paper, R will denote a commutative ring with identity
and Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be
prime if for any r € R and m € M with rm € P, we have m € P or
r € (P:g M) [11]. A non-zero submodule N of M is said to be second
if for each a € R, the homomorphism N % N is either surjective or zero
[27]. A proper ideal I of R is called a 2-absorbing ideal of R if whenever
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a,b,c € R and abc € I, then ab € I or ac € I or bc € I [10]. A proper
submodule N of M is called a 2-absorbing submodule of M if whenever
abm € N for some a,b € R and m € M, then am € N or bm € N
or ab € (N :g M) [13, 22]. A non-zero submodule N of M is said to
be a strongly 2-absorbing second submodule of M if whenever a,b € R,
K is a submodule of M, and abN C K, then aN C K or bN C K or
ab € Anng(N) [3].

A non-empty subset S of R is called a multiplicatively closed subset
of Rif (1) 0 ¢ S, (ii) 1 € S, and (iii) s§ € S for all s,$ € S [26]. Let S be
a multiplicatively closed subset of R. A submodule P of an R-module
M with (P :p M)NS =0 is said to be an S-prime submodule of M if
there exists a fixed s € S, and whenever am € P, then sa € (P :g M) or
sm € P for each a € R, m € M [24]. Particularly, an ideal I of R is said
to be an S-prime ideal if I is an S-prime submodule of the R-module R.
A submodule N of an R-module M with Anng(N)NS = ( is said to be
an S-second submodule of M if there exists a fixed s € S, and whenever
rN C K, where r € R and K is a submodule of M, then rsN = 0 or
sN C K [17].

Let M be an R-module and .S be a multiplicatively closed subset of R.
In [25], the authors introduced the notion of S-2-absorbing submodules
of M which is a generalization of S-prime submodules and 2-absorbing
submodules and investigated some properties of this class of submodules.
A submodule P of M is said to be an S-2-absorbing if (P :g M)NS =)
and there exists a fixed s € S such that abm € P for some a,b € R
and m € M implies that sab € (P :g M) or sam € P or sbm € P.
In particular, an ideal I of R is said to be an S-2-absorbing ideal if I
is an S-2-absorbing submodule of the R-module R [25]. Also, for the
some recent works on S-version of some algebraic structures, we refer
the reader to [1, 16, 23, 28].

The main purpose of this paper is to introduce the notion of S-2-
absorbing second submodules of an R-module M as a generalization of
S-second submodules and strongly 2-absorbing second submodules of
M. Also, this can be regarded as a dual notion of the S-2-absorbing
submodules of M. We provide some information about this class of
submodules. Moreover, we investigate some properties of S-2-absorbing
submodules of M.
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2 S-2-Absorbing Submodules

The following theorem gives a useful characterization of S-2-absorbing
submodules.

Theorem 2.1. Let S be a multiplicatively closed subset of R and N be
a submodule of an R-module M with (N :g M)NS = 0. Then N is S-2-
absorbing if and only if there is a fixed s € .S such that for every a,b € R,
we have either (N :3; s2ab) = (N :pr s%a) or (N :pr s2ab) = (N :pr s2b)
or (N :p s3ab) = M.

Proof. Let N be an S-2-absorbing submodule of M and m € (N :j
s2ab). Then (sa)(sb)m € N. Assume that (N :j; s3ab) # M, that is,
s3ab & (N :g M). So by assumption, either s2am € N or s?bm € N.
This implies that (N :p; s?ab) C (N :py s%a) U (N :py s2b). Clearly,
(N @y s%a) U (N :p s%b) C (N iy s%ab). So, (N oy s?a) U (N
s2b) = (N :p s?ab). As N is a submodule of M, it cannot be written
as union of two distinct submodules. Thus (N :3; s2ab) = (N s s%a)
or (N :p s?ab) = (N :p s%b). Conversely, let a,b € R and m € M
such that abm € N. Then m € (N :p s?ab). By given hypothesis,
we have (N :j; s2ab) = (N :p s?a) or (N :p s?ab) = (N 1y s%b) or
(N :pr s3ab) = M. Thus s?am € N or s’bm € N or s%ab € (N :g M).
Hence, s>am € N or s%bm € N or s3ab € (N :g M). Now by setting

s1 = 53, we get the result. O

Lemma 2.2. [9, Lemma 3.2] Let N be a submodule of an R-module M
and r € R. Then for every flat R-module F, we have F' ® (N :p r) =
(F QN ‘From T).

Theorem 2.3. Let S be a multiplicatively closed subset of R, N be an
S-2-absorbing submodule of an R-module M, and F be a flat R-module.
If(F®N :g FO@M)NS =0, then F®N is an S-2-absorbing submodule
of F® M.

Proof. Since N is an S-2-absorbing submodule of M, by Theorem 2.1,
we have either (N :ps s?ab) = (N :ps s2a) or (N :p s2ab) = (N :ps s2b)
or (N :p s3ab) = M for a,b € R. Assume that (N :j; s?ab) = (N
s2a). Then by Lemma 2.2, we have

(FON :pgu s2ab) = F&(N :p s2ab) = FQ(N :y s%a) = (FON :pguy s2a).
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If (N :p s3ab) = M, then by Lemma 2.2, we have
(F® N :pgy s%ab) = F @ (N :p s3ab) = F @ M.

Hence by Theorem 2.1, F' ® N is S-2-absorbing submodule of F' & M.
O

Theorem 2.4. Let S be a multiplicatively closed subset of R and F' be
a faithfully flat Rmodule. Then N is an S-2-absorbing submodule of M
if and only if F'® N is an S-2-absorbing submodule of ' ® M.

Proof. Let N be an S-2-absorbing submodule of M. Suppose (FQN :g
Fo M)NS # (. Then thereisant € (F® N :g F® M)NS. Thus
FtM CF®N. Hence, 0 - F®tM — F ® N is an exact sequence.
Since F' is a faithfully flat, 0 — tM — N is an exact which implies
that tM C N. Thus (N :g M) NS # 0, this is a contradiction. So
(FQN:g FoM)NS =0. Now by Theorem 2.3, we have F'® N is an
S-2-absorbing submodule of F' ® M. Conversely, suppose F'® N is an
S-2-absorbing submodule of F ® M. Then (FQ N :g FM)NS =1
implies that (N :g M)NS = 0. Let a,b € R. Then by Theorem 2.1, we
can assume that (F ® N :pgas s2ab) = (F ® N :pgu s%a). By Lemma
2.2, we have

F®(N :p s%ab) = (FON :pgar s2ab) = (FON :pgn s%a) = FR(N :p s%a).

So, 0 = F ® (N :py s%ab) — F @ (N :p s%a) — 0 is an exact sequence.
As F is a faithfully flat, 0 — (N :ps s2ab) — (N :ps s%a) — 0 is an exact
sequence. Thus (N :3s s2ab) = (N :js s%a) and so by Theorem 2.1, N is
S-2-absorbing. If (F® N :pgy s2ab) = F® M, then F® (N 1)y s3ab) =
(F® N :pgur s3ab) = F @ M. So,

0= F®(N:yabs®) = FM — 0

is an exact sequence. As F' is a faithfully flat, 0 — (N :; s3ab) —
M — 0 is an exact sequence. Thus (N :p s3an) = M. Hence N is an
S-2-absorbing submodule of M. O

Proposition 2.5. Let S be a multiplicatively closed subset of R and NV
be an S-2-absorbing submodule of an R-module M. Then the following
statements hold for some s € S.
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(a) (N :prth) € (N :ppts)or (N :ppth) € (N :ppsh) forallt,h € S.

(b) (N :g M) :g th) € (N :g M) :g ts) or (N :g M) :g th) C
((N:p M) :g sh) for all t,h € S.

Proof. (a) Let N be an S-2-absorbing submodule of M. Then there is
a fixed s € S. Take an element m € (N :ps th), where ¢t,h € S. Then
stm € N or shm € N or sth € (N :g M). As (N :g M)NS = (), we have
sth & (N :g M). If for each m € (N :p th), we have stm € N (resp.
shm € N), then we are done. So suppose that there are my € (N s th)
such that stm; ¢ N and mg € (N :p7 th) such that shmg ¢ N. Then
we conclude that shmy € N and stmgo € N. Now ht(mi +mz) € N
implies that hs(mi +mg) € N or st(m; + mg) € N. Thus stm; € N or
shmo € N, which is a desired contradiction.
(b) This follows from part (a). O

Lemma 2.6. Let S be a multiplicatively closed subset of R and I be
an S-2-absorbing ideal of R. Then /T is an S-2-absorbing ideal of R
and there is a fixed s € S such that sa® € I for every a € /1.

Proof. Clearly, as I is an S-2-absorbing ideal of R, there is a fixed
s € S such that sa® € I for every a € VI. Now let a,b,c € R such that
abc € V1. Then sa?b?c® = s(abc)? € I. Since I is a S-2-absorbing ideal
of R, we may assume that s2a?b?> € I. This implies that sab € VI, as
needed. U

Recall that an R-module M is said to be a multiplication module
if for every submodule N of M there exists an ideal I of R such that
N =1M [11].

Let N be a proper submodule of an R-module M. Then the M-
radical of N, denoted by rad(IN), is defined to be the intersection of all
prime submodules of M containing N [20].

Theorem 2.7. Let S be a multiplicatively closed subset of R and M
a finitely generated multiplication R-module. If N is an S-2-absorbing
submodule of M, then rad(N) is an S-2-absorbing submodule of M.

Proof. Since N is an S-2-absorbing submodule of M, we have (N :gp M)
is a S-2-absorbing ideal of R by [25, Proposition 3]. Thus by Lemma
2.6, /(N :g M) is an S-2-absorbing ideal of R. By [20, Theorem 4],
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(rad(N) :r M)) = /(N :g M). Therefore, (rad(N) :r M) is an S-2-
absorbing ideal of R. Now the result follows from [25, Proposition 3.

O

3 S-2-Absorbing Second Submodules

Definition 3.1. Let S be a multiplicatively closed subset of R and N
be a submodule of an R-module M such that Anng(N)NS = (. We say
that N is a S-2-absorbing second submodule of M if there exists a fixed
s € S and whenever abN C K, where a,b € R and K is a submodule
of M, implies either that saN C K or sbN C K or sabN = 0. In
particular, an ideal I of R is said to be an S-2-absorbing second ideal if
I is an S-2-absorbing second submodule of the R-module R. By a S-2-
absorbing second module, we mean a module which is a S-2-absorbing
second submodule of itself.

Lemma 3.2. Let S be a multiplicatively closed subset of R, I an ideal
of R, and let N be an S-2-absorbing second submodule of M. Then
there exists a fixed s € S and whenever a € R, K is a submodule of M,
and JaN C K, then asN C K or IsN C K or Ias C Anng(N).

Proof. Let asN ¢ K and Ias € Anng(N). Then there exists b € I
such that absN # 0. Now as N is a S-2-absorbing second submodule of
M, baN C K implies that bsN C K. We show that IsN C K. To see
this, let ¢ be an arbitrary element of I. Then (b+ c¢)aN C K. Hence,
either (b4 ¢)sN C K or (b+ c)as € Anng(N). If (b+ ¢)sN C K,
then since bsN C K we have csN C K. If (b+ c¢)as € Anng(N), then
cas ¢ Anng(N), but caN C K. Thus ¢sN C K. So, we conclude that
sIN C K, as requested. O

Lemma 3.3. Let S be a multiplicatively closed subset of R, I and J
be two ideals of R, let and N be a S-2-absorbing second submodule of
M. Then there exists a fixed s € S and whenever K is a submodule of
M and IJN C K, then sIN C K or sJN C K or IJs C Anng(N).

Proof. Let IsN ¢ K and JsN € K. We show that IJs C Anng(N).
Assume that ¢ € I and d € J. By assumption there exists a € I such that
asN ¢ K but aJN C K. Now Lemma 3.2 shows that aJs C Anng(N)
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and so (I\(K :gr N))Js C Anng(N). Similarly there exists b € (J\(K :g
N)) such that Ibs C Anngr(N) and also I(J \ (K :g N))s C Anng(N).
Thus we have abs € Anngr(N), ads € Anng(N) and cbs € Anng(N).
Asa+ce Tl and b+ d € J, we have (a + ¢)(b+ d)N C K. Therefore,
(a+c)sN C K or (b+d)sN C K or (a+c¢)(b+ d)s € Anng(N).
If (a4 ¢)sN C K, then ¢sN ¢ K. Hence ¢ € I\ (K :g N) which
implies that c¢ds € Anng(N). Similarly if (b + d)sN C K, we can
deduce that cds € Anng(N). Finally if (a+c¢)(b+d)s € Anng(N), then
(ab+ ad + ¢b + cd)s € Anng(N) so that cds € Anng(N). Therefore,
IJs C Anng(N). O

Let M be an R-module. A proper submodule N of M is said to
be completely irreducible if N = (;,c; N;, where {N;}icr is a family of
submodules of M, implies that N = N; for some i € I. It is easy to see
that every submodule of M is an intersection of completely irreducible
submodules of M. Thus the intersection of all completely irreducible
submodules of M is zero. [18].

Remark 3.4. Let N and K be two submodules of an R-module M. To
prove N C K, it is enough to show that if L is a completely irreducible
submodule of M such that K C L, then N C L [5].

Let S be a multiplicatively closed subset of R and M be an R-module.
S-2-absorbing second submodules of M can be characterized in various
ways as we demonstrate in the following theorem.

Theorem 3.5. Let S be a multiplicatively closed subset of R. For a
submodule N of an R-module M with Anng(N) NS = 0 the following
statements are equivalent:

(a) N is an S-2-absorbing second submodule of M;

(b) There exists a fixed s € S such that s?abN = s?aN or s?abN =
s2bN or s3abN = 0 for each a,b € R;

(c) There exists a fixed s € S and whenever abN C L; N Ly, where
a,b € R and Ly, Lo are completely irreducible submodules of M,
implies either that absN = 0 or saN C L1 N Ly or sbN C L1 N Lo.

(d) There exists a fixed s € S, and IJN C K implies either that
sIJ C Annr(N) or sIN C K or sJN C K for each ideals I, J of
R and submodule K of M.
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Proof. (b) = (a) Let a,b € R and K be a submodule of M with abN C
K. By part (b), there exists a fixed s € S such that s?abN = s?alN
or s?abN = s$2bN or s3abN = 0. Thus either s3abN = 0 or s3aN C
s2aN = abs®’N C 2K C K or $3bN C s2bN = abs®N C 2K C K.
Therefore, by setting § := s, we have either saN C K or $bN C K or
sabN = 0, as needed.

(a) = (c) This is clear.

(¢) = (b) By part (c), there exists a fixed s € S. Assume that
there are a,b € R such that s2abN # s?aN and s?abN # s?bN. Then
there exist completely irreducible submodules Ly and Lo of M such that
s?abN C Ly, s?abN C Lo, s’aN ¢ Ly, and s>bN ¢ Ly by Remark 3.6.
Now (as)(bs)N = s2abN C L; N Ly implies that either s?aN C L; N Lo
or s2bN C L1 N Ly or s3abN = 0 by part (c). If s2aN C Ly N Ly or
s?bN C LiNLs, then s?aN C L; or s>2bN C Lo, which are contradiction.
Thus s3abN = 0, as required.

(a) = (d) By Lemma 3.3.

(d) = (a) Take a,b € R and K a submodule of M with abN C K.
Now, put I = Ra and J = Rb. Then we have IJN C K. By assumption,
there is a fixed s € S such that either sI.J = s(Ra)(Rb) C Anng(N) or
sIN C K or sJN C K and so either sab € Annr(N) or saN C K or
sbN C K, as needed. O

Remark 3.6. Let M be an R-module and S a multiplicatively closed
subset of R. Clearly, every S-second submodule of M and every strongly
2-absorbing second submodule N of M with Anng(N)NS =0 is an S-
2-absorbing second submodule of M. But the converse is not true in
general, as we can see in the following examples.

Example 3.7. Consider Z4 as an Z-module. Clearly, Z, is not a strongly
2-absorbing second Z-module. Set S := Z \ 2Z. Then for each s € S,
27,4 = 284 # sly = 7.4 and 2sZ4 # 0 implies that Z,4 is not an S-second
Z-module. But, if we consider s = 1, and n,m € Z, then we have three
cases:

Case 1 If n # 2k and m # 2k for each k € N, then

nm(1)2Zy = Zy = (1)*nZ4 = (1)*mZy.
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Case 2 If n = 2k; and m = 2ky for some ki, ko € N, then nm(1)3Z, =
0.

Case 3 If n = 2k; for some k; € N and m # 2k for each k € N, then

nm(1)224 = 224 = (1)2nZ4.

Thus by Theorem 3.5 (b) = (a), Z4 is an S-2-absorbing second Z-
module.

Example 3.8. Consider the Z-module M = Z,~ @ Zy,, where p # q are
prime numbers. Then M is not a strongly 2-absorbing second Z-module
since

PgM = Zipoo © 0 # ZLpoo ® plipg = pM,

PgM = Zipoo © 0 # Lpoo © qlipg = qM,

and pgM = Zy~ @© 0 # 0. Now, take the multiplicatively closed subset
S =7\ {0} and put s = pq. Then s*pgM = Zp~ © 0 = s>pM implies
that M is an S-2-absorbing second Z-module by Theorem 3.5 (b) = (a).

The following lemma is known, but we write it here for the sake of
completeness.

Lemma 3.9. Let M be an R-module, S a multiplicatively closed subset
of R, and N be a finitely generated submodule of M. If S™'N C S!K
for a submodule K of M, then there exists an s € S such that sN C K.

Proof. This is straightforward. O

Let S be a multiplicatively closed subset of R. Recall that the satu-
ration S* of S is defined as S* = {z € R : z/1 is a unit of ST'R}. Tt
is obvious that S* is a multiplicatively closed subset of R containing S

[19].

Proposition 3.10. Let S be a multiplicatively closed subset of R and
M be an R-module. Then we have the following.

(a) If N is a strongly 2-absorbing second submodule of M such that SN
Anng(N) = 0, then N is a S-2-absorbing second submodule of M.
In fact if S C w(R) and N is an S-2-absorbing second submodule
of M, then N is a strongly 2-absorbing second submodule of M.
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(b) If Sy C Sy are multiplicatively closed subsets of R and N is an S1-
2-absorbing second submodule of M, then N is an S>-2-absorbing
second submodule of M in case Anng(N)N Sy = 0.

(c) N is an S-2-absorbing second submodule of M if and only if N is
an S*-2-absorbing second submodule of M

(d) If N is a finitely generated S-2-absorbing second submodule of M,
then S™'N is a strongly 2-absorbing second submodule of S~1 M.

Proof. (a) and (b) These are clear.

(c) Assume that N is an S-2-absorbing second submodule of M. We
claim that Anng(N)NS* = 0. To see this assume that there exists an
x € Anng(N)NS* Asz € S*, x/1 is a unit of S~'R and so (z/1)(a/s) =
1 for some ¢ € R and s € S. This yields that us = uxa for some
u € S. Now we have that us = uza € Anng(N)N S, a contradiction.
Thus, Anng(N) N S* = 0. Now as S C S* by part (b), N is an
S*-2-absorbing second submodule of M. Conversely, assume that N
is an S*-2-absorbing second submodule of M. Let rtN C K for some
r,t € R. As N is an S*-2-absorbing second submodule of M, there is
a fixed x € S* such that xrt € Anng(N) or zrN C K or ztN C K.
As z/1 is a unit of ST!R, there exist u,s € S and a € R such that
us = uxa. Then note that (us)rt = vazrt € Anng(N) or us(txN) C K
or us(reN) C K. Therefore, N is a S-2-absorbing second submodule of
M.

(d) As N is an S-2-absorbing second submodule of M, there is a
fixed s € S. If ST'N = 0, then as N is finitely generated, there is
an t € S such that ¢ € Anng(N) by Lemma 3.9. Thus Anng(N) N
S # 0, a contradiction. So, SN # 0. Now let a/t,b/h € S™IR.
As N is an S-2-absorbing second submodule of M, we have either
abs’N = as’N or abs?N = bs’N or abs’N = 0. This implies that
either (a/t)(b/h)S™'N = (a/t)S™'N or (a/t)(b/h)S™'N = (b/h)S™IN
or (a/t)(b/h)STIN =0, as needed. [

The following example shows that the converse of Proposition 3.10
(d) is not true in general.

Example 3.11. Consider the Z-module M = Q9 Q®Q, where Q is the
field of rational numbers. Take the submodule N = Z & Z & 0 and the
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multiplicatively closed subset S = Z\ {0}. Now, take s € S. Then there
exist prime numbers p # ¢ such that ged(p,s) = ged(q,s) = 1. Then
one can see that s’pgN # s*pN, s’pgN # s2¢N, and s3pgN # 0. Thus
N is not an S-2-absorbing second submodule of M. Since S™'Z = Q is
a field, STH( Q@ Q@ Q) is a vector space and so the non-zero submodule
SN is a strongly 2-absorbing second submodule of S~1(Q ® Q @ Q).

Theorem 3.12. Let S be a multiplicatively closed subset of R and N
be a submodule of an R-module M such that Anng(N) NS = (. Then
N is an S-2-absorbing second submodule of M if and only if s3N is a
strongly 2-absorbing second submodule of M for some s € S.

Proof. Let s3N be a strongly 2-absorbing second submodule of M for
some s € S and a,b € R. Then abs®N = as®>N or abs?N = bs>N or
abs3N = 0 by [3, Theorem 3.3]. Hence s°abN = s5aN or s6abN = bV
or s?7abN = 0. Set t := s3. Then t?abN = t?aN or t?abN = t>bN
or t3abN = 0. Thus by Theorem 3.5 (b) = (a), N is an S-2-absorbing
second submodule of M. Conversely, suppose that N is an S-2-absorbing
second submodule of M and a,b € R. Then for some s € S we have
s2abN = s%aN or s?abN = s?bN or s3abN = 0 by Theorem 3.5 (b) =
(a). This implies that abs®’N = as®N or abs>N = bs3N or abs’N = 0.
We not that Annr(N)NS = (), implies that s>/N # 0. Therefore, by [3,
Theorem 3.3], s3N is a strongly 2-absorbing second submodule of M.
O

Proposition 3.13. Let .S be a multiplicatively closed subset of R and
M be an R-module. Let N C K be two submodules of M and K be a
S-2-absorbing second submodule of M. Then K/N is a S-2-absorbing
second submodule of M/N.

Proof. This is straightforward. O

Proposition 3.14. Let S be a multiplicatively closed subset of R and
N be an S-2-absorbing second submodule of an R-module M. Then we
have the following.

(a) Annp(N) is a S-2-absorbing ideal of R.

(b) If K is a submodule of M such that (K :g N)NS = 0, then
(K :gr N) is a S-2-absorbing ideal of R.
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(c) There exists a fixed s € S such that s"N = s"*!N| for all n > 3.

Proof. (a) Let a,b,c € R and abc € Anngr(N). Then there exists a
fixed s € S and abN C abN implies that asN C abN or bsN C abN
or sabN = 0. If sabN = 0, then we are done. If asN C abN, then
casN C cabN = 0. In other case, we do the same.

(b) Let a,b,c € R and abc = (ac)b € (K :g N). Then there exists
a fixed s € S such that acsN C K or cbsN C bsN C K or sabc €
Anng(N) C (K :g N), as needed.

(¢) As N is an S-2-absorbing second submodule of M, there ex-
ists a fixed s € S. It is enough to show that s3N = s*N. It is
clear that s*N C s>N. Since N is an S-2-absorbing second submodule,
(s2)(s?)N = s*N C s*N implies that either s>N C s*N or s°N = 0. If
s°N = 0, then s® € Anng(N) NS = () which is a contradiction. Thus
s3N C s*N, as desired. O

Proposition 3.15. Let .S be a multiplicatively closed subset of R and
N be a S-2-absorbing second submodule of M. Then the following
statements hold for some s € S.

(a) tsN CthN or hsN C thN for all t,h € S.

(b) (Anng(N) :g th) C (Anngr(N) :g ts) or (Anng(N) :g th) C
(Anng(N) :g sh) for all t,h € S.

Proof. (a) Let N be a S-2-absorbing second submodule of M. Then
there is a fixed s € S. Let L be a completely irreducible submodule of
M such that thN C L, where t,h € S. Then tsN C L or shN C L or
sth € Anng(N). As Anng(N) NS =0, we have sth ¢ Anng(N). If for
each completely irreducible submodule of M, we have tsN C L (resp.
shN C L), then we are done by Remark 3.6. So suppose that there are
completely irreducible submodules L1 and Lo of M such that tsN ¢ L
and shiN € Ls. Then since N is a S-2-absorbing second submodule of
M, we conclude that hsN C L1 and stN C Lo. Now htN C L1 N Lo
implies that hsN C Ly N Ly or stN C Ly N Ly. Thus tsN C Ly or
shIN C Lo, a contradiction.

(b) This follows from Proposition 3.15 (a) and Proposition 2.5 (a).
O
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An R-module M is said to be a comultiplication module if for every
submodule N of M there exists an ideal I of R such that N = (0 :ps I),
equivalently, for each submodule N of M, we have N = (0 :py Anng(N))

[3]-

Lemma 3.16. Let S be a multiplicatively closed subset of R and N
be a submodule of a comultiplication R-module M. If Anng(N) is a

S-2-absorbing ideal of R, then N is a S-2-absorbing second submodule
of M.

Proof. Let a,b € R, K be a submodule of M, and abN C K. Then
we have Anng(K)abN = 0. As Anng(N) is a S-2-absorbing ideal of
R, there is a fixed s € S and so sAnng(K)aN = 0 or sAnng(K)bN =
0 or sabN = 0. If sabN = 0, we are done. If sAnngr(K)aN = 0
or sAnnr(K)bN = 0, then Anngr(K) C Anng(salN) or Anngr(K) C
Annpg(sbN). Hence, saN C K or sbN C K since M is a comultiplication
R-module. (]

The following example shows that the Lemma 3.16 is not satisfied in
general.

Example 3.17. By [3, 3.9], the Z-module Z is not a comultiplication
Z-module. Take the multiplicatively closed subset S = Z \ {0}. The
submodule pZ of Z, where p is a prime number, is not S-2-absorbing
second submodule. But Annz(pZ) = 0 is an S-2-absorbing ideal of Z.

Proposition 3.18. Let .S be a multiplicatively closed subset of R and
M be an R-module. Then we have the following.

(a) If M is a multiplication S-2-absorbing second R-module, then ev-
ery submodule N of M with (N :g M)NS =0 is a S-2-absorbing
submodule of M.

(b) If M is a comultiplication R-module such that the zero submodule
of M is a S-2-absorbing submodule, then every submodule N of
M with Anng(N) NS = 0 is a S-2-absorbing second submodule
of M.

Proof. (a) Let M is a multiplication S-2-absorbing second R-module
and N be a submodule of M with (N :g M)NS = . Then by Proposi-
tion 3.14 (b), (N :gr M) is an S-2-absorbing ideal of R. Now the result
follows from [25, Proposition 3].
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(b) Let M is a comultiplication R-module with the zero submodule
of M is a S-2-absorbing submodule and N be a submodule of M with
Annp(N) NS = 0. We show that Anngr(N) is an S-2-absorbing ideal
of R. To see this let a,b,c € R and abc = (ac)b € Anng(N). Then
there exists a fixed s € S such that acsN = 0 or ¢cbsN C bsN = 0
or sabc € Anngp(M) C Anng(N). Thus Anng(N) is an S-2-absorbing
ideal of R. Now the result follows from Lemma 3.16. O

An R-module M satisfies the double annihilator conditions (DAC for
short) if for each ideal I of R we have I = Anng((0 :ar I)) [15]. An
R-module M is said to be a strong comultiplication module if M is a
comultiplication R-module and satisfies the DAC conditions [7].

Theorem 3.19. Let M be a strong comultiplication R-module and
N be a submodule of M such that Anng(N) NS = @, where S is a
multiplicatively closed subset of R. Then the following are equivalent:

(a) N is an S-2-absorbing second submodule of M;
(b) Anng(N) is a S-2-absorbing ideal of R;

(¢) N =(0:p I) for some S-2-absorbing ideal I of R with Anngr(NN) C
1.

Proof. (a) = (b) This follows from Proposition 3.14 (a).
(b) = (c) As M is a comultiplication R-module, N = (0 :3y Anng(N)).
Now the result is clear.
(c) = (a) As M satisfies the DAC conditions, Anngr((0:a I)) = I.
Now the result follows from Lemma 3.16. g

Lemma 3.20. Let S be a multiplicatively closed subset of R and M be
an R-module. If N is an S-second submodule of M. Then there exists
a fixed s € S such that abN C K, where a,b € R and K is a submodule
of M implies that either sa € Anng(N) or sb € Anng(N) or sN C K

Proof. Let N be an S-second submodule of M and abN C K, where
a,b € R and K is a submodule of M. Then aN C (K :j; b). Since N
is an S-second submodule of M, there exists a fixed s € S such that
sa € Anng(N) or sbN C K. Now, we will show that sbN C K implies
that sb € Anng(N) or sN C K. Assume that bN C (K :ps s). Since N
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is an S-second submodule, we get either sb € Anng(N) or 2N C K. If
sb € Anng(N), then we are done. So assume that s?N C K. By [17,
Lemma 2.13 (a)], we know that sN C s?N. Thus we have sN C K.
U

Theorem 3.21. Let S be a multiplicatively closed subset of R and
M be an R-module. Then the sum of two S-second submodules is an
S-2-absorbing second submodule of M.

Proof. Let N1, Ny be two S-second submodules of M and N = N+ Ns.
Let abN C K for some a,b € R and submodule K of M. Since V; is an
S-second submodule submodule of M, there exists a fixed s; € S such
that sja € Anng(Ny) or s1b € Anng(Ny) or s1N; C K by Lemma 3.20.
Also, as Ns is an S-second submodule of M, there exists a fixed sy € S
such that ssa € Anng(N2) or sob € Anngr(N2) or saNo C K by Lemma
3.20. Without loss of generality, we may assume that sja € Anng(Ny)
and sosNo C K. Now, put s = s159 € S. This implies that saN C K
and hence N is an S-2-absorbing second submodule of M. ([

The following example shows that sum of two S-2-absorbing second
submodules is not necessarily S-2-absorbing second submodule.

Example 3.22. Consider M = Zyn @ Zg¢n as Z-module, where n € N
and p, ¢ are distinct prime numbers. Set S = {z € Z : ged(z,pq) =
1}. Then S is a multiplicatively closed subset of Z. One can see that
Zin ®0 and 0D Zgn both are S-2-absorbing second submodules. However
P"M CO0® Zgn, P oM € 0@ Zgn, prM € 0@ Zgn, and xp™ M # 0 for
each € S implies that M is not an S-2-absorbing second Z-module.

Let M be an R-module. The idealization R(+)M = {(a,m) : a €
R,m € M} of M is a commutative ring whose addition is componentwise
and whose multiplication is defined as (a,m)(b,m) = (ab, arn + bm) for
each a,b € R, m,mh € M [21]. If S is a multiplicatively closed subset of
R and N is a submodule of M, then S(+)N = {(s,n):s€ S,ne€ N} is
a multiplicatively closed subset of R(+)M [2].

Proposition 3.23. Let M be an R-module and let I be an ideal of R
such that I C Anng(M). Then the following are equivalent:

(a) I is a strongly 2-absorbing second ideal of R;
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(b) I(+)0 is a strongly 2-absorbing second ideal of R(+4)M.
Proof. This is straightforward. O

Theorem 3.24. Let S be a multiplicatively closed subset of R, M be
an R-module, and I be an ideal of R such that I C Anng(M) and
INS = 0. Then the following are equivalent:

(a) I is an S-2-absorbing second ideal of R;
(b) I(+)0 is an S(+)0-2-absorbing second ideal of R(+)M;
(¢) I(+)0 is an S(+)M-2-absorbing second ideal of R(+)M.

Proof. (a) = (b) Let (a,m), (b,1h) € R(+)M. As I is an S-2-absorbing
second ideal of R, there exists a fixed s € S such that abs’I = as?I or
abs?I = bs?I or abs®T = 0. If abs®*I = 0, then (a, m)(b,1m)(s®,0)(I(+)0) =
0. If abs®’I = as®I, then we claim that (a,m)(b,)(s% 0)(I(+)0) =
(a,m)(s%,0)(I(+)0). To see this let (s?z,0)(a,m) = (s%,0)(x,0)(a,m) €
(52,0)(a,m)(I(+)0). As abs’I = as’I, we have s’ax = abs?y for some
yel. Thusasye I C Anng(M),

(32, 0)(z,0)(a,m) = (82.%'@,0) = (abs’y,0) = (32, 0)(y,0)(a,m)(b,1h).

Hence, (s%,0)(z,0)(a,0) € (a,m)(b,77)(s%,0)(I(+)0) and so we have
(a,m)(s,0)(I(+)0) C (a,m)(b,mm)(s%,0)(I(+)0). Since the inverse in-
clusion is clear we reach the claim.

(b) = (c) Since S(+)0 C S(+)M, the result follows from Proposition
3.10 (b).

(¢) = (a) Let a,b € R. As I(+)0 is an S(+)M-2-absorbing second
ideal of R(+4)M, there exists a fixed (s, m) € S(+)M such that

(a,0)(b,0)(s,m)*((+)0) = (a, 0)(s,m)*(I(+)0)

or

(a7 0)([77 O)(Sv m)2(1(+)0) = (b7 0)(3’ m)2(1(+)0)

(a,0)(b,0)(s,m)>(I(+)0) = 0.
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If (ab,0)(s,m)3(I(+)0) = 0, then for each abs®*z € abs®I we have
0 = (ab,0)(s,m)3(x,0) = (ab,0)(s>,3sm)(x,0) = (abs®, 3absm)(x,0)

= (abs®,0)(z,0) = (abs’z,0).

Thus abs*I = 0. If (ab,0)(s,m)?(I(+)0) = (a,0)(s,m)?(I(+)0), then
we claim that abs?I = as?I. To see this, let s’za € s?al. Then for some
yel, asx €l C Anng(M) we have

(sax,0) = (s*ax, 2s2m) = (s,m)*(a,0)(x,0) = (s,m)?(aby,0)

= (s%aby, 2sabmy) = (s*aby,0).

Hence, s?az € abs?I and so s?al C s*abl Thus s?al = s*abl. Similarly,
if (ab,0)(s,m)?(I(+)0) = (b,0)(s,m)?(I(+)0), then s*bI C s?abl, and
so s2bI = s?abl. Il

Let R; be a commutative ring with identity, M; be an R;-module
for each i = 1,2,...,m, and n € N. Assume that M = M; x My x
... X M, and R = Ry X Ry x ... Xx R,,. Then M is clearly an R-module
with componentwise addition and scalar multiplication. Also, if S; is
a multiplicatively closed subset of R; for each ¢ = 1,2,...,n, then S =
S1 X So X ... x S, is a multiplicatively closed subset of R. Furthermore,
each submodule N of M is of the form N = Ny x Ny X ... X N,,, where
N, is a submodule of M; for each i = 1,2,...,n.

Theorem 3.25. Let R = Ry X Ry and S = 51 X S5 be a multiplicatively
closed subset of R, where R; is a commutative ring with 1 # 0 and S; is a
multiplicatively closed subset of R; for each ¢ = 1,2. Let M = M x M>
be an R-module, where M; is an Ri-module and M5 is an Rs-module.
Suppose that N = N; x Ny is a submodule of M. Then the following
conditions are equivalent:

(a) N is an S-2-absorbing second submodule of M;

(b) Either Anng, (N1)NS1 # 0 and Ny is a Sa-2-absorbing second sub-
module of My or Anng,(N2) NSs # 0 and Ny is a S1-2-absorbing
second submodule of M; or Nj is an Si-second submodule of M;
and Ny is an Sy-second submodule of M .
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Proof. (a) = (b) Let N = N; x Ny be a S-2-absorbing second sub-
module of M. Then Anng(N) = Anng,(N1) X Anng,(N2) is an S-2-
absorbing ideal of R by Proposition 3.14 (a). Thus, either Anngr(N1)N
S1 =0 or Anng(N2) NSy = (. Assume that Anng(N1) NS # 0. We
show that Ny is an Ss-2-absorbing second submodule of Ms. To see
this, let t9r9No C Ko for some to,79 € Ry and a submodule Ky of Ms.
Then (1,%2)(1,72)(N1 x No) € M; x Ky. As N is an S-2-absorbing
second submodule of M, there exists a fixed (s1,s2) € S such that
(31, 82)(1, TQ)(Nl X Ng) - M1 X K2 or (81, SQ)(l,tg)(Nl X Ng) - M1 X K2
or (81, 82)(1,t2)(1, T‘Q)(Nl X NQ) = 0. It follows that either SQ’FQNQ - K2
or satoNg C Ko or sotorasNo = 0 and so N is an Ss-2-absorbing second
submodule of M. Similarly, if Anng,(N2) N Se # 0, then one can see
that NV; is an S7-2-absorbing second submodule of M;. Now assume
that Anng(N1)NS; = 0 and Anng(N2) NSy = 0. We will show that Ny
is an Sy-second submodule of M; and N3 is an Ss-second submodule of
My. First, note that there exists a fixed s = (s1, s2) € S satisfying N to
be an S-2-absorbing second submodule of M. Suppose that V7 is not an
Si-second submodule of M;. Then there exists a € R; and a submodule
K of My such that aN1 C K; but sja € Anng(N1) and s1 N7 € Kj.
On the other hand Anng(N2) NSy = 0 and sy & Anng(N2) so that
salNg # 0. Thus by Remark 3.6, there exists a completely irreducible
submodule Lo of M5 such that soNo & Ls. Also note that

(CL, 1)(1,0)N = (a, 1)(1,0)(N1 X Ng) = CLNl x 0 C K1 x 0 C K1 X LQ.

As N is an S-2-absorbing second submodule of M, either (s1, s2)(1,0)N C
K1 x Ly or (s1,s2)(a,1)N C Kj x Ly or (s1,s2)(a,1)(1,0)N = 0. Hence,
we conclude that either s N1 C K or ss Ny C Lo or sjaN; = 0, which
them are contradictions. Thus, N7 is an Si-second submodule of M.
Similar argument shows that Ny is an Ss-second submodule of Ms.

(b) = (a) Assume that Ny is an S;-2-absorbing second submodule of
My and Annp,(N3) NSy # (0. we will show that N is an S-2-absorbing
second submodule of M. Then there exists an so € Annpg,(N2)NSs. Let
(r1,7m2)(t1,t2) (N1 X N2) C Ky x Ky for some t;,r; € R; and submodule
K; of M;, where ¢ = 1,2. Then rmt;N7 C K;. As Np is an S1-2-
absorbing second submodule of My, there exists a fixed s; € S; such that
s111N1 C Ky or s1t1 N1 C K3 or s1r1t1 N1 = 0. Now we set s = (s1, $2).
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Then S(’I“l,TQ)(Nl X NQ) - Kl X Kg or S(tl,tg)(Nl X NQ) - Kl X KQ
or s(r1,r2)(ti,t2)(N1 X Na) = 0. Therefore, N is an S-2-absorbing
second submodule of M. Similarly one can show that if Ns is an So-2-
absorbing second submodule of My and Anng, (N1) NSy # 0, then N
is an S-2-absorbing second submodule of M. Now assume that N is
an Si-second submodule of M7 and Ny is an Ss-second submodule of
Ms . Let a,b € Ry, x,y € Ry, K is a submodule of M; and K5 is a
submodule of M5y such that

(a,z)(b,y)N = (a,z)(b,y)(N1 x No C K71 X K.

Then we have abN; C K7 and xyNs C Ks. Since Ny is an Si-second
submodule of M, there exists a fixed s; € S7 such that either sja €
Annpg, (N1) or s1b € Anng,(N1) or s;N; C K; by Lemma 3.20. Simi-
larly, there exists a fixed sy € Sy such that either soz € Anng,(N2) or
soy € Annpg,(N2) or soNo C Ky by Lemma 3.20. Also without loss of
generality, we may assume that sja € Anng,(Ny) and saNo C Ky or
sia € Anng, (N1) and sz € Anng,(N2) or s1 N1 C K1 and so Ny C K.
If sya € Anng,(N1) and soNo C Ko, then we have

(81782)((17.%)(]\]1 X NQ) = slaNl X SQCCNQ CO0x KQ - Kl X KQ.

If sya € Anng, (N1) and sex € Anng,(Na2), then (s1, s2)(a, x)(b, y) (N1 x
NQ) =0. If sy N7 C K7 and s9Ny C K», then

(s1,82)(a,z)(b,y) (N1 x Na) C (s1,s2)N C K; x K.

Hence, N is an S-2-absorbing second submodule of M. O

The following example shows that if [Vy is an S7-2-absorbing second
submodule of M7 and Ny is an Ss-2-absorbing second submodule of My,
then N7 X Ny may not be an S; x S3-2-absorbing second submodule of
M x My in general.

Example 3.26. Consider the Z-modules M; = Zg and My = Z4. Let
S1 = Z\37Z and Sy = Z\2Z. Then M; and M are S; and Se-2-absorbing
second modules (see Example 3.7). But M = M; x M is not an S =
S} x Sy-2-absorbing second module since (1,2)(3,1)M C 3Zg x 274 but
for each s = (s1,s2) € S, s(3,1)M € 3Zg x 2Z4, s(1,2)M € 379 X 274,
and s(1,2)(3,1)M # 0.
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Theorem 3.27. Let M = My xMsyx...xM, bean R = RiXRaX...XR,,-
module and S = 57 x 59 X ... X S, be a multiplicatively closed subset of
R, where M; is an R;-module and .S; is a multiplicatively closed subset
of R; foreach i =1,2,...,n. Let N = Nj X Ny X ... x N, be a submodule
of M. Then the following are equivalent:

(a) N is an S-2-absorbing second submodule of M;

(b) Nj is an Sk-2-absorbing second submodule of Mj, for some k €
{1,2,...,n} and Anng,(N¢) NSy # 0 for each t € {1,2,...,n} \ {k}
or Ni, is an Sk,-second submodule of My, and N, is an Sk,-
second submodule of My, for some ki, k2 € {1,2,...,n} (k1 # ko)
and Annpg,(Ny) NSy # 0 for each ¢t € {1,2,...,n} \ {k1, ka}.

Proof. We apply induction on n. For n = 1, the result is true. If
n = 2, then the result follows from Theorem 3.25. Now assume that
parts (a) and (b) are equal when k£ < n. We shall prove (b) < (a)
when k = n. Put R = Rx Ry, M = M x M, and S = S x S,,,
where R = R1 X R2 X ... X Rnfl, M = M1 X M2 X ... X Mnfl, and S' =
S1 X8y x...x8,_1. Also, N = N x Ny, where N = N1 X NoX...XNp_q.
Then by Theorem 3.25, N is an S-2-absorbing second submodule of M
if and only if Ann R(N )N S # 0 and N, is an S,-2-absorbing second
submodule of M,, or N is an S—Q—absorbing second submodule of M and
Anng, (N,) NS, # 0 or N is an S-second submodule of M and N,, is
an Sp-second submodule of M,,. Now the rest follows from induction
hypothesis and [17, Theorem 2.12]. O

For a submodule N of an R-module M the second radical (or second
socle) of N is defined as the sum of all second submodules of M contained
in N and it is denoted by sec(N) (or soc(N)). In case N does not contain
any second submodule, the second radical of N is defined to be (0) (see
[19] and [1)).

Theorem 3.28. Let M be a finitely generated comultiplication R-
module. If N is a S-2-absorbing second submodule of M, then sec(N)
is a S-2-absorbing second submodule of M.

Proof. Let N be a S-2-absorbing second submodule of M. By Propo-
sition 3.14 (a), Anng(N) is an S-2-absorbing ideal of R. Thus by
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Lemma 2.6, \/Anng(N) is an S-2-absorbing ideal of R. By [0, 2.12],

Anng(sec(N)) = /Anng(N). Therefore, Anng(sec(N)) is an S-2-
absorbing ideal of R. Now the result follows from Lemma 3.16. g

Proposition 3.29. Let .S be a multiplicatively closed subset of R and
f: M — M be a monomorphism of R-modules. Then we have the
following.

(a) If N is an S-2-absorbing second submodule of M, then f(N) is an
S-2-absorbing second submodule of M.

(b) If N is an S-2-absorbing second submodule of M and N C f(M),
then f~!(N) is an S-2-absorbing second submodule of M.

Proof. (a) As Anng(N)N S = 0 and f is a monomorphism, we have
Anng(f(N))NS =0. Let a,b € R. Since N is an S-2-absorbing second
submodule of M, there exists a fixed s € S such that s2abN = s?aN or
s2abN = sbN or s3abN = 0. Thus s?abf(N) = s2af(N) or s2abf(N) =
s2bf(N) or s2abf(N) = 0, as needed.

(b) Anng(N)N S = 0 implies that Anng(f~1(N))NS = 0. Now let
a,be R. As N is an S-2-absorbing second submodule of M , there exists
a fixed s € S such that s2abN = s2aN or s2abN = s2bN or s3abN = 0.
Therefore, s2abf *(N) = s2af Y(N) or s2abf  (N) = s2bf }(N) or
s3abf_1(N) = 0, as requested. O

Theorem 3.30. Let S be a multiplicatively closed subset of R and let
M be an R-module. If F is an injective R-module and N is an S-2-
absorbing submodule of M such that Anng(Hompgr(M/N,E)) NS # 0,
then Hompr(M /N, E) is a S-2-absorbing second R-module.

Proof. Let a,b € R. Since N is an S-2-absorbing submodule of M, there
is a fixed s € S such that either (N :p; abs?) = (N :p as?) or (N 1y
abs?) = (N :p; bs?) or (N :pr abs®) = M by Theorem 2.1. Since F is
an injective R-module, by replacing M with M /N in [5, Theorem 3.13
(a)], we have Homp(M /(N :pr a), E) = aHompg(M/N, E). Therefore,

abs’Homgr(M/N,E) = Homgr(M/(N :p; abs®), E) =

Hompr(M/(N :p as?), E) = as’Homp(M/N, E)
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or
abs’Hompr(M/N,E) = Homgr(M/(N 3 abs®), E) =
Hompg(M/(N :p bs%), E) = bs>Homp(M/N, E)
or
abs’ Homgr(M/N,E) = Homgr(M/(N :p; abs®), E) =
Homp(M/M,E) =0,
as needed [

Theorem 3.31. Let M be a S-2-absorbing second R-module and F' be
a right exact linear covariant functor over the category of R-modules.
Then F(M) is a S-2-absorbing second R-module if Anng(F(M))NS # 0.

Proof. This follows from [5, Lemma 3.14] and Theorem 3.5 (a) < (b).
g
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