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Abstract. In this paper, the dynamics of a modified Nicholson-Bailey
model as a discrete dynamical system has been studied. Local dynam-
ics in a neighborhood of boundary fixed points are investigated. It
is also proved that the model has a unique positive fixed point and a
Neimark-Sacker bifurcation emerges at this fixed point. Some numerical
simulations are presented to illustrate the analytical results.
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1 Introduction

Many of natural phenomena are described by mathematical models and
dynamical systems is a powerful tool for analyzing these models. Nowa-
days, mathematical modelling in population dynamics attract much at-
tention of researchers. A relation between populations of host and par-
asitoid become interesting research subject for many scientist, ecologist,
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biologist, etc. See [2, 3, 5, 11, 12, 15, 16, 17] and references therein for
instances.
One of the most popular models for many theoretical and experimen-
tal studies in ecology is Nicholson-Bailey host-parasitoid model [3]. In
this model, parasitoids search randomly for host and the host popula-
tion grows exponentially in the absence of parasitoids. Nicholson and
Bailey assume that the number of encounters are distributed randomly
among the available hosts, therefore they used the Poisson distribution:

P (n) = e−µµn

n! , where n is the number of encounters and µ is the mean of
encounters per host in one generation. Actually, they used the zero term
of a Poisson distribution with parameter the mean number of parasitoid
attacks per host, that is, P (0) = e−µ and µ =encounters/Hn = γPn.
Hence, their model is of the form

Hn+1 = rHne
−γPn ,

Pn+1 = sHn(1− e−γPn),

where, Hn and Pn represent the densities of the host and parasitoid
population at year n, respectively. Each host that survives to the end
of the season produces r hosts next year. In 1975 Beddington et al
[4] proposed a model to improve the Nicholson-Bailey model. These
authors added the effect of carrying capacity K (i.e. the maximum
population size that can be supported by the available and potential
limited resources) and represented the following model

Hn+1 = Hne
r(1−Hn/K)−γPn ,

Pn+1 = sHn(1− e−γPn).

In this model, in the absence of the parasitoid, the equation of the
host converts to the famous Ricker model. Some authors investigated
dynamics, stabilities and bifurcation of Bedington’s model[1, 14]. In
[2], authors investigated stability and bifurcations of the following host-
parasite model

Hn+1 = rHn(1−Hn)e−βPn ,
Pn+1 = Hn(1− e−βPn),

where, in the absence of parasite population, the equation of the host
becomes the famous logistic model. In this model a Neimark-Sacker and
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a period-doubling bifurcation occur.
Khan and Qureshi [15], studied the following model

xn+1 =
bxn

1 + dxn
e−ayn ,

yn+1 = cxn(1− e−ayn).

They investigated the boundedness, existence and uniqueness of the pos-
itive equilibrium point, local asymptotic stability and global stability of
the unique positive equilibrium point, and the rate of convergence of
positive solutions of the system. But they did not study the possible
bifurcations of the model.
In [7], the author investigated the qualitative behavior of system

Hn+1 =
rHn

1 + kHn
e−aPn ,

Pn+1 = cHn(1− e−aPn),

and the local and global asymptotic stability of the unique positive equi-
librium point and rate of convergence of the model were also analyzed.
Moreover, the author proved that the system undergoes a Neimark-
Sacker bifurcation by taking c as the bifurcation parameter.
In this paper, motivated by the above works we propose the following
more general discrete-time mathematical model for host and parasitoid
populations:

Hn+1 =
µKHn

K + (µ− 1)Hn
e−γPn ,

Pn+1 = Hn(1− e−γPn), (1)

where K > 0 and µ > 1. Here, in the absence of parasite population,
the equation of the host becomes the Beverton-Holt model [6]. We study
the positive fixed point and investigate the dynamics and bifurcation in
the vicinity of this point. We choose γ as bifurcation parameter and we
prove that the model exhibits a Neimark-Sacker bifurcation by varying
the parameter γ.
The rest of paper is organized as follows. We first obtain fixed points of
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the model (1) in Section 2. In Section 3, we investigate the local dynam-
ics of the fixed points of (1). In the forth Section, we study Neimark-
Sacker bifurcation for the model (1) by choosing γ as the bifurcation
parameter. In Section 5, some numerical simulations are presented to
support our analytical arguments . In the last Section, a brief conclusion
is given.

2 Host-parasitoid system

In this section, we focus on the fixed points of the following system

xn+1 =
µKxn

K + (µ− 1)xn
e−γyn := f(xn, yn), (2)

yn+1 = xn(1− e−γyn) := g(xn, yn),

where xn and yn are the host and parasite populations at n-th generation
respectively. It is not hard to see that every positive solution of the
model (2) satisfy

xn+1 ≤
µK

µ− 1
, yn+1 ≤ xn.

Thus, for µ > 1 the set [0, µKµ−1 ]×[0, µKµ−1 ] is an invariant set for the model
(2).
For this model, we can have at most three fixed points at (0, 0), (K, 0)
and (x∗, y∗) where

y∗ =
1

γ
h(x∗), h(x) := ln

(
µK

K + (µ− 1)x

)
. (3)

From the second equation of (2), one can see that

x∗ =
y∗

1− e−γy∗
,

thus, we have y∗ < x∗. Let

F (x) =
h(x)

γ(1− e−h(x))
− x.
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Then the x-component of the positive fixed points are the positive roots
of F (x). In addition, we have the following observations

F (0) =
µ

µ− 1

1

γ
lnµ > 0, F (

µK

µ− 1
) = −µ

γ
ln

µ

µ+ 1
− µK

µ− 1
< 0.

On the other hand

F ′(x) =
h′(x)(1− e−h(x)) + h′(x)e−h(x)h(x)

γ(1− e−h(x))2
− 1 < 0,

since

h′(x) = − µ− 1

K + (µ− 1)x
< 0.

Therefore, we have the following proposition:

Proposition 2.1. For any γ, K > 0 and µ > 1, the model (2) has a
unique positive fixed point.

3 Local dynamics analysis

There are two boundary fixed points (0, 0) and (K, 0). The Jacobian
matrix associated with (2) is given by

J(x, y) :=

 µK2e−γ y

(K+(µ−1)x)2 −µKxγ e−γ y

K+(µ−1)x

1− e−γ y xγ e−γ y

 . (4)

At (0, 0) we have

J(0, 0) =

(
µ 0
0 0

)
. (5)

Therefore, as µ > 1 the origin is an unstable fixed point. At (K, 0) we
have

J(K, 0) =

( 1
µ −Kγ
0 Kγ

)
. (6)

Depending on the location of the eigenvalues in the complex plane w.r.t.
the unit circle, we can deduce the following results on the stability of
(K, 0):
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Proposition 3.1. Let µ > 1. The following hold:

(1) if Kγ < 1, then (K, 0) is an attracting node;

(2) if Kγ > 1, then (K, 0) is a saddle.

Proposition 3.2. When µ > 1 and Kγ = 1, we have a non-hyperbolic
fixed point at (K, 0) which is asymptotically stable.

Proof. Let Kγ = 1, first, we bring (K, 0) to the origin by using lin-
ear transformation (x, y) → (x + K, y). This yields the following two-
dimensional map defined by

f̃(x, y) =
x

µ
− y +

1

2
γ y2 − γ xy

µ
− (µ− 1)x2

µ2K
+O(3),

g̃(x, y) = γ xy + y − 1

2
γ y2 +

1

6
γ2y3 − 1

2
γ2xy2 +O(4).

Next, we need to diagonalize the linear part of this equation, i.e

( 1
µ −1

0 1

)
.

In this way, we use the linear transformation(
x

y

)
=

(
1 µ
0 1− µ

)(
X

Y

)
=

(
X + µY

(1− µ)Y

)
.

Then, we obtain(
X

Y

)
7→
( 1

µ 0

0 1

)(
X

Y

)
+

(
γXY + γ

2 (3µ− 1)Y 2 +O(3)
1−µ
µK XY + 1−µ

µ2K
X2 + (µ−1)2

2K Y 2 +O(3)

)
. (7)

Now, the center manifold is given by

X = h(Y ) = αY 2 + βY 3 +O(Y 4) =
1

2

γ2µ (3µ− 1)

µ− 1
Y 2 +O(3).

Then, the dynamics on the center manifold is given by the following
scalar map:

Y 7→ Y − 1

2

γ2 (3µ− 1)

K
Y 3 +O(4),

which shows that (K, 0) is asymptotically stable. �
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Positive fixed point

Now, we pay our attention to the positive fixed point (x∗, y∗) which
exists for µ > 1. The Jacobian matrix of the map (2) computed at the
positive fixed point is given by:

J∗ :=

(
∂f
∂x (x∗, y∗) ∂f

∂y (x∗, y∗)
∂g
∂x(x∗, y∗) ∂g

∂y (x∗, y∗)

)
=

 K
K+(µ−1)x∗ −γx∗

(µ−1)(K−x∗)
µK

(K+(µ−1)x∗)
µK γ x∗

 . (8)

Then,

tr(J∗) =
K

K + (µ− 1)x∗
+

(K + (µ− 1)x∗)

µK
γ x∗,

det(J∗) =
γx∗

µK
(µ (K − x∗) + x∗) . (9)

Since tr(J∗) > 0, by the Jury test [8], the positive fixed point is locally
asymptotically stable if 2 > 1 + det(J∗) > tr(J∗). In the region

Ω = {(K, γ) : tr(J∗) < 1 + det(J∗) < 2},

of the parameter space, we have that (x∗, y∗) is locally attractive. It
follows from Equation (3) that

K =
x∗2 (µ− 1)

µ(x∗ − y∗)− x∗
.

Under the assumption det(J∗) < 1 and using Equation (9), we get

0 < γ < g1(x
∗) :=

Kµ

x∗ (Kµ+ x∗(1− µ))
. (10)

On the other hand, it is easy to see that tr(J∗) < 1+det(J∗) if and only
if

0 < γ < g2(x
∗) := − Kµ

(K − 2x∗) (x∗(µ− 1) +K)
. (11)

Now, keeping µ > 1 fixed, we get

Ω = {(x∗, γ) : 0 < x∗ <
µK

µ− 1
, 0 < γ < min{g1(x∗), g2(x∗)}}.

For a picture of Ω, see Figure 1.
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Figure 1: Shape of Ω. The solid blue line is the graph of g2(x) and
dashed red curve is the graph of g1(x). The vertical solid blue line is
x = K/2 and the vertical dashed red line is x = Kµ/(µ− 1).

4 The Neimark-Sacker bifurcation

The Hopf bifurcation is a well known phenomenon for a system of or-
dinary differential equations in two or more dimensions, whereby, when
some parameter is varied, a pair of complex conjugate eigenvalues of the
Jacobian at a fixed point crosses the imaginary axis, so that the fixed
point changes its behavior from stable to unstable and a limit cycle ap-
pears. In the discrete setting, The Neimark-Sacker bifurcation is the
analogue of the Hopf bifurcation [13]. Here, we seek conditions for the
model (2) to have a non-hyperbolic fixed point with a pair of complex
conjugate eigenvalues of modulus 1. This happens surely at the positive
fixed point (x∗, y∗). The associated Jacobian matrix J∗ in (8) has two
complex conjugate eigenvalues with modulus 1 in the case det(J∗) = 1
and 0 < tr(J∗) < 2. Hence, the candidate for the bifurcation curve is as
follows

γ =
Kµ

x∗ (Kµ+ x∗(1− µ))
. (12)
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We fix µ and K and take γ > 0 as a parameter and write it as γ = γ∗+λ,
where

γ∗ =
Kµ

x∗ (Kµ+ x∗(1− µ))
. (13)

Then using (9), it is not hard to prove the following:

Lemma 4.1. Let γ = γ∗ and ω = cos−1
(
tr(J∗)

2

)
, then the eigenvalues

of the Jacobian matrix at the positive fixed point (x∗, y∗) are λ, λ̄ = e±iω.
Moreover, λ satisfies the following:

(i) λj 6= 1, j = 1, 2, 3, 4;

(ii) d|λ|
dγ |γ=γ∗ = 1

2

√
µ(K−x∗)+x∗

γ∗µK > 0.

In order to study the Neimark-Sacker bifurcation, it is convenient
to introduce a new coordinate system that are better adapted to the
neighborhood of the fixed point (x∗, y∗). To begin with we set

x = x∗ + x̄, y = y∗ + ȳ, γ = γ∗ + σ,

to obtain the coordinates (x̄, ȳ) ∈ R2 whose origin coincides with (x, y) =
(x∗, y∗). In these new variables the model (2) is transformed to the
system

x̄n+1 = a10x̄n + a01ȳn + a11ȳnx̄n + a02ȳ
2
n + a20x̄

2
n

+a30x̄
3
n + a21x̄

2
nȳn + a12x̄nȳ

2
n + a03ȳ

3
n +O(4),

ȳn+1 = b10x̄n + b01ȳn + b11ȳnx̄n + b02ȳ
2
n + b20x̄

2
n (14)

+b30x̄
3
n + b21x̄

2
nȳn + b12x̄nȳ

2
n + b03ȳ

3
n +O(4),
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where O(4) denotes nonlinear terms of degree four and higher, and

a10 = c∗d∗, a01 = −d∗x∗(γ∗ + σ), a11 = −d∗c∗(γ∗ + σ),

a02 =
1

2
d∗x∗(γ∗ + σ)2, a20 = − K(µ− 1)

(K + (µ− 1)x∗)2
d∗,

a30 =
K(µ− 1)2

(K + (µ− 1)x∗)3
d∗, a21 = −a20d∗(γ∗ + σ),

a12 =
1

2
d∗c∗(γ∗ + σ)2, a03 = −1

6
d∗x∗(γ∗ + σ)3,

b10 = 1− f∗, b01 = x∗f∗(γ∗ + σ), b11 = f∗(γ∗ + σ),

b02 = −1

2
x∗f∗(γ∗ + σ)2, b20 = 0, b30 = 0, b21 = 0,

b12 = −1

2
f∗(γ∗ + σ)2, b03 =

1

6
x∗f∗(γ∗ + σ)3,

with

d∗ =
µK e−(γ

∗+σ) y∗

K + (µ− 1) x ∗
, c∗ = 1− (µ− 1) x ∗

x ∗ (µ− 1) +K
, f∗ = e−(γ

∗+σ)y∗ .

Of course, the eigenvalues of J∗ in (8) are the same as the eigenvalues of
the Jacobian of the map (14) at the fixed point (0, 0), so from the 2× 2
matrix

J =

(
a10 a01
b10 b01

)
,

we have

tr(J) = a10 + b01, det(J) = a10b01 − a01b10,

λ, λ̄ =
tr(J)±

√
tr(J)2 − 4 det(J)

2
:= α± iβ (for σ ≈ 0).

Let

T =

(
0 a01
β α− a10

)
,

then T is invertible. Now, we set σ = 0 and apply the following trans-
lation (

x̄n
ȳn

)
=

(
0 a01
β α− a10

)(
un
vn

)
,
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which brings the linear part into normal form. Then system (14) be-
comes of the following form:

un+1 = αun − βvn + c11vnun + c02v
2
n + c20u

2
n

+ c30u
3
n + c21u

2
nvn + c12unv

2
n + c03v

3
n +O(4) := f̄(un, vn),

vn+1 = βun + αvn + e11vnun + e02v
2
n + e20u

2
n (15)

+ e30u
3
n + e21u

2
nvn + e12unv

2
n + e03v

3
n +O(4) := ḡ(un.vn),

where

c11 = 2αβ a02 + β a01a11 − 2β a02a10,

c02 = α2a02 + αa01a11 − 2αa02a10 + a01
2a20 − a01a10a11 + a02a10

2,

c20 = β2a02, c30 = β3a03, c21 = 3αβ2a03 + β2a01a12 − 3β2a03a10,

c12 = 3α2β a03 + 2αβ a01a12 − 6αβ a03a10 + β a01
2a21

− 2β a01a10a12 + 3β a03a10
2,

c03 = α3a03 + α2a01a12 − 3α2a03a10 + αa01
2a21 − 2αa01a10a12

+ 3αa03a10
2 + a01

3a30 − a012a10a21 + a01a10
2a12 − a03a103,

e11 = b11a01β + 2 b02 (α− a10)β, e02 = b11a01 (α− a10) + b02 (α− a10)2 ,
e20 = b02β

2, e30 = b03β
3, e21 = b12a01β

2 + 3 b03 (α− a10)β2,
e12 = 0, e03 = b12a01 (α− a10)2 + b03 (α− a10)3 .

In order to guarantee the Neimark-Sacker bifurcation for (15), we require
that the following discriminatory quantity is not zero (Guckenheimer
and Holmes [10]):

a = Re

[
(1− 2λ)λ̄2

1− λ
ξ11ξ20

]
− 1

2
|ξ11|2 − |ξ02|2 +Re(λ̄ξ21), (16)

where

ξ20 =
1

8

[
(f̄uu − f̄vv + 2ḡuv) + i(ḡuu − ḡvv − 2f̄uv)

]
|(0,0),

ξ11 =
1

4

[
(f̄uu + f̄vv) + i(ḡuu + ḡvv)

]
|(0,0),

ξ02 =
1

8

[
(f̄uu − f̄vv − 2ḡuv) + i(ḡuu − ḡvv + 2f̄uv)

]
|(0,0),

ξ21 =
1

16

[
(f̄uuu + f̄uvv − f̄vv − 2ḡuv) + i(ḡuu − ḡvv + 2f̄uv)

]
|(0,0).
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After calculating, we get

ξ20 =
1

4
a02β

2 − 1

4
a20a01

2 − 1

4
a11a01 (α− a10)−

1

4
a02 (α− a10)2

+
1

4
b11a01β +

1

2
b02 (α− a10)β +

i

8

(
2 b02β

2 − 2 b11a01 (α− a10)

−2 b02 (α− a10)2 − 2 a11a01β − 4 a02 (α− a10)β
)
,

ξ11 =
1

2
a02β

2 +
1

2
a20a01

2 +
1

2
a11a01 (α− a10) +

1

2
a02 (α− a10)2

+
i

4

(
2 b02β

2 + 2 b11a01 (α− a10) + 2 b02 (α− a10)2
)
,

ξ02 =
1

4
a02β

2 − 1

4
a20a01

2 − 1

4
a11a01 (α− a10)

− 1

4
a2 (α− a10)2 −

1

4
b11a01β −

1

2
b02 (α− a10)β

+
i

8

(
2 b02β

2 − 2 b11a01 (α− a10)− 2 b02 (α− a10)2

+ 2 a11a01β + 4 a02 (α− a10)β
)
,

ξ21 =
3

8
a03β

3 +
1

8
a21a01

2β +
1

4
a12a01 (α− a10)β

+
3

8
a3 (α− a10)2 β +

1

8
b12a01β

2

+
3

8
b03 (α− a10)β2 +

3

8
b12a01 (α− a10)2 +

3

8
b03 (α− a10)3

+
i

16

(
6 b03β

3 + 4 b12a01 (α− a10)β + 6 b03 (α− a10)2 β − 2 a12a01β
2

−6 a03 (α− a10)β2 − 6 a30a01
3 − 6 a21a01

2 (α− a10)

− 6 a12a01 (α− a10)2 − 6 a03 (α− a10)3
)
.

Analyzing the above and the Neimark-Sacker bifurcation conditions dis-
cussed in Guckenheimer and Holmes [10], we write our main result as
follows:

Proposition 4.2. If the condition a 6= 0 holds, then the map (2) un-
dergoes Neimark-Sacker bifurcation at the positive fixed point (x∗, y∗)
when the parameter γ varies in a small neighborhood of γ∗. Moreover,
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Figure 2: Fixed point continuations of system (2) by MatContM pack-
age.

if a < 0 (respectively a > 0), then an attracting (respectively repelling)
invariant closed curve bifurcates from the fixed point (x∗, y∗) for γ > γ∗

(respectively γ < γ∗).

5 Numerical simulations

By following computations presented in the paper, we illustrate some
numerical simulation in this section.

Example 5.1. Let µ = 1.5, γ = 1 and K = 3, then the positive
fixed point of (2) is (x∗, y∗) ≈ (1.121607910, 0.2340910474). We in-
vestigate the stability of the positive fixed point by numerical method
using MatContM package on MATLAB [9]. We perform a fixed point
continuation and choose γ as the bifurcation parameter. The fixed point
curve detects a branch point(BP) corresponding to boundary fixed point
(K, 0) = (3, 0) and a Neimark-Sacker bifurcation corresponding to the
positive fixed point (x∗, y∗). The positive fixed point is stable prior
the NS bifurcation point and loses stability at γ∗ ' 1.0993918. The
results are shown in Figure 2. Moreover, Figure 3 shows that both
host and parasite populations undergo Neimark-Sacker bifurcation as γ
varies in the interval [1, 2.6]. For further confirmation of Neimark-Sacker
at γ∗ ' 1.0993918 phase portraits for system (2) in the neighbourhood
of γ∗ are shown in Figure 4.
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Figure 3: Neimark-Sacker bifurcation diagrams of system (2) with the
initial values (0.1, 0.1), K = 3 and µ = 1.5.

Example 5.2. Fix µ = 1.5, γ = 1.09 and K = 3, then the positive
fixed point of (2) is (x∗, y∗) ≈ (1.035055488, 0.2259807334). After some
calculations, we find that the Neimark-Sacker bifurcation appears from
the fixed point at γ∗ = 1.091681932, and the eigenvalues of the posi-
tive fixed point are λ1,2 ≈ 0.8673816100 + i 0.4960932001, so |λ1,2| = 1.
Moreover, we obtain a ≈ −0.05932393952 < 0 and (x∗, γ∗) ∈ Ω, there-
fore Proposition 4.2 is verified.
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Figure 4: The phase portrait of system (2) with initial value (x0, y0) =
(0.5, 1) and K = 3, µ = 1.5, (a) γ = 1, (b) γ = 1.08, (c) γ = 1.099, (d)
γ = 1.1, (e) γ = 1.15, (f) γ = 1.5.
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6 Conclusion

This paper deals with the stability and bifurcation analysis of a modified
Nicholson-Bailey host-parasite model. It is shown that system (2) has
two boundary equilibria. The existence and uniqueness of positive fixed
point for µ > 1 and K, γ > 0 is investigated. It is shown that the positive
fixed point can undergoes Neimark-Sacker bifurcation. In this way, γ is
chosen as the bifurcation parameter and the Neimark-Sacker bifurcation
is analyzed both by theoretical argument and numerical simulations.
For numerical simulations, MatContM package on MATLAB software is
implemented.
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