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1 Introduction

We consider one-dimensional time-independent Stable Lévy SDE’s of
the following form{

dX(t) = µ(X(t)) dt+ σ(X(t)) dSα(t), t ∈ [t0, T ]
X(t0) = X0.

(1)

where X(t) is a real-valued stochastic process and µ, σ are real well-
defined functions. {Sα(t), t ∈ [t0, T ]} is SαS process with α ∈ (1, 2]
(for more details see [1, Page 30]). In this article, numerical methods on
a given time interval [t0, T ] are fixed by schemes based on equidistance
time discretization points tn = t0 + nh, n = 0, 1, . . . , N with step size
h = T−t0

N , N = 1, 2, . . . . We focus our attention that convergence in the
strong sense. An approximation Xn convergence strongly to the exact
solution X(tn) with order p > 0 if there exist constants h0, c ∈ (0,+∞),
such that for all h ∈ (0, h0)

E|X(tn)−Xn| ≤ chp.

For SDE (1), the well-known Euler–Maruyama (EM) method is given
by [1, Page 157]

Xn+1 = Xn + µ(Xn)h+ σ(Xn)∆Sα(tn)

where ∆Sα(tn) = Sα(tn+1) − Sα(tn), two split-step forward methods
takes attention of consideration.

The first one is drifting split-step Euler (DRSSE) method [5]{
X̂n = Xn + hµ(Xn)

Xn+1 = X̂n + ∆Sα(tn)σ(X̂n)

The second type is called diffused split-step Euler(DISSE) method [5]:{
X̂n = Xn + σ(Xn)∆Sα(tn)

Xn+1 = X̂n + hµ(Xn)
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Following classical three-stage Milstein (TSM) method we define the
following TSM method.
X̂n1 = Xn − 1

2h
2
α σ(Xn) σ′(Xn)

X̂n2 = X̂n1 + h µ(X̂n1)

Xn+1 = X̂n2 + ∆Sα σ(X̂n2) + 1
2h

1
ασ(X̂n2) σ

′(X̂n2) ∆Sα

The following assumptions are required when considering the conver-
gence properties of spiliting shemes for SDE

Assumption 1.1 ([10, 5]). The functions µ(·), σ(·) and σ(·)σ′(·) satisfy
Lipschitz condition, i.e, there exist positive real k1 such that

|µ(x1)−µ(x2)|∨|σ(x1)−σ(x2)|∨|σ(x1)σ
′(x1)−σ(x2)σ

′(x2)| ≤ k1|x1−x2|

Assumption 1.2 ([10, 5]). The functions µ(·), σ(·) and σ(·)σ′(·) satisfy
β−growth condition for some β ∈ (1, α), i.e, for some constant k2 ∈ R+

|µ(x)|β ∨ |σ(x)|β ∨ |σ(x)σ′(x)|β ≤ k2(1 + |x|β)

In the Assumption 1.1 and Assumption 1.2, a ∨ b means max{a, b}.

Lemma 1.3. If µ and σ satisfy in Assumption 1.1 and if E|X0| < ∞
then E(X̄k) <∞ for k = 0, 1, . . . , N where

Xk = Xtk−1,Xk−1
(tk)

= Xk−1 + µ(Xtk−1
)h+ σ(Xtk−1

)∆Sα(tk−1), k = 1, . . . , N

X0 = X0 = X(t0)

Xt,x(t+ h) = x+ µ(X(t))h+ σ(X(t))∆Sα(t)

Proof. First note that

E(Xt,x(t+ h)−Xt,x(t+ h)) = E
[∫ t+h

t
[µ(X(s))− µ(X(t))] ds

+

∫ t+h

t
[σ(X(s))− σ(X(t))] dSα(s)

]
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Therefore∣∣E(Xt,x(t+ h)−Xt,x(t+ h))
∣∣ ≤ E

[ ∫ t+h

t
[|µ(X(s))− µ(X(t))|

+ |σ(X(s))− σ(X(t))|] ds
]

≤ k
∫ t+h

t
[1 + |t− s|] ds

≤ k(1 + h)h

Now we have

E
∣∣Xk+1

∣∣ =E
∣∣∣Xtk,Xk

(tk+1)
∣∣∣

=E
∣∣∣Xtk,Xk

(tk+1)−Xk +Xk −Xtk,Xk
(tk+1) +Xtk,Xk

(tk+1)
∣∣∣

=E
∣∣∣Xk +

(
Xtk,Xk

(tk+1)−Xk

)
+
(
Xtk,Xk

(tk+1)−Xtk,Xk
(tk+1)

)∣∣∣
≤ E

∣∣Xk

∣∣+ E
∣∣∣Xtk,Xk

(tk+1)−Xk

∣∣∣
+ E

∣∣∣Xtk,Xk
(tk+1)−Xtk,Xk

(tk+1)
∣∣∣

So if E
∣∣Xk

∣∣ < ∞ then so is E
∣∣Xk+1

∣∣ . In other words if E |X0| < ∞
then E

(∣∣Xk

∣∣) <∞ for k = 1, 2, . . . , N.
The finiteness of the second part of inequality is veryfied as follows:

E
∣∣∣Xtk,Xk

(tk+1)−Xk

∣∣∣ =E
∣∣∣Xk +

∫ tk+1

tk

µ(X(s)) ds

+

∫ tk+1

tk

σ(X(s)) dSα(s)−Xk

∣∣∣
=E
∣∣∣ ∫ tk+1

tk

µ(X(s)) ds

+

∫ tk+1

tk

σ(X(s)) dSα(s)
∣∣∣ ≤ kh

�
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Lemma 1.4. If conditions of Assumption 1.3 satisfy, then

E
∣∣Xk

∣∣ ≤ k(1 + E
∣∣X0

∣∣)
Proof. By using the conditional version of Assumption 1.3, we have

E
∣∣∣Xtk,Xk

(tk+1)−Xtk,Xk
(tk+1)

∣∣∣ ≤ k(1 + E
∣∣Xk

∣∣)h
consider again the inequality , we obtain

E
∣∣∣Xtk,Xk

(tk+1)−Xk

∣∣∣ ≤ k(1 + E
∣∣Xk

∣∣)h
or equivalently

E
∣∣Xk+1

∣∣ ≤ E ∣∣Xk

∣∣+ k(1 + E
∣∣Xk

∣∣)
Now using the well known resulting inequality given in Assumption 1.5
we obtain the result. �

Lemma 1.5 ([2, Page 15]). Suppose that for arbitrrary N ∈ N and
k = 0, 1, . . . , N we have

uk+1 ≤ (1 +Ah)uk +Bhp (2)

where h = T
N , A,B ≥ 0, p ≥ 1, uk ≥ 0, k = 0, 1, . . . , N then

uk ≤ eATu0 +
B

A
(eAT − 1)hp−1. (3)

2 Strong Convergence of DRSSE and DISSE

We now obtain the strong convergence of split step Euler method, under
Assumption 1.1

Theorem 2.1. Let Xk be the numerical approximation X(tk) after k
steps with step size h = T

N , N = 1, 2, . . . E |Xk| < ∞. Apply one of
DRESE or DFSSE methods to the given SDE, under Assumption 1.1,
then for all k = 0, 1, . . . , N we have

E
(
|Xk −X(tk)|

∣∣∣X(t0) = X0

)
= O(h

1
2 )
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Proof. We denote Euler-Maruyama approximation step by

EEM = Xk + µ(Xk)h+ σ(Xk)∆Sα(tk), k = 0, 1, . . . , N − 1

then there exists constants k1, k > 0 such that

E
(
|X(tk+1)−Xk+1|

∣∣∣Xk = X(tk)
)

≤ E
(∣∣X(tk+1)− EEM

k+1

∣∣ ∣∣∣Xk = X(tk)
)

+ E
(∣∣EEM

k+1 −X(tk+1)
∣∣ ∣∣∣Xk = X(tk)

)
≤ k (1 + E |Xk|) + E

(∣∣EEM
k+1 −X(tk+1)

∣∣ ∣∣∣Xk = X(tk)
)

Now

E
(∣∣EEM

k+1 −X(tk+1)
∣∣ ∣∣∣Xk = X(tk)

)

=



for DRSSE method

E
(
|σ(Xtk)− σ(Xk + hµ(Xk))| |∆Sα(tk)|

∣∣∣Xk = Xtk

)
for DFSSE method

E
(
|σ(Xtk)− σ(Xk + hµ(Xk))| |∆Sα(tk)|

∣∣∣Xk = Xtk

)
≤ k1 (1 + E |Xk|)h

1
2

Therefore the inequality is less than or equal to k (1 + E |X0|)h
1
2 . �

Lemma 2.2. Suppose the one-step approximation Xt,x(t+h) has order
of accuracy p1 for the mathematical expectation of the deviation and
order of accuracy p2 for the β−growth deviation (1 ≤ β < α < 2) more
precicely, for arbitrary t0 ≤ t ≤ t0 +T −h, x ∈ R the following inequalty
hold:

|E(Xt,x(t+ h)−Xt,x(t+ h))| ≤ k(1 + |x|β)
1
β h

1
p1 (4)[

E|Xt,x(t+ h)−Xt,x(t+ h)|β
] 1
β ≤ k(1 + |x|β)

1
β h

1
p2 (5)

Proof. By using Minkowski’s inequality, we modified [2, Theorem 1.1]
for α-stable motion with β ∈ [1, α] (1 < α ≤ 2). �
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Lemma 2.3. Let for all natural number N and for all k = 0, 1, . . . , N
we have E

(
|Xk|β

)
< ∞, where β is defined in Assumption 2.2. Then

the following inequality hold:

E
(
|Xk|β

)
≤ k

(
1 + E |X0|β

)
Proof. Suppose that E|xk|β < ∞. Then using conditional version of
(5) we obtain

E|Xtk,xk(tk+1)−Xt,xk(tk+1)| ≤ kβ
(

1 + E|xk|β
)β
hp2 (6)

It is well-known that is a random variable X has bounded β−th moment,
then the solution Xt,x(t+θ) also has bounded β−th moment. Therefore
E|Xt,xk(tk+1)|β < ∞ which implies E|Xk+1|β < ∞. Since E|Xk|β < ∞
we have proved the existance of all E|Xk|β <∞, k = 0, . . . , N. Consider
the inequality(

E|Xk+1|β
) 1
β ≤

(
E|Xk|β

) 1
β +

(
E|Xtk,xk(tk+1)−Xk|

) 1
β (7)

+
(
E|Xtk,xk(tk+1)−Xtk,xk(tk+1)|

) 1
β (8)

we have
(E|Xtk,xk(tk+1)−Xk|β ≤ kh(1 + E|Xk|β) (9)

It is not difficult to prove the inequality

E
∣∣E(Xtk,Xk

−Xk|X(tk))
∣∣β ≤ khβ(1 + E|Xk|β) (10)

Applying the inequality (6), (8) and (9) to inequality (10) and re-
calling that p1 ≥ 1, p2 ≥ 1

2 , we arrive at the inequality (for h ≤ 1)

E|Xk+1|β ≤ E|Xk|β + kh(1 + E|Xk|β) = kh+ (1 + kh)E|Xk|β (11)

Again using Assumption 1.5 we get to result. �

Theorem 2.4. Let Xk be the numerical approximation to X(tk) at time
T after k steps with step size h = T

N , N = 1, 2, . . . ,E |Xk|β < ∞, where
1 ≤ β < α < 2. Apply one of split-step Euler methods to the SDE (1)
under Assumption 1.2, then for all k = 0, 1, . . . , N we have[

E |Xk −X(tk)|β
∣∣∣X0 = X(t0)

] 1
β

= O(h
1
β )
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Proof. Let XE
k+1 stand for the local Euler approximation

XE
k+1 = Xk + hµ(Xk) + σ(Xk)∆Sαk, k = 0, 1, . . . , N − 1

then A1 = E
1
β

(∣∣X(tk+1)−XE
k+1

∣∣β ∣∣∣X0 = X(t0)
)
. By using Minkowski’s

inequality, we have

A1 ≤E
1
β

(∣∣Xtk+1
−Xk+1

∣∣β ∣∣∣Xk = X(tk)
)

+ E
1
β

(∣∣XE
k+1 −X(tk+1)

∣∣β ∣∣∣Xk = X(tk)
)

But Lemma attain that

E
1
β

(∣∣X(tk+1)−XE
k+1

∣∣β ∣∣∣Xk = X(tk)
)
≤k
[
1 + E |Xk|β

]
≤k [1 + E |Xk|]

1
β

and

E
1
β

[∣∣X(tk+1)−XE
k+1

∣∣β ∣∣∣Xk = X(tk)
]

=



for DRSSE method

E
1
β

[∣∣∣(σ(Xk)− σ(XE
k )
)β

∆Sαk

∣∣∣β ∣∣∣Xk = X(tk)

]
for DFSSE method

E
1
β

[∣∣∣(µ(Xk)− µ(XE
k )
)β

∆Sαk

∣∣∣β ∣∣∣Xk = X(tk)

]
then

E
1
β

[∣∣XE
k1 −Xk+1

∣∣β ∣∣∣Xk = X(tk)
]
≤ k1

[
1 + E |Xk|β

] 1
β
h

3
β

therefore

A ≤ k
[
1 + E |Xk|β

] 1
β
h+ k1

[
1 + E |Xk|β

] 1
β
h

3
β

but 3
2 ≤

3
β < 3 and therefore

k
[
1 + E |Xk|β

] 1
β
h+ k1

[
1 + E |Xk|β

] 1
β
h

3
β

h
1
β

=k
[
1 + E |Xk|β

] 1
β
h
1− 1

β

+ k1

[
1 + E |Xk|β

] 1
β
h

2
β
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which tends to zero as h→ 0. The proof is complet �

Theorem 2.5. Let Xk be the numerical approximation to X(tk) at time
tk after k steps with step size h = T

N , N = 1, 2, . . . . Apply the three-stage
Milstein method to the SDE (1) under Assumption 1.1, and Assump-
tion 1.2, then for all k = 0, 1, . . . , N we have(

E
[
|Xk −X(tk)|β

∣∣∣X0 = X(t0)
]) 1

β
= O(h),

where 1 ≤ β < α < 2.

Proof. Denote the local Milstein approximation step

XM
n+1 = X̂n2 + ∆Sα σ(X̂n2) +

1

2
σ(X̂n2)σ′(X̂n2)(∆Sα)2

then there exist some constant k > 0 such that

H1 =
∣∣∣E [X(tn+1)−X(tn)

∣∣∣Xn = X(tn)
]∣∣∣

=
∣∣∣E [X(tn+1)−XM

n+1

∣∣∣Xn = X(tn)
]

+ E
[
XM
n+1 −Xn+1

∣∣∣Xn = X(tn)
] ∣∣∣

≤ k (1 + E |Xn|)h+H2

with

H2 =
∣∣∣E [XM

n+1 −Xn+1

∣∣∣Xn = X(tn)
]∣∣∣

≤



∣∣∣E [∆Sα (σ(Xn)− σ(Xn2)
) ∣∣∣Xn = X(tn)

]∣∣∣
+
∣∣∣E [12 (∆Sα)2 σ(Xn)σ′(Xn)− σ(Xn2)σ

′(Xn2)
∣∣∣Xn = X(tn)

]∣∣∣
+
∣∣∣E [h (µ(Xn)− µ(Xn1)

) ∣∣∣Xn = X(tn)
]∣∣∣ ,

if TSM method is used.

≤ k1h
(∣∣∣E [Xn −Xn1

∣∣∣Xn = X(tn)
]∣∣∣+

∣∣∣E [Xn −Xn2

∣∣∣Xn = X(tn)
]∣∣∣)

≤ k (1 + E |Xn|)h
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similary we check estimate for local β-th mean of tree-stage Milstain
and obtain for n = 0, 1, . . . , N − 1 by standard arguments

H3 =
(
E
[
|X(tn+1)−Xn+1|β

∣∣∣Xn = X(tn)
]) 1

β

≤
(
E
[∣∣X(tn+1)−XM

n+1

∣∣β ∣∣∣Xn = X(tn)
]) 1

β

+
(
E
[∣∣XM

n+1 −Xn+1

∣∣β ∣∣∣Xn = X(tn)
]) 1

β

≤ k (1 + E |Xn|)
1
β h

3
β +H4

with

H4 =
(
E
[∣∣XM

n+1 −Xn+1

∣∣β ∣∣∣Xn = X(tn)
]) 1

β

≤



(
E
[∣∣∆Sα (σ(Xn)− σ(Xn2)

)∣∣β ∣∣∣Xn = X(tn)
]) 1

β

+
(
E
[∣∣1

2∆Sα (σ(Xn)σ′(Xn)− σ(Xn2)σ
′(Xn2))

∣∣ ∣∣∣Xn = X(tn)
]) 1

β

+
(
E
[
|h (µ(Xn)− µ(Xn1))|β

∣∣∣Xn = X(tn)
]) 1

β
,

if TSM method is used.

≤ k1h
3
β

(
E
[(
Xn −Xn1

)β ∣∣∣Xn = X(tn)
]) 1

β

+
(
E
[(
Xn −Xn2

)β ∣∣∣Xn = X(tn)
]) 1

β ≤ k
(

1 + E |Xn|β
)
h

3
β

�
The last inequality is obtained under Assumption 1.2 and Assump-

tion 2.3 the exponent p2 = 3
β together with p1 = β and apply it to finally

prove the strong order γ = 1 of the three-stage Milstain methods as was
claimed in theorem.

3 Stability properties

The stability of the methods are considered in this subsection we apply
one-step scheme to the scalar linear test equation

dX(t) = λX(t) dt+ µX(t) dSα(t), X(t0) = X0 (12)
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(a) Upper bound of DRSSE and
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Figure 1: Stability bounds for α = 1.99, α = 1.5, and α = 1.01.

which is represented by

Xn+1 = R(ĥ, κ, h, S)Xn

where S = Sα(tn) is stable random variable S ∼ SαS with dispersion h,

ĥ = λh, and κ = h
1
αµ. However, motivated by [10, 8, 5], we can extend

the definition of stability and introduce absolute-value (AV) stability for
α-stable motion.

Definition 3.1. The numerical method is to be AV-stable for ĥ, κ and
h if

R(ĥ, κ, h) = E
∣∣∣R(ĥ, κ, h, S)

∣∣∣ < 1

R(ĥ, κ, h) is called AV-stability function of the numerical method.

Applying one of DRSSE or DISSE to (12) we obtain

Xn+1 =(1 + ĥ)(1 + κS)Xn

=R1(ĥ, κ, h, S)Xn
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Then bound of AV-stability function of these methods is given by

R1 = E|R1| =|1 + ĥ| E(|1 + κS|)
≤|1 + ĥ| (1 + |κ| E|S|)

=|1 + ĥ|
(
1 +

2

π
κ Γ(

2

α
)
)

Now applying TSM method to (12) we obtain

Xn+1 =
(
1 + ĥ

)(
1− 1

2
κ2
)(

1 + κS +
1

2
κ2S

)
Xn

=R2(ĥ, κ, h, S)Xn

R2 = E|R2| =|1 + ĥ||1− 1

2
κ2||1 + κS +

1

2
κ2S|

≤|1 + ĥ||1− 1

2
κ2|
(
1 + (κ+

1

2
κ2)|S|

) 2

π
hαΓ(

2

α
)

=|1 + ĥ||1− 1

2
κ2|
(

1 + (κ+
1

2
κ2)

2

π
Γ(

2

α
)
)
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