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Abstract. In 1964, Levinson [4] proved integral inequalities concerning
generalization of Hardy’s inequalities. In this paper two results are
given. First one is extension of the Levinson Integral inequalities via
convexity and the second is for the Levinson Integral inequalities of
Hardy, this inequalities are established for p < 1 and some related
inequalities are also considered with a sharp constant.
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1 Introduction

Let f is a measurable function defined on the interval (0, 00). The Hardy
operator H, its adjoint H* and its dual H are defined by

%(m):i/oxf(t)dt, () :/OO M, i) = i/oo Ft)at.

In 1964 , N. Levinson [{] proved the following theorems [Theorem 2,
Theorem 3, Theorem4, Theoremb].
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Theorem 1.1. On an open interval, finite or infinite, let ¢(u) > 0 be
defined and have a second derivative ¢" > 0. For some p > 1 let

p¢" > (1 - 1) (¢").

p

At the ends of the interval let take its limiting values, finite or infinite.
Then if for 0 < x < oo the range of values of f(z) lie in the closed inter-
val of ] definition of ¢. Let /\( ) > 0 x > 0, continuous and monotone
non-decreasing and let A(x fO t)dt exist. Then

/0 "o <A<1m> /0 ’ A(t)f(t)dt> dr < (ﬁ)p /O o (@)

Theorem 1.2. Let ¢ and f be as z'n Theorem 1. Let \(xz) > 0, x > 0,
and be absolutely continuous and A(x fo t)dt exist. Let there exist
K > 0 such that for almost all x > 0

NA
)\2

/ < x/)\ dt)dw<K”/ o(f

Theorem 1.3. Let p > 1, f(z) > 0, let AN(z) > 0, z > 0, and let X be
absolutely continuous. Let

P
1> 2
trelz g

Then

p—1 XN _ 1
2 420 > -
D AT K

for almost all x for some K > 0. If

H(z) =

/Ooo HP(2)dz < KP /OOO P (z)dz. (1)

then
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Theorem 1.4. Letp > 1, f(x) > 0, let A(z) > 0, and let X be absolutely
continuous. Let

for some K > 0. If

sy =2 [T F

then

/O " JP(2)de < KP /0 ~ P (w)da. (2)

A large number of authors have studies the Levinson type integral
inequalities and a many papers have been appeared in the literature
which deals with the simple proofs see [2]-[8]. The objective of this
paper is to obtain new types of the Levinson integral inequality of Hardy
which will be useful in applications by using some elementary methods
of analysis with the parameter p < 1.

We give the following corollary of the reverse Holder’s inequality [!]
which will be used frequently in the proof.

Corollary 1.5. Let Q C R™ be a measurable set and p < 0, we suppose
that f, g are measurable on Q. If f € L,(Q) and g € Ly () (p is the
conjugate parameter), then

[ 129l = £, loll, - 3)
Q
. 00 0
And we adopt the usual convention — = 5 = 0 and we use the
%)

notation H and .J for the dual of H and .J defined above.

2 Main Results

Throughout the paper, we assume that the integrals exist and are
finite ( i.e, convergent) and the functions are non-negative integrable on
(0, +00).

e Levinson’s inequality via concavity
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Theorem 2.1. Suppose f(z) > 0, ¢(x) > 0 is a concave function and
A € C%(0.00) such that A’ = X\ and M\(o00) = c0. Let0 <p <1, K >0, if

!/

p
0< — —1< = 4
< +p-1< 4, (4)
then

[ <A(1m) / ”w)f(t)dt) doz K7 [Colf@yin ()

Proof. Let

6e) = 577 [ Moo
and
oa) =X [ AOf @,
we have
oa) = —2 38 g(0) + A H )1 ),

integrating by part, we get

/D TGP (a)dr = /0 @) A ()9 () d

_ [Al <f>ip<x>f - [ ) (@)




SOME NEW EXTENSION OF LEVINSON’S INEQUALITIES

hence

/ooo <1 ip X(A?<?c§$) B 1) G (a)dr = 1 /Ooo G (2) f(2)da.

Using the assumption (4), we have

/OOO CP(2)dz > K/OOO P (@) () da

Applied the reverse Holder integral inequality on the right hand side of
1 1

the last inequality for — + — =1, we get
p P

1
7

/OOO GP(z)dx > K (/Ooo fp(x)dg;>’l’ (/OOO Gp(x)) o

/00 GP(z)dx > KP /OO fP(z)dz,
0 0

thus

which is same as

/OOO (A(lm) /Ox)\(t)f(t)dt>pdx > K /Ooo () dz. (6)

let ¢ = ¢P,as a result ¢” = pP~2 (¢¢” — (1 — p)(¢')?). Since ¢ is con-
cave function, then ¢” < 0 where ¢(x) > 0, consequently ¢ is concave.
Thus by Jensens inequality

o (505 [ M0sa) = 1 [Cawsta

then

therefore

/Ooow <R(1x) /Ox A(t)f(t)dt) dx > /OOO <A(1x) /Ox A(t)gpé(f(t))dt)pdx.
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On the another hand applying (6) to cp%( f) instead of f, we get

A (A(la» A A(t)soi(f@))dt)pdﬂf 2 [ i, @

using (7) and (8) to complete the proof. [

Theorem 2.2. Suppose f(x) > 0, ¢p(x) > 0 is a concave function and
A € C?(0.00) such that ' =X. Let 0 <p <1, K >0, if

NA
0<1-— _73% 9)

then

Proof. The proof is similar to the proof of the theorem 2.1  [J

Theorem 2.3. Suppose f(z) > 0, ¢p(z) > 0 is a convex function and
A € C?(0.00) such that A = X and A(0o0) = oco. Let p <0, K >0, if

NN —p
I G
0<1l-—0p 2 S (11)
and )
p¢” > (1 - ];)(fzﬁ’)Q, (12)
then

[ o (x|, 2oroa) a < [Zoganae. a9

Proof. Let

and
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oo
using integration by part for the integral / AMx)AP(z)gP (x)dz, we
0
deduce that

N I X@A@) P(z)de = — L h P=L(2) f(x)dx
/o <1_1—p 22(x) )G()d =1,/ ¢ (@) f () dx.

Using the assumption (11), we deduce that

/Ooo GP(z)dx > K/OOO GP N z) f(2)da.

Applied the reverse Holder integral inequality on the right hand side of
the last inequality, we get

(/OOO G%))’i > K (/0“ f”(w)dx>;,

since p < 0, thus

/0 6P (2)ds < KP /0 ~ P (w)ds,

this gives us that

[ (i [ roswa) awsoer [~ oo o

1
let @P = ¢,as a result ¢’ = ppr > (qﬁqb” —(1— %)(qﬁ’)Q). Since the
assumption (12) thus ¢” < 0 where ¢(z) > 0, hence ¢ is concave. Then
by Jensens inequality

¢ (5 [ A050a) = 10 [Paoa

then

" (A(lx) / xA(t)f(t)dt) i “ABGF (1))t

since p < 0, we get

Lo (i ) 2osee) e [7 (g [r0etuepa) s

7
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on the another hand applying (14) to qﬁ%(f) instead of f, we get

[ (55 [ rosrona) w < [~ o ao

Using (15) and (16) to complete the proof. [

Theorem 2.4. Suppose f(z) > 0, ¢(x) > 0 is a convez function and
A € C?(0.00) such that A = X and A(00) = oco. Let p <0, K > 0, if

NA —p
it 1< £
0< 2 +p 1_K, (17)
and 1
¢ > (1 - 1;)(&)27 (18)
then

/0°°¢ (A(lw) / OOA(t)f(t)dt) iz < K” /0 T o(f@)dr. (19)

Proof. The proof is similar to the proof of the theorem 2.3
O
e Levinson’s inequality for Hardy operators

Theorem 2.5. Suppose f(z) > 0, A(x) > 0 is absolutely continuous
function. Let 0 <p <1, K >0 and

=) [ 10,

At)
If
1—-p xXN 1
i P
0< TR SR (20)
then - ~
/ Jp(m)dmZKp/ fP(z)dx. (21)
0 0
Proof. Let

Gz) = A=) / b J;Egdt,
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we have

integrating by part in the left hand side of (21), we get

/000 JP(x)dxr = /OOO x PGP (z)dx

[ [t
_ 1’%}) Ooo (xl—p f@)GP N (z) — We&@) da

=2 ([ s [T ),
therefore

/ooo (16193:;(9(5) * 1) T /O @) f(@)de,

Using the assumption (20), we get
> 1 e Nx) 1-— p)
Jpa:da:Z/ < + JP(x)dx,
L ez (e - 50) e

/Doo JP(z)dx > K/OOO JP ) f(z)de.

Applied the reverse Holder integral inequality on the right hand side of

thus

1 1
the last inequality for — + — = 1, we get
p g

/Ooo JP(2)d > K </0°O fp(x)dx>‘l° (/OOO Jp(@)é ,

/0 T P (@)de > K /0 () da,

hence

]
o If we take A\(z) = x and K = p, we get
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Corollary 2.6. Let 0 < p <1 and f be a non-negative integrable func-
tion on (0,00), then

/0 [H*(x)]pda:pr/o fP(x)da. (22)

the constant factor p? is the best possible.

9-1
Proof. Let 0 < 0 < 1, we take fp(x) = z v, ze(01]
0, ze€(l,00)

using the assumption on fy in L the left hand side of (22), we have

n= ([ )
:/O </:o 9_1 dt) dz
(i) [
- (0—1> %'

Let Ry the right hand side of (29), we get

e
—pp/ ' Yde = p?
0

For 6 — 0, we get the constant factor p? is the best possible in (29).
O

i

<

| =

o If we take A(z) =1 and K = %, hence we get
p

Corollary 2.7. Let 0 <p < 1 and f be a non-negative integrable func-
tion on (0,00), then

/0 S lH(2)Pde > (ﬂp)p /0 () da (23)

P
the constant factor <1p> 1s the best possible.
p
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0’ -1
Proof. Nowlet 0 < ¢ <1—p, weput for(z) =4 * "+ % € (0,1]
0, xz€(l,00)

[TEwra= [T (2 [ o)
e
() [
(e [

P
For ' — 0, we get the constant factor <1p> is the best possible
in (23). 0O

Theorem 2.8. Suppose f(x) > 0, A(x) > 0 is absolutely continuous
funcion. Let 0 <p <1, K >0 and

If
1—-p zXN 1
0< > A < T (24)
then
/0 HP(z)dx > Kp/o fP(x)dx (25)
Proof. Let
5@ =557 [ AOs0
we have
§'(@) = 2 s0) - f(w),

11
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integrating by part in the left hand side of (25), we get

/D T () de = /0 " PSP (2)da

_ [xl—psp(x):|°° P 1
1—0p 0

= HP (z :cdx—i—/ HP(z)dx | .
2 (@ [T
Using the assumption (24), we get

/OOO %f[p(a:)dx > /Ooo (1 —P_ m/(:::)) A7 (2)dx,

p A(z)
therefore

/0 T B (2)da > K /0 T B (@) f () da,

and applied the reverse Holder integral inequality, we get

/OO HP(z)dz > K /OO fP(x)dx.
0 0
U

Remark 2.9. If we take A\(x) = % and K = p, we get the inequality
(22).

Theorem 2.10. Suppose f, X > 0, A is absolutely continuous and
Aoo)=0". Let p< 0, K >0 and

If

then
/ HP(z)dx < Kp/ fP(z)dx. (27)
0 0
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Proof. Let ) .

S1(0) = 35 /0 A(t) f (),
we have

Si(a) =~ 1)+ f(a).

Integrating by part in the left hand side of (27), we get

b HP(z)dzr = b rPSY(x)dx
0 0

xl—PSf(x)} P /co 1 1
= + 2 PSS (2)SYT () dx,
] [Tasost )

since p < 0 and A\(o0) = 07, then

—_

/DooHp(x)d:c __r / P @) f () de /°° m;('i”;)m(x)dx).

p—= 0 0

Using the assumption (26), we deduce that

OOO %Hp(x)dx > /Ooo (p; Ly wi{i?) HP(z)dz,

as a result - ~
/ HY(2)dz > K / P (@) f () da. (28)
0 0

Using the reverse Holder integral inequality on the right hand side of
(28), we have

1

- P(x)dx ’ - P(z)dx i
([ ) =5 ([ )
since p < 0, then
/00 HP(z)dx < K? /OO fP(x)dx.
0 0

([l
If we take \(z) = i and K = —p, we get the following corollary

13
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Corollary 2.11. Let f be non-negative integrable function on (0, 00)
and p < 0, then

/OOO (/0’” fit)dt>Pd$ < (=p)* /000 fP(z)dx, (29)

the constant factor (—p)P is the best possible.

6—1

Proof. For 0 < 0 < 1, we take fo(z)=¢ * " % € (0,1]
0, ze€(l,00)

/OOO (/O$Jt(tt)dt>de _ /OOO </Oxfet(t)dt>pdm
- (/’il)p/olxa—ldx
_ (&)p/ooo (@) da.

For § — 0, we get the constant factor (—p)? is the best possible in (29).
U

we have

Theorem 2.12. Suppose f, X > 0, A is absolutely continuous and
A(oo) =00. Let p< 0, K >0 and

oy A=) [T )
T(x) = x/o IR

If

then

/Ooo JP(z)dx < KP /OOO fP(x)dz. (31)
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Proof. Let " p)
Gi(x) = Mz / —=dt,
@)= | 55
we have ()
, B T
then

/OOO JP(z)dz = /000 T PG (x)dx

/ 2 PG (2)GE T (@) d

p—1Jo

_ {xl—pGﬁ’(x)rJr p
1—p 0

o p [ RIS PN (z) P2 ) da
= [T (e @+ S et ) d

- ( | @@ [ IAA(S) jp(m)d‘”) |

From the assumption (30), we get
<1~ e Nzx) 1-p\ ~
Jpxde/ ( + JP(z)dx,
/0 K (@) 0 A(z) p (@)

/ T P (@)de > K / () () (32)
0 0

Using the reverse Holder integral inequality on the right hand side of

(32), we get
([ o) Pk ([ o) "

since p < 0, we get

thus

/OOO JP(z)dz < KP /Ooo fP(z)dx.

15
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Remark 2.13. If we take A\(z) = x and K = —p, we get the inequality

(29).
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