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Abstract. In this paper introduced the notion of a strong synchronized
system; that is a synchronized system whose there is unique finite path
in Fischer cover labeled synchronizing block. We aim to introduce a
class of synchronized systems containing sofics. Every irreducible sofic
shift is an strong synchronized.
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1 Introduction

One of the most studied dynamical systems is a subshift of finite type
(SFT). An SFT is a system whose set of forbidden blocks is finite ([6]).
Equivalently, an SFT X is a subshift whose any block of length greater
than a certain number M is synchronizing; that is, if m is any block
with |m| ≥ M and if v1m and mv2 are both blocks of X, then v1mv2
is a block of X. If an irreducible system has at least one synchronizing
block, then it is called a synchronized system and examples are sofics:
factors of SFT’s.

For a synchronized system, Fiebig in ([2]) prove that there is some
finite path e in Fischer cover labeled m terminating in α such that
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m ∈ F−(α). In the other hand, cardinal{e ∈ EX+
0

: t(e) = α} ≥ 1. In

this note we consider shift space that cardinal{e ∈ EX+
0

: t(e) = α} = 1.

2 Background and Definitions

This section is devoted to the very basic definitions in symbolic dy-
namics. The notations have been taken from ([6]) and the proof of the
relevant claims in this section can be found there. Let A be an alphabet,
that is a non-empty finite set. The full shift A-shift denoted by AZ, is
the collection of all bi-infinite sequences of symbols in A. A block over
A is a finite sequences of symbols from A. It is convenient to include
the sequence of no symbols, called the empty block and denoted by ε. If
x is a point in AZ and i ≤ j, then we will denote a block of length j − i
by x[i, j] = xixfi+1. . .xj . If n ≥ 1, then un denotes the concatenation of
n copies of u, and put u0 = ε. Let F be the collection of all forbidden
blocks over A. The complement of F is the set of admissible blocks
or just blocks in X. For any such AZ, define XF to be the subset of
sequences in AZ not containing any block in F . A shift space is a closed
subset X of a full shift AZ such that X = XF . For some collection F of
forbidden blocks over A.

Let Wn(X) denote the set of all admissible n blocks. The language of
X is the collection W (X) = ∪nWn(X). A shift space X is irreducible if
for every ordered pair of blocks u, v ∈W (X) there is a block w ∈W (X)
so that uwv ∈W (X). It is mixing if for every ordered pair u, v ∈W (X),
there is an N such that for each n ≥ N there is a block w ∈ Wn(X)
such that uwv ∈ W (X). A shift space X is called a shift of finite type
SFT if there is a finite set F of forbidden blocks such that X = XF . An
edge shift denoted by X(G), is a shift space that consist of all bi-infinite
walks in a directed graph G. Each edge e initiates at a vertex denoted
by i(e) and terminates at a vertex t(e).

A labeled graph G is a pair (G, L) where G is a graph with edge set
E , and the labeling L : E → A. A sofic shift XG is the set of sequences
obtained by reading the label of walks on G.

XG = {L∞(ε) : ε ∈ XG} = L∞(XG).

We say G is a presentation of XG . The follower set of a vertex m of G
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is F−(m) = {L− label of all finite paths terminating at m}. Every SFT
is sofic ([6, Theorem 3.1.5]), but the converse is not true. A labeled
graph G = (G, L) is right-resolving if for each vertex I of G the edges
starting at I carry different labels.

Let X be a shift space and w ∈ W (X). The follower set F+(w) of
w is defined by F+(w) = {v ∈ W (X) : wv ∈ W (X)} (resp. F−(w)).
Let x ∈ W (X). Then, x+ = (xi)i∈Z+ (resp. x− = (xi)i<0) is called
right (resp. left) infinite X-ray. For a left infinite X-ray, say x− its
follower set is w+(x−) = {x+ ∈ X+ : x−x+ ∈ X}. Consider the col-
lection of all follower sets w+(x−) as the set of vertices of a graph X+.
There is an edge from I1 to I2 labeled a if and only if there is an X-
ray x− such that x−a is an X-ray and I1 = w+(x−), I2 = w+(x−a).
This labeled graph is called the Krieger graph for X. A block m ∈
W (X) is synchronizing if whenever um and mv are in W (X), we have
umv ∈ W (X). An irreducible shift space X is a synchronized system
if it has synchronizing block. A block m ∈ W (X) is half synchronizing
if there is a left transitive point x ∈ X such that x[−|m|+1], 0] = m and
w+(x(−∞, 0]) = w+(m), That we denote by

(x, m). (1)

If X is a half synchronized system with half synchronizing m, the irre-
ducible component of the Krieger graph containing the vertex w+(m) is
denoted by X+

0 and is called the right Ficher cover of X.

Let X be a shift space. The entropy of X is defined by

h(X) = lim
n→∞

1

n
log |Wn(X)|.

For any synchronized system X, we define the synchronized entropy hsyn
to be

hsyn(X) = lim sup
n

1

n
log(cardinal{a ∈Wn(Y ) : mam ∈W (X)}),

where m is an arbitrary synchronizing block in W (X). A shift space X is
almost sofic if there are sofic shifts Xn ⊆ X such that limn→∞ h(Xn) =
h(X).
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3 Strong Synchronized Systems

We aim to introduce a class of synchronized systems containing sofics.
Let X be a shift space and R(X) = PerX and set S(X) to denote
the set of synchronizing blocks for R(X). For s, t ∈ S(X) we write
s ∼ t whenever there are blocks u, v ∈ W (R(X)) such that sut, tvs ∈
W (R(X)). Then, ∼ is an equivalence relation in S(X). Note that s ∼ t
if only if there is an x ∈ R(X) = PerX such that s, t ⊆ x. Let x ∈ R(X)
and for integers p and s with p ≤ s, set

gap(x[p, q], x[s, t]) =

{
0 s ≤ q
s− q otherwise

and call it the gap between two blocks x[p, q] and x[s, t]. Pick α ∈
S(X)/ ∼, p < s , q ≤ t and {u = x[p, q], v = x[s, t]} ⊆ α. If the
only minimal synchronizing blocks in x[p, t] are u and v, then call u and
v the consecutive minimal pairs of α in x[p, t] ⊂ x. In ([2]) X(α, 0) was
defined to be the set of elements of x ∈ R(X) satisfying the following.

i. If i ∈ Z, then there are m, m′ ∈ α such that m ⊆ x(−∞, i], m
′ ⊆

x[i,+∞).

ii. |{u ∈ α : u ⊆ x}| <∞.

iii. There is M > 0 such that if u and v are the consecutive minimal
pairs of α in x, then gap(u, v) ≤M .

Example 3.1. Let G be the graph in Figure 1 and X = X(G). Then,
X(α, 0) = {0, 1}Z.

We associate to X(α, 0) an irreducible graph Γα. To do so for each
m ∈ α, let F (m) = {u ∈ W (X(α, 0)) : mu ∈ W (X(α, 0))} and let the
vertices of Γα to be {F (m) : m ∈ α}. Assign an edge labeled a from
F (m) to F (m′) when a ∈ F (m) and F (ma) = F (m′). Then, Γα is a
minimal right resolving cover and is called Fischer cover of X(α, 0).

Definition 3.2. A block m ∈ W (X) is called strong synchronizing if
there is an element α ∈ S(X)/ ∼ such that whenever there are two finite
paths e, e′ in Γα labeled m, then e = e′.
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Figure 1: The graph G.

Call an irreducible shift space X strong synchronized if it has a strong
synchronizing block. In the sequel, we will show that

sofics ( strong synchronized systems ( synchronized systems. (2)

Clearly, any strong synchronizing block is a synchronizing block. The
next example shows that the second inclusion in (2) is not equality.

Example 3.3. Let X be the Dyke system. Add a new symbol ∗ (which
will be a synchronizing block) to the set of four brackets and let S be the
subshift which consists of all bi-infinite sequences of these five symbols
such that any finite subblock which does not contain a ∗ obeys the
standard brackets rules ([2]). We claim that S is not strong synchronized
system.

Let u be a strong synchronizing block of S. So that is a synchronizing
block and ∗ ⊆ u. We can write u = a ∗ b where a, b ∈ W (S). Since
∗ is a synchronizing block, there is a unique vertex β of Fischer cover
S+
0 with this properties ∗ ∈ F−(β) and w+(β) = w+(∗) ([2, Page 146]).

Since ∗b ∈W (S), so there is a cycle C containing b and passing through
w+(∗) and w+(u). See Figure 2.

Pick a′ ∈ W (S) such that [a′, (a′ ∈ W (S) and for each x− ∈ S−,
x−a

′a ∈ S−. Set x− := · · · ]]][a′, y− := · · · ]]](a′. Since w+(x−) 6=
w+(y−) and

w+(x−a∗) = w+(y−a∗), w+(∗[a′) = w+(x−), w+(∗(a′) = w+(y−),

so there are finite pathes e, e′ labeled a∗b = u and terminating at w+(u).
This show that synchronized system S is not strong synchronized.
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w+(· · · ]][a′) β = w+(∗) w+(u)

w+(· · · ]](a′)

a∗ b

a∗

[a′

ca′

Figure 2: A subgraph of Fischer cover S.

If m is a synchronizing block of X, then there is a unique vertex I of
Γα with the property m ∈ F−(I) as in w+(u) in Figure 2. But m is an
strong synchronizing block if and only if there are two unique vertexes
I and J of Γα such that m ∈ F−(I) and m ∈ F+(J). Note that if X is
a synchronized system, then {α} = S(X)/ ∼ and Γα = X+

0 .

Proposition 3.4. Every irreducible sofic shift is an strong synchronized.

Proof. Let m be a synchronizing block of X. There is a finite path π in
Fischer cover X+

0 labeled m. Set i(π) := I and t(π) := J . Since labeling
of finite graph X+

0 is right resolving, so the labeling of X+
0 is left closing

([2, Theorem 3.2]) and so m is a strong synchronizing block of X. �
The next example shows that the converse of the above proposition is
not necessarily true and so (2) is sort out compeletly.

Example 3.5. Set 1β := 2101021031 . . .. Since 1β is not eventually
periodic so by ([3, Theorem 2.4.2]) β-shift is not sofic. Since 2 is a
strong synchronizing block for β-shift, so it is a strong synchronized.

Set St(X) to denote the set of strong synchronizing blocks for X. If
m ∈ St(X) and α = [m], then for each a ∈W (X(α, 0)), let C ′a be a cycle
in Γα containing a and passing through w+(m). Let u, v ∈ W (X(α, 0)).
Set the distance between two blocks u and v, to be 0 when u = v and

min{1

2
(|u′mu′′|+|v′mv′′|) : L(C ′uu′mu′′) = uu′mu′′,L(C ′vv′mv′′) = vv′mv′′}
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u′′

u u′ m v′′ v

v′

Figure 3: The distance of u and v.

otherwise. Denote this distance by dm(u, v) see Figure 3. It is not hard
to see that (W (X(α, 0)), dm) is a metric space. Note that the definition
of dm is dependent on the particular choice of m. Let m1, m2 ∈ α ∩
St(X). Then, for each u ∈ W (X(α, 0)) dm1(m2, u) = dm1(m1, u) +
dm2(m1, m2) + |m′1|+ |m2| − |m′2|.

Lemma 3.6. If uv ∈W (X(α, 0)) and m ∈ St(X), then

i. d(v, m) ≤ 1
2 |u|+ d(uv, m).

ii. d(u, m) ≤ 1
2 |v|+ d(uv, m).

Proof. Let d(v, m) = 1
2(|v′|+ |v′′|+ 2|m|+ 2|m′|) and

d(uv, m) =
1

2
(|a|+ |b|+ 2|m|+ 2|m′|) (3)

for some v′, v′′, a, b ∈W (X([m], 0)). By definition, |a|+ |m|+ |b|+ |u| ≥
|v′|+ |m|+ |v′′| So d(v, m) ≤ 1

2(|a|+ |b|+ |u|+ 2|m|+ 2|m′|) and by (3),
d(v, m) ≤ 1

2 |u|+ d(uv, m). Similar reasoning works for (ii). �

Lemma 3.7. labelaub

i. Let m ∈ St(X) and d(u, m) = 1
2(|u′|+ |u′′|+ 2|m|+ 2|m′|).

(a) If u′ = a′a′′, u′′ = b′b′′, then,

d(b′′ua′, m) =
1

2
(|b′|+ |a′′|+ 2|m|+ 2|m′|) ≤ d(u, m).
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u′′

u m

m′

Figure 4: Distance of u and m when um ∈W (X(α, 0)).

(b) If u′ = ε and u′′ 6= ε, then

d(u′′umm′, m) = |m|+ |m′| = d(u, m)− 1

2
|u′′|.

(c) If u′ 6= ε and u′′ = ε, then

d(m′muu′, m) = |m|+ |m′| = d(u, m)− 1

2
|u′|.

(d) If u′ = u′′ = ε, then d(m′mumm′) = d(u, m) = |m|+ |m′|

ii. There are nonempty blocks a and b such that d(aub, m) ≤ d(u, m).

Proof. (a) Let C be a cycle containing b′′ua′ and m. It suffice to show
that

|C| ≥ |b′′|+ |u|+ |a′|+ |a′′|+ |m|+ |b′|.
Let L(C) = b′′ua′w′mw′′. Then, by definition,

|a′|+ |w′|+ |m|+ |w′′|+ |b′′| ≥ |u′|+ |m|+ |u′′| = |a′|+ |a′′|+ |m|+ |b′|+ |b′′|

and we are done.
(b) Let πa be a path in Γα and labeled a. There is a finite path

πu′′umm′ terminating at i(πm) and starting at t(πm), so (b) is trivial.
See Figure 4.

Similar reasoning works for (c) and (d).
The part of (ii) follows from (i). �

Proposition 3.8. Let m ∈ St(X) and r > 0. Then,

Nm,r := Nr(m) ∪ {u ⊆ v : v ∈ Nr(m)}

is a languages of a shift space.
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Proof. We prove the proposition by showing that if u ∈ Nm,r, then

i. every subblock of u belongs to Nm,r.

ii. there are nonempty blocks a and b in Nm,r so that aub ∈ Nm,r.

Definition of Nm,r implies that (i) is trivial. To prove (ii), let u ∈ Nr(m).
By Lemma ??, there are nonempty blocks a, b such that d(aub, m) ≤
d(u, m). So aub ∈ Nr(m) and we are done. � Let X(m, r) be a
shift space such that Nm,r is its language. We can associate to X(m, r)

an irreducible graph Γm. If u ∈ Nr(m), then d(u, m) = 1
2(|u′| + |u′′| +

2|m|+ 2|m′|) for some u′, u′′ ∈W (X(α, 0)).
Let Cu be the cycle in Γα labeled uu′mu′′ and passing through

w+(m). Then, Γm consist of all Cu when d(u, m) < r . It is easy
to see that W (X(m, r)) ⊆ W (L(Γm)). Now suppose πu be a finite path
in Γm labeled u. So there is a cycle Cv in Γm labeled vv′mv′′ such
that u ⊆ vv′mv′′. Since d(v′′vv′, m) = |m| + |m′| ≤ d(v, m) < r, thus
v′′vv′ ∈ Nr(m) and so u ∈ Nm,r or W (L(Γm)) ⊆ W (X(m, r)). Thus
X(m, r) = L(Γm). Also by definition of Γm, it is a right resolving graph
and follower separated. Which set over claim by ([9, page 3563]) and so
Γm is Fischer cover of X(m, r).

Proposition 3.9. Let X be a shift space and m ∈ St(X). Then, X(m, r)

is a sofic.

Proof. Set α := [m] and Z := X(α, 0). Let

{(i, j) ∈ Z2 : i, j ≥ 0 and i+j < r−2|m|+2|m′|} = {(i1, j1), . . . , (ik, jk)}

and for each 1 ≤ l ≤ k let |{u′ ∈ W (Z) : u′m ∈ W (Z) and |u′| = il}| =
n′l, |{u′′ ∈ W (Z) : mu′′ ∈ W (Z) and |u′| = jl}| = n′′l . Then, by the
fact that if u ∈ Nr(m) then |u′| + |u′′| < r − 2|m| − 2|m′| for some
u′, u′′ ∈W (X(α, 0)), so

|{Cu : u ∈ Nr(m)}| ≤ n′1n′′1 + · · ·+ n′kn
′′
k.

Thus Γm s a finite graph or X(m, r) is a sofic. �

Remark 3.10. Note that as in half synchronized case in ([2]), we can
define X(m, r). For this let X be a shift space. For m,m′ ∈ St(X) we
write m ∼′ m′ when there are u ∈ W (R(X)) such that m,m′ ⊆ L(Cu).
Then, ∼′ is an equivalence relation in St(X).
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Corollary 3.11. i. Every sofic shift is a bounded metric space.

ii. Let X be an irreducible bounded metric space and m ∈ St(X).
Then, there is r > 0 such that X = X(α, 0) = X(m, r).

Proof. (i) Let X be a sofic and m ∈ St(X). There is a cycle C in X+
0

such that for any I ∈ VX+
0

, C passing through I. Let length of C be M

and u ∈W (X) = W (X(α, 0)) where α = [m]. Then, |u′|, |u′′|, |m′| ≤M .
So d(u, m) < 4|M | + |m| or u ∈ Nr(m) where r := 4|M | + |m|. So
X ⊆ Nr(m).

(ii) There is r > 0 such thatX ⊆ Nr(m). ThusW (X) ⊆W (X(m, r)) ⊆
W (X(α, 0)) and since W (X(α, 0)) ⊆W (X), so X = X(α, 0) = X(m, r). �
Note that X(α, 0) is clearly a subshift of R(X), but generally not closed.
see Example 3.3.

Corollary 3.12. Let m ∈ St(X) and every cycle in Γm containing m.
Then, X is a sofic if and only if X is an SFT.

Proof. Let X be a sofic system. So there is r > 0 such that X = X(m, r).
Similar to Proposition 3.9, there is k ∈ N such that

{Cu : u ∈W (X(m, r))} := {Cu1 , Cu2 , . . . , Cuk}.

Set M := max{|Cu1 |, |Cu2 |, . . . , |Cuk |} and let u ∈ W (X(m, r)) where
|u| ≥ 2M . By definition of Γm, there must be at least one m ⊆ u and
such u is essentially synchronizing. As a result, any block of length 2M
in W (X(m, r)) is a synchronizing block and so X = X(m, r) is an SFT ([6,
Theorem 2.1.8]). � The conclusion of Corollary 3.12 is not true when
there is a cycle in Γm labeled m.

Thomsen in ([9]) considers a synchronized component X of a general
subshift and proves that

sup{h(A) : A ⊆ X is an irreducible SFT} = h(X+
0 ) = hsyn(X). (4)

This was extended to half synchronized component in ([6]) by showing
that

sup{h(A) : A ⊆ X is an irreducible sofic} = h(X+
0 ) = hhsyn(X).

Now we will introduce this notion to strong synchronized.
Recall that if m ∈ St(X), α := [m] and u ∈ W (X), then Cu is a

cycle in Γα labeled uu′mu′′ and passing through w+(m).
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u′′

u u′ m

Figure 5: The subgraph of Γm.

Proposition 3.13. Let m ∈ St(X). Set α := [m], Z := X(α, 0). Set

{Cu : u ∈W (Z)} := {Cu1 , Cu2 , · · · }

and
A(m, 1) := X(Cu1), A(m, 2) := X(Cu1 ∪ Cu2), . . . .

Then, X(α, 0) = ∪n∈NA(m,n) and

i. Every A(m,n) is a sofic.

ii. limn→∞ h(A(m,n)) = h(Γα).

Proof. By the fact that for each n ∈ N, Cu1 ∪ . . .∪Cun is a finite graph,
(i) is trivial.

For (ii), let ε > 0. So there is n ≥ 1 such that

h(Γα)−ε < 1

n
log |{C : C is a cycle in Γα passing through t(πm), |C| = n}|.

Let {C : C is a cycle in Γα passing through t(πm), |C| = n} = {C1, . . . , CN}.
For each 1 ≤ i ≤ N , set vi := L(Ci)m

′ Figure 6. So there is a cycle
C ′i in Γα labeled L(Ci)m

′m and so C ′i = Cuji for some ji ∈ N. Thus
C1 ∪ C2 ∪ · · · ∪ CN ⊆ Γ(m, t) where t := max{j1, j2, . . . , jN}. Thus

N ≤ |{C : C is a cycle in Γ(m, t) passing through t(πm), |C| = n}|

and so h(Γα)− ε < h(A(m, t)). Hence h(Γα) < limh(A(m,n)) and we are

done. � Let G be generating graph for a subshift X ⊆ AZ. Fix
{a1, a2 . . . , ar} ⊆ A and {u1, u2, . . . , ur} ⊆ W (X). We construct a
new graph from G denoted by Gui↪→ai by replacing ui for ai whenever
there is a path in G labeled ai for all 1 ≤ i ≤ r.
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t(πm)

Ci

m

m′

Figure 6: The graph G.

Proposition 3.14. Let A = {a1, a2, . . . , ar} and X+
0 be the Fischer

cover of AZ at the base point I0. Pick {u1, u2, . . . , ur} ⊆ W (X) such
that for each 1 ≤ i ≤ r,

ui 6∈ {u : u is a finite concatenation of {uj : 1 ≤ j ≤ r and j 6= i}}.

For each N ∈ N, set

N := {(n1, n2, . . . , nr) ∈ (N ∪ {0})r : k1n1 + k2n2 + · · ·+ krnr = N}

where ki := |ui|. Then,

h((X+
0 )ui↪→ai) = lim

N→∞

1

N
log Σ(n1, n2, ..., nr)∈N

(
n
n1

) (
n−n1
n2

)
· · ·

(
n−n1−···−nr−1
nr

)
where n = n1 + n2 + · · ·+ nr.

Proof. For each 1 ≤ i ≤ r, there is exactly one cycle labeled ui. So

Σ(n1, n2, ..., nr)∈N
(
n
n1

) (
n−n1
n2

)
· · ·

(
n−n1−···−nr−1
nr

)
is the number of cycles of length N based at I0 and we are done. �

Corollary 3.15. Let m ∈ St(X). For each u ∈ W (X(α, 0)), set ki :=
|uiu′imu′′i |. If all A(m,n) is an SFT, then

h(Γα) = lim
N→∞

1

N
log Σ(n1, n2, ..., nr)∈N

(
n
n1

) (
n−n1
n2

)
· · ·

(
n−n1−···−nr−1
nr

)
.

For instance let X be the golden mean shift that formed of {0, 1}Z by
replacing 00 instead 0 . Then, h(X) = limN→∞

1
N log Σn+2m=N (n+mn ).
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4 Strong Synchronized Derived

Suppose α ∈ S(X)/ ∼. Let X(αs, 0) denote the set of elements x ∈ X(α, 0)

satisfying the following.

i. If i ∈ Z, then there are m, m′ ∈ α ∩ St(X) such that m ⊆
x(−∞, i], m

′ ⊆ x[i,+∞).

ii. There is M > 0 such that if u and v are the consecutive minimal
pairs of α ∩ St(X) in x, then gap(u, v) ≤M .

X(αs, 0) is clearly a subshift of X(α, 0), but generally not closed. Clearly

X(αs, 0) = X(α, 0) and

X(αs, 0) ⊆ X(α, 0). (5)

The next example shows that the inclusion in (5) is not equality.

Example 4.1. In the golden mean shift X, X = X(α, 0) and X(α, 0) −
X(αs, 0) = {0∞}.

If X is a synchronized (resp. strong synchronized) system, then there
is exactly one α ∈ S(X)/ ∼ such that X(α, 0) = X (resp. X(αs, 0) = X)
([9, Lemma 3.5]) and call it the top component (resp. top strong component).

Let X be a shift space and α ∈ S(X)/ ∼. Suppose (X(α, 0))c be

the top component of the synchronized system X(α, 0). Thomsen in ([9])
prove that

X(α, 0) ⊆ (X(α, 0))c. (6)

The next Proposition shows that for strong synchronized systems the
inclusion in (6) is equality.

Proposition 4.2. Let X be a shift space and α ∈ S(X)/ ∼. Suppose
(X(αs, 0))c be the strong top component of the strong synchronized system

X(αs, 0). Then, X(αs, 0) = (X(αs, 0))c.

Proof. By definition 3.2, St(X(α, 0)) ⊆ St(X) and soX(αs, 0) = (X(αs, 0))c.
�

Let X be an strong synchronized system. We set

∂sX = {x ∈ X | u ⊆ x ⇒ u 6∈ St(X)}.
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and call it the strong derived shift space of X. Since ∂sX is a shift space
we can continue, and consider ∂s(∂sX) = ∂2sX, ∂s(∂

2
sX) = ∂3sX, etc. Of

course, it can happen that these constructions give nothing interesting;
it can be that there are no synchronizing blocks for X, in which case
∂sX = X. For convenience we set ∂0sX = X. We define the strong depth
of X to be

Depths(X) = sup{n ∈ N : ∂ns X 6= ∅}.

Thus a minimal shift space with infinitely many points as well as an
SFT have depth 0, but for different reasons.

Example 4.3. i. In example 3.3, ∂sS = S and ∂S = X.

ii. Let Y be a sofic. Then, by 3.4 ∂sY = ∂Y and so by ([9, Theorem
6.6]), ∂sY is sofic.

iii. Suppose Z be synchronized system. Then, by ([8, Theorem 6.16]),
h(Z) = max{h(X+

0 ), h(∂sZ)}.

Proposition 4.4. If m ∈ S(X) and m 6∈ St(X), then m is a synchro-
nizing block of ∂sX.

Proof. Let am, mb ∈ W (∂sX). So there are x, y ∈ ∂sX such that
am = x[i, 0] and mb = y(0, j] for some i, j ∈ Z. Since m ∈ S(X), so
x(−∞, i)amby(j,+∞) ∈ X. It suffice to show that

St(X) ∩ {x[i0, j0] : i0 ≤ 0, j0 > 0} = ∅.

Pick i0 ≤ 0 and j0 > 0. There is unique vertex I of Fischer cover
Γ[m] with this properties m ∈ F−(I) and w+(I) = w+(m). Since
x[i0, 0] 6∈ St(X), so there are two finite paths in Γ[m] labeled x[i0, 0] and
terminating at I and so x[i0, j0] 6∈ St(X). � The next example shows
that there are systems X such that m ∈ S(X) − St(X) which may not
be a synchronized.

Example 4.5. Let G be the graph in Figure 7 and X = X(G). Then,
∂sX = {0∞, 1∞}.
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Figure 7: The graph G.
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