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Abstract. In this paper introduced the notion of a strong synchronized
system; that is a synchronized system whose there is unique finite path
in Fischer cover labeled synchronizing block. We aim to introduce a
class of synchronized systems containing sofics. Every irreducible sofic
shift is an strong synchronized.
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1 Introduction

One of the most studied dynamical systems is a subshift of finite type
(SFT). An SFT is a system whose set of forbidden blocks is finite ([0]).
Equivalently, an SF'T X is a subshift whose any block of length greater
than a certain number M is synchronizing; that is, if m is any block
with |m| > M and if vym and mw, are both blocks of X, then vymuvs
is a block of X. If an irreducible system has at least one synchronizing
block, then it is called a synchronized system and examples are sofics:
factors of SFT’s.

For a synchronized system, Fiebig in ([2]) prove that there is some
finite path e in Fischer cover labeled m terminating in « such that
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m € F_(a). In the other hand, cardinal{e € 5X0+ ctle)=a}>1. In
this note we consider shift space that cardinal{e € 5X0+ ctle) =a}=1.

2 Background and Definitions

This section is devoted to the very basic definitions in symbolic dy-
namics. The notations have been taken from ([0]) and the proof of the
relevant claims in this section can be found there. Let A be an alphabet,
that is a non-empty finite set. The full shift A-shift denoted by AZ, is
the collection of all bi-infinite sequences of symbols in A. A block over
A is a finite sequences of symbols from A. It is convenient to include
the sequence of no symbols, called the empty block and denoted by e. If
x is a point in A% and i < j, then we will denote a block of length j — 4
by z; ;) = xiwfit1... ;. It n > 1, then u" denotes the concatenation of
n copies of u, and put u’ = €. Let F be the collection of all forbidden
blocks over A. The complement of F is the set of admissible blocks
or just blocks in X. For any such A%, define X7 to be the subset of
sequences in A% not containing any block in F. A shift space is a closed
subset X of a full shift A% such that X = X 7. For some collection F of
forbidden blocks over A.

Let W,,(X) denote the set of all admissible n blocks. The language of
X is the collection W (X) = U, W, (X). A shift space X is irreducible if
for every ordered pair of blocks u, v € W(X) there is a block w € W (X)
so that uwv € W(X). It is mizing if for every ordered pair u, v € W(X),
there is an N such that for each n > N there is a block w € W, (X)
such that uwv € W(X). A shift space X is called a shift of finite type
SF'T if there is a finite set F of forbidden blocks such that X = Xz. An
edge shift denoted by X (G), is a shift space that consist of all bi-infinite
walks in a directed graph G. Each edge e initiates at a vertex denoted
by i(e) and terminates at a vertex t(e).

A labeled graph G is a pair (G, £) where G is a graph with edge set
&, and the labeling £ : £ — A. A sofic shift Xg is the set of sequences
obtained by reading the label of walks on G.

Xg = {ﬁoo(é‘) tEE Xg} = EOO(X(;)

We say G is a presentation of Xg. The follower set of a vertex m of G
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is F_(m) = {L£ — label of all finite paths terminating at m}. Every SFT
is sofic ([0, Theorem 3.1.5]), but the converse is not true. A labeled
graph G = (G, L) is right-resolving if for each vertex I of G the edges
starting at I carry different labels.

Let X be a shift space and w € W(X). The follower set Fy(w) of
w is defined by Fi(w) = {v € W(X) : wv € W(X)} (resp. F_(w)).
Let x € W(X). Then, x4y = (x;);cz+ (resp. z— = (x;)i<0) is called
right (resp. left) infinite X-ray. For a left infinite X-ray, say z_ its
follower set is wy (v_) = {7 € X : z_z, € X}. Consider the col-
lection of all follower sets w (z_) as the set of vertices of a graph X+.
There is an edge from I; to Is labeled a if and only if there is an X-
ray z_ such that z_a is an X-ray and I) = wy(z_), s = wi(z_a).
This labeled graph is called the Krieger graph for X. A block m €
W(X) is synchronizing if whenever um and mv are in W (X), we have
umv € W(X). An irreducible shift space X is a synchronized system
if it has synchronizing block. A block m € W (X) is half synchronizing
if there is a left transitive point # € X such that z[_j,,41],0 = m and
W4 (T(—oo,0]) = w4 (m), That we denote by

(z, m). (1)

If X is a half synchronized system with half synchronizing m, the irre-
ducible component of the Krieger graph containing the vertex wy(m) is
denoted by Xar and is called the right Ficher cover of X.

Let X be a shift space. The entropy of X is defined by

1
h(X) = lim —log|W,(X)]|.

n—oo N

For any synchronized system X, we define the synchronized entropy hsyn
to be

1
heyn(X) = limsup — log(cardinal{a € W,,(Y) : mam € W(X)}),
n n

where m is an arbitrary synchronizing block in W (X). A shift space X is
almost sofic if there are sofic shifts X,, C X such that lim, o h(X,) =
h(X).
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3 Strong Synchronized Systems

We aim to introduce a class of synchronized systems containing sofics.
Let X be a shift space and R(X) = PerX and set S(X) to denote
the set of synchronizing blocks for R(X). For s, t € S(X) we write
s ~ t whenever there are blocks u,v € W(R(X)) such that sut, tvs €
W(R(X)). Then, ~ is an equivalence relation in S(X). Note that s ~ ¢
if only if there is an & € R(X) = PerX such that s, t C x. Let x € R(X)
and for integers p and s with p < s, set

0 s<gq

gap(x[p, al x[sat]) - { s —q otherwise

and call it the gap between two blocks zy, , and z[, 4. Pick a €
S(X)) ~p<s,q<tand {u = x4, v =24 C a If the
only minimal synchronizing blocks in zp, 4 are u and v, then call u and
v the consecutive minimal pairs of a in xp, ) C z. In ([2]) X(q,0) Was
defined to be the set of elements of x € R(X) satisfying the following.

i. If i € Z, then there are m, m’ € a such that m C x(_ 5, m’ C

Lli, 4-00)-
i. {uea:uCa} <oo.

ili. There is M > 0 such that if v and v are the consecutive minimal
pairs of « in x, then gap(u,v) < M.

Example 3.1. Let G be the graph in Figure 1 and X = X(G). Then,
X(a,0) = {0, 1%,

We associate to X, ¢y an irreducible graph I'y. To do so for each
m € a, let F(m) = {u € W(X(q,0) : mu € W(X(q,0))} and let the
vertices of T'y, to be {F(m) : m € a}. Assign an edge labeled a from
F(m) to F(m') when a € F(m) and F(ma) = F(m'). Then, T, is a
minimal right resolving cover and is called Fischer cover of X (4, q)-

Definition 3.2. A block m € W(X) is called strong synchronizing if
there is an element o € S(X)/ ~ such that whenever there are two finite
paths e, € in Ty labeled m, then e = €.
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Figure 1: The graph G.

(=

Call an irreducible shift space X strong synchronized if it has a strong
synchronizing block. In the sequel, we will show that

sofics C strong synchronized systems C synchronized systems. (2)

=

Clearly, any strong synchronizing block is a synchronizing block. The
next example shows that the second inclusion in (2) is not equality.

Example 3.3. Let X be the Dyke system. Add a new symbol * (which
will be a synchronizing block) to the set of four brackets and let S be the
subshift which consists of all bi-infinite sequences of these five symbols
such that any finite subblock which does not contain a * obeys the
standard brackets rules ([2]). We claim that S is not strong synchronized
System.

Let u be a strong synchronizing block of S. So that is a synchronizing
block and * C u. We can write u = a x b where a, b € W(S). Since
* is a synchronizing block, there is a unique vertex S of Fischer cover
S~ with this properties * € F_(8) and w4 (8) = w4 (x) ([2, Page 146]).
Since xb € W (S), so there is a cycle C' containing b and passing through
w4 (%) and wy (u). See Figure 2.

Pick o’ € W(S) such that [d/, (a’ € W(S) and for each z_ € S,
z_ada € S7. Set x_ := ---]|Jld/, y— = ---]]](¢/. Since wy(x_) #
w4 (y-) and

wi(a_ax) = wy (y_ax), wi (x[a’) = wa(2_), we (x(a) = wy (y_),

so there are finite pathes e, €’ labeled axb = u and terminating at w4 (u).
This show that synchronized system S is not strong synchronized.
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Figure 2: A subgraph of Fischer cover S.

If m is a synchronizing block of X, then there is a unique vertex I of
I, with the property m € F_(I) as in w4 (u) in Figure 2. But m is an
strong synchronizing block if and only if there are two unique vertexes
I and J of T',, such that m € F_(I) and m € F(J). Note that if X is
a synchronized system, then {a} = S(X)/ ~ and ', = X .

Proposition 3.4. FEvery irreducible sofic shift is an strong synchronized.

Proof. Let m be a synchronizing block of X. There is a finite path 7 in
Fischer cover X labeled m. Set i(r) := I and t(r) := J. Since labeling
of finite graph Xa' is right resolving, so the labeling of Xa' is left closing
([2, Theorem 3.2]) and so m is a strong synchronizing block of X. O
The next example shows that the converse of the above proposition is
not necessarily true and so (2) is sort out compeletly.

Example 3.5. Set 15 := 21010%10%1.... Since 1z is not eventually
periodic so by ([3, Theorem 2.4.2]) [-shift is not sofic. Since 2 is a
strong synchronizing block for 3-shift, so it is a strong synchronized.

Set S;(X) to denote the set of strong synchronizing blocks for X. If
m € S(X) and a = [m], then for each a € W(X(q,¢)), let C;, be a cycle
in 'y, containing a and passing through wy (m). Let u, v € W(X(q4, 0))-
Set the distance between two blocks v and v, to be 0 when u = v and

!
uu/'mu

!/

1
min{g(\u’mu”|—|—|v/mv"]) L n) = uu'mu” L(C ) = v0'ma”
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Figure 3: The distance of v and v.

otherwise. Denote this distance by d,,(u, v) see Figure 3. It is not hard
to see that (W(X(q,0)), dm) is a metric space. Note that the definition
of d,, is dependent on the particular choice of m. Let mi, mo € an
Sy(X). Then, for each u € W(X(q,0)) dm,(m2, u) = dp,(m1, u) +
Ay (M, m2) + [mi | + [ma| — [my].

Lemma 3.6. If uv € W(X(,,0)) and m € Si(X), then

i. d(v, m) < 5|u| + d(uv, m).

N[

ii. d(u, m) < 3| + d(uv, m).

Proof. Let d(v, m) = %(|v’| + |v"] 4 2|m| + 2|m/|) and
1 /
d(uv, m) = §(|a! + [b] + 2|m| + 2|m|) (3)

for some v', v, a, b € W(X ([, 0)). By definition, |a| + [m] + [b| + |u| >
V'] + |m| + [v"| So d(v, m) < $(|a| +|b] + |u| +2|m| 4+ 2|m/|) and by (3),
d(v, m) < 3|u| + d(uv, m). Similar reasoning works for (i). O

Lemma 3.7. labelaub
i. Let m € Sy(X) and d(u, m) = L(|u/| + [v| 4 2|m| + 2|m/|).

(a) If v =d'd”, v =b'b", then,

d("ua’, m) = = (|| + |a"] + 2|m| + 2|m’|) < d(u, m).

1
2
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Figure 4: Distance of u and m when um € W (X, ))-

(b) If v =¢e and u” # ¢, then

1
d(u"umm’, m) = |m| + |m/| = d(u, m) — §|u"|.

(c) If u' #¢ and u" = ¢, then
1
d(m'mud; m) = |m| + |m/| = d(u, m) — §|u’|

(d) If u' =" = ¢, then d(m'mumm’) = d(u, m) = |m| + |m/|
it. There are nonempty blocks a and b such that d(aub, m) < d(u, m).

Proof. (a) Let C be a cycle containing b"ua’ and m. It suffice to show
that
G = [b7] + [ul + |a| + |a”| + m] + [V/].

Let £(C) = b"ua’w'mw”. Then, by definition,
@[+ w'| +[m] +[w”" |+ b"] = [u'|+|m]+ "] = |a|+]a"]|+|m] + o] +[b"]

and we are done.

(b) Let m, be a path in ', and labeled a. There is a finite path
Tu/ummy terminating at i(m,,) and starting at ¢(m,,), so (b) is trivial.
See Figure 4.

Similar reasoning works for (c) and (d).

The part of (ii) follows from (i). O

Proposition 3.8. Let m € S;(X) and r > 0. Then,
Ny =Ny (m)U{u Cv:ve Ny (m)}

s a languages of a shift space.
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Proof. We prove the proposition by showing that if u € NV, ., then

i. every subblock of u belongs to N, .

ii. there are nonempty blocks a and b in Ny, , so that aub € Ny, ;.

Definition of N, , implies that (i) is trivial. To prove (ii), let u € N,(m).
By Lemma ??, there are nonempty blocks a, b such that d(aub, m) <
d(u, m). So aub € N,(m) and we are done. O Let X(y,,,) be a
shift space such that N, is its language. We can associate to X, )
an irreducible graph T',. If u € N,(m), then d(u, m) = 3(ju/| + || +
2|m| + 2|m’|) for some o/, u" € W(X(q,0))-

Let C, be the cycle in Ty labeled wu'mu” and passing through
w4 (m). Then, I'y, consist of all C, when d(u, m) < r . It is easy
to see that W (X, ) € W(L(I's,)). Now suppose 7, be a finite path
in T, labeled u. So there is a cycle C, in I',, labeled vv'mv” such
that u C vv'mv”. Since d(v""vv'; m) = |m| + |m'| < d(v, m) < r, thus
v"vv" € Np(m) and so u € Ny, or W(L(T,,)) € W(X(yp, ). Thus
X(m,ry = L(['y). Also by definition of T',, it is a right resolving graph
and follower separated. Which set over claim by ([9, page 3563]) and so
[y, is Fischer cover of X, ;).

Proposition 3.9. Let X be a shift space and m € Si(X). Then, X,
s a sofic.

Proof. Set o := [m] and Z := X(,,¢). Let
{(i, j) € Z% 4,5 > 0 and i+j < r—2|m|+2|m/|} = {(i1, j1), - -, (ix, Ji)}

and for each 1 <1 <k let |[{v' € W(Z) : W/'m € W(Z) and |u/| = 4;}| =
ny, {u’ € W(Z) : mu” € W(Z) and |u/| = j;}| = nj. Then, by the
fact that if w € N,(m) then || + [u”| < r — 2|m| — 2|m/| for some
u', u" € W(X(q,0), 50

{Cu s we No(m)}| < minfl 4+ nien.
Thus I'y, s a finite graph or X (m,r) is a sofic. O

Remark 3.10. Note that as in half synchronized case in ([2]), we can
define X(,, ,). For this let X be a shift space. For m,m’ € Sy(X) we
write m ~' m’ when there are u € W(R(X)) such that m,m’ C L(C,,).
Then, ~' is an equivalence relation in Sy(X).
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Corollary 3.11. i. Fvery sofic shift is a bounded metric space.

ii. Let X be an irreducible bounded metric space and m € Sy(X).
Then, there is v > 0 such that X = X, 0) = X, r)-

Proof. (i) Let X be a sofic and m € S;(X). There is a cycle C in X
such that for any I € VX@“’ C passing through I. Let length of C' be M
and u € W(X) = W(X(q,0)) where a = [m]. Then, [/, [u"], |m'| < M.
So d(u, m) < 4|M| + |m| or u € N,y(m) where r := 4|M| + |m|. So
X C Ny(m).

(ii) There is 7 > 0 such that X C N,.(m). Thus W(X) € W(X(y,,,)) C
W(X(a70)) and since W(X(a,())) - W(X), so X = X(a,O) = X(mﬂﬁ). g
Note that X, o) is clearly a subshift of R(X), but generally not closed.
see Example 3.3.

Corollary 3.12. Let m € Sy(X) and every cycle in I'y, containing m.
Then, X is a sofic if and only if X is an SFT.

Proof. Let X be a sofic system. So there is r > 0 such that X = X, ,).
Similar to Proposition 3.9, there is k € N such that

{Cut u€W(Ximr)} = {Curs Cus -, Cu }.

Set M := max{|Cy,|, |Cul, .., |Cy,l} and let u € W(X(p, ,)) where
|u| > 2M. By definition of I';,, there must be at least one m C u and
such u is essentially synchronizing. As a result, any block of length 2M
in W (X, ) is a synchronizing block and so X = X, ,y is an SFT ({6,
Theorem 2.1.8]). [ The conclusion of Corollary 3.12 is not true when
there is a cycle in I';;, labeled m.

Thomsen in ([9]) considers a synchronized component X of a general
subshift and proves that

sup{h(A): A C X is an irreducible SFT} = h(X[") = hsyn(X). (4)

This was extended to half synchronized component in ([6]) by showing
that

sup{h(A) : AC X is an irreducible sofic} = h(X;") = hngyn(X).

Now we will introduce this notion to strong synchronized.
Recall that if m € S;(X), a := [m] and v € W(X), then C, is a
cycle in Ty, labeled uu'mu” and passing through w. (m).
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Figure 5: The subgraph of I';,.

Proposition 3.13. Let m € Sy(X). Set a:=[m], Z := X, ). Set
{Cu U E W(Z)} = {Cu17 Cu27 T }

and
A(m71) = X(Cu1)7 A(m,2) = X(Cul U Cu2)7 e

Then, X(a,()) = UneNA(m, n) and
1. Bvery A(m7 n) s a sofic.

Proof. By the fact that for each n € N, C,,, U...UC,,, is a finite graph,
(i) is trivial.
For (ii), let € > 0. So there is n > 1 such that

1
h(Ty)—e < —log|{C : C'is a cycle in 'y, passing through ¢(m,), |C| = n}|.
n

Let {C : C'is a cycle in Ty, passing through t(m,,), |C| =n} ={C4, ..., Cn}.
For each 1 < i < N, set v; := L(C;)m’ Figure 6. So there is a cycle

C! in Ty, labeled £(C;)m'm and so C} = Cly,, for some j; € N. Thus
CiuCeU---UCy C F(m7t) where t := max{j1, j2, ..., jn}. Thus

N < [{C: Cis acycle in I'(,, 4 passing through ¢(m,), |C] = n}|

and so h(['y) — € < h(Ap, ). Hence h(I'y) < lim h(A(y,, »)) and we are
done. O Let G be generating graph for a subshift X C A%. Fix
{ai, a2...,a,} € A and {ug, ug, ..., u,} € W(X). We construct a
new graph from G denoted by G, by replacing u; for a; whenever
there is a path in G labeled a; for all 1 < i < r.
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Figure 6: The graph G.

Proposition 3.14. Let A = {ay, az, ..., a,} and X be the Fischer
cover of A% at the base point Iy. Pick {u1, ua, ..., u,} € W(X) such
that for each 1 <i <,

w; & {u: uis a finite concatenation of {u; : 1 < j <r and j #i}}.
For each N € N, set

N :={(n1, nay ..., ny) € (NU{0})" : kiny + kona + -+ + kyn, = N}

where k; := |u;|. Then,
1
+ IERT _ g — =T
BT D) = I 10850y myene () (57) - (3=

where n =ny +ng + - + n,.

Proof. For each 1 <1 < r, there is exactly one cycle labeled ;. So

(nrmaconpen (ny) (op™) - (77 )
is the number of cycles of length IV based at Iy and we are done. O

Corollary 3.15. Let m € Si(X). For each u € W(X(q,0)), set ki :=
luguimuy|. If all Agy, ny is an SF'T, then

n—ni n—mi——Np_1

. 1 n
h(Ta) = J\}E)noo N 108 Xny,n, ... na)eN (m) (nz ) (nr ) .

For instance let X be the golden mean shift that formed of {0, 1}% by

replacing 00 instead 0 . Then, h(X) = limy_, 00 % log Xy rom=n (™).

)
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4 Strong Synchronized Derived

Suppose a € S(X)/ ~. Let X(,,, ¢y denote the set of elements x € X, o)
satisfying the following.

i. If i € Z, then there are m, m’ € a N Sy(X) such that m C
T(—o0,ily M S T, +o0)-

ii. There is M > 0 such that if u and v are the consecutive minimal
pairs of & N S¢(X) in z, then gap(u,v) < M.

X(as,0) 18 clearly a subshift of X, gy, but generally not closed. Clearly

X(as,O) = X(a,O) and
X(a.,0) € X(a,0)- (5)

The next example shows that the inclusion in (5) is not equality.

Example 4.1. In the golden mean shift X, X = X, ) and X, o) —
X(as,O) = {OOO}

If X is a synchronized (resp. strong synchronized) system, then there
is exactly one a € S(X)/ ~ such that X, gy = X (resp. X4, 0) = X)

13

([9, Lemma 3.5]) and call it the top component (resp. top strong component).

Let X be a shift space and a € S(X)/ ~. Suppose (X(4,0))c be

the top component of the synchronized system X(, ). Thomsen in ([9])
prove that

X(a,0) € (X(a,0))e- (6)

The next Proposition shows that for strong synchronized systems the
inclusion in (6) is equality.

Proposition 4.2. Let X be a shift space and a € S(X)/ ~. Suppose
(X(as,0))c be the strong top component of the strong synchronized system

X(amo). Th@’ﬂ, X(as70) = (X(as,O))C'

Proof. By definition 3.2, S;(X(4,0)) € S¢(X) and so X (4, 0) = (X(as,0))e-

O
Let X be an strong synchronized system. We set

O X={reX| uCz = udgS(X)}
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and call it the strong derived shift space of X. Since 0s.X is a shift space
we can continue, and consider d5(0;X) = 02X, 05(92X) = 92X, etc. Of
course, it can happen that these constructions give nothing interesting;
it can be that there are no synchronizing blocks for X, in which case
0sX = X. For convenience we set 39X = X. We define the strong depth
of X to be

Depths(X) =sup{n € N: X # (}.

Thus a minimal shift space with infinitely many points as well as an
SFT have depth 0, but for different reasons.

Example 4.3. i. In example 3.3, 955 = S and 9S = X.

ii. Let Y be a sofic. Then, by 3.4 9;Y = dY and so by (]9, Theorem
6.6]), 05Y is sofic.

iii. Suppose Z be synchronized system. Then, by ([3, Theorem 6.16]),
h(Z) = max{h(X{), h(0s2)}.

Proposition 4.4. If m € S(X) and m ¢ Sy(X), then m is a synchro-
nizing block of 05X .

Proof. Let am, mb € W(9sX). So there are xz,y € 0;X such that
am = x[; o) and mb = y( ; for some i, j € Z. Since m € S(X), so
T(—o00,i)@MbY(j 1o0) € X. It suffice to show that

St(X) N {x[io,jo] 159 <0, jo > 0} = 0.

Pick ig < 0 and jg > 0. There is unique vertex I of Fischer cover
[(p with this properties m € F_(I) and w4 (I) = wy(m). Since
T(i,0) € St(X), so there are two finite paths in ', labeled x(;, o) and
terminating at I and so @, o] € St(X). [0 The next example shows
that there are systems X such that m € S(X) — S¢(X) which may not
be a synchronized.

Example 4.5. Let G be the graph in Figure 7 and X = X(G). Then,
0sX = {0%°,1°}.
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Figure 7: The graph G.
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