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Abstract. In this paper we investigate further properties of the de-
formable derivative and use the results to study the existence of solu-
tions to the integro-differential equation D*y(t) = h(y(t)) + f(¢t, y(t)) +
fot K(t,s,y(s))ds,t € [0,T], with initial condition y(0) = yo, where
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our main results. An example is provided for illustration.
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1 Introduction

In their paper [5], F. Zulfeqarr, A. Ujlayan, and P. Ahuja introduced the
new concept of deformable derivative using the limit approach as in the
usual derivative. They called it “deformable” as its intrinsic property of
continuously deforming function to derivative. This derivative is linearly
related to the usual derivative. The deformable derivative can be viewed
as a derivative of the fractional order. Recently, A. Meraj, D.N. Pandey
[3] used this concept to study the existence and uniqueness of solutions to
the Cauchy problem Dx(t) = Axz(t) + f(t,z(t)),t € (0,T], x(0) = zo,
where A is the infinitesimal generator of a Cp-semigroup of bounded
linear operators (T'(t))i>0 on a Banach space X (using the Banach
fixed point theorem), and the approximate controllability to the re-
lated problem (using the Schauder fixed point theorem). In our pre-
vious paper [2], we established the existence and uniqueness of solutions
to Cauchy problems with non-local condition D%z (t) = f(t,z(t)),t €
(0,T], (0) + g(x) = xo, via the deformable derivative.

In the present paper, we first investigate some elementary properties
of the deformable derivative(section 2), and then explore in section 3
the existence of solutions for fractlonal mtegro differential equations of
the type DYy(t) = h(y(t))+ f(t, y(t +f0 (t,s,9(s))ds,t € [0,T], with
initial condition y(0) = yo, where D%y(t) is the deformable derivative
of the function y(t). Finally, section 4 is devoted to the study of an
example.
Let J = [0,7T],(X,||.||) be a Banach space and C(.J, X) denote the Ba-
nach space of all continuous bounded functions g : J — X equipped
with the norm ||g{|c(sx) = sup {|g(t)| : t € J ,for any g(t) € X.}

2 Deformable Derivative

Definition 2.1. ([5]) Let f be a real valued function on [a,b], a+ 3 =1

1. The Deformable derivative of f of order a at t € (a,b) is defined
as:
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Daf(t) — hm(l + Eﬂ)f(t + 605) — f(t) .

e—0 €

If the limit exists, we say that f is a-differentiable at t.

2. Fort € [a,b], and o € (0, 1], the a-integral of f is given by:

1 -8, B

t
ITf(t) = See / ea” f(x)dx.

Remark 2.2. If a =1, then 8 =0, and we recover the usual derivative
and the usual Riemann integral. This shows that the deformable deriva-
tive and the a-integral are generalizations of the usual derivative and the
usual Riemann integral, respectively.

Theorem 2.3. ([2],[5]) The operators D and I$ possess the following
properties :
Let o, a1, 9 € (0,1] such that a+ =1, a;+ 5; =1 fori=1,2.

1. A differentiable function f at a pointt € (a,b) is always
a-differentiable at that point for any . Moreover we have

D*f(t) = Bf(t) + aDf(t),
where D := % 1s the usual derivative.

2. Let f be differentiable at a point t for some «. Then it is contin-
uous there.

3. Let f be defined in (a,b). For any «, f is a-differentiable iff it is
differentiable.

4. Suppose f and g are a-differentiable. Then

D*(fog)(t) =B(fog)(t)+aD(fog)(t)
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5. Let f be continuous on [a,b]. Then IS f is a- differentiable in (a,b),
and we have

DI f(t)) = f(t),and
8

IS(Df(t) = f(t) — ea @ f(a).

6. D <f> - —gDO‘(fl—af'
g g

7. Linearity : D*(af + bg) = aD®f + bDg.
8. Commutativity : D* - DY = D% . D1,
9. For a constant ¢, D*(c) = Bc.
10. D*(fg) = (D*f)g + afDg.
11. Linearity : I$(bf +cg) =bIZ f +cllyg.
12. Commutativity : IJV15? = IS I3
Let’s now recall some tools which we will use in the sequel.

Theorem 2.4. (Krasnoselskii fized point theorem). Let M be a closed
convex and nonempty subset of a Banach space X. Let A,B be two op-
erators such that:

(1)Axz + By € M whenever x,y € M.

(2) A is compact and continuous.

(3) B is a contraction mapping.

Then, there exists z € M such that z = Az + Bz.

Theorem 2.5. ([1])(Weissinger fized point theorem ) Assume (E, d) to
be a non empty complete metric space and let B; > 0 for every j € N
such that E?:_& ;i converges. Further more let the mapping T : E — E
satisfy the inequality d(T/u, T/v) < Bjd(u,v), for every j € N and ev-
ery u,v € E. Then, T has a unique fized point u*. Moreover, for any
vy € E, the sequence {’]ijo}}?‘;l converges to this fized point u*.
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3 Application to Evolution Equations

We consider the following Cauchy problem with initial condition

D%(t) = h(y(t)) + f(t,y(t)) +/0 K(t,s,y(s))ds, teJ (1)

y(0) = yo, (2)
where D? is the deformable derivative of order a € (0, 1), and
f:IxX—=>X, K:JxJxX — X are continuous functions.

Lemma 3.1. The system (1)-(2) is equivalent to the following nonlinear
integral equation:

1 t 1 t
y(t) == yo + —e ! / = h(y(s))ds + —e " / easf(s,y(s))ds
0

e_aﬁt/ / K(7,s,y(s))drds. (3)
Proof. Assume (1)-(2). Then

1Dy = 1% (1(y(0) + 1t 9(0) /Ktsy is).

Using Theorem 2.3, we get,

I (h( () + £ty / K(t,5,y(s ) 1 (h(y(®)) + I £ (1, (1))

o </OtK(t,s,y(s))ds> |
=8, 1 -8,

y(t) — e L ly(0) = Lo / ¢S5 h(y(s))ds + L e / €% (s, y(s))ds

o 0 a 0

ecxﬂt/ ea /KTS y(s))drds.

Using Theorem 2.3 and Definition 2.1, we get
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Finally, using (2),

= 1 -8, (1 1 ¢
) = e+ e [ eRhus)ds + e [ e s yo)is

0

eaﬁt/ / K(7,s,y(s))drds.

Conversely, assuming (3) and taking D® of both sides of the equation,
we get

DRy(t) = ey + Lo /teishu))dsﬂeft /tegsf(s,y(S))ds

e_aﬂt/ / K(7,s,y(s))drds

- 1
+ aD(e™ yp) +aD (ae ft/o egsh(y(S))ds)

ot
+aD ieft/o eas f(s,y(s ))d)

+ aD ie_aﬁt/ / K(7,s,y(s ))de8>
= h(y(t)) + £ty /Ktsy

The proof is now complete. O

Definition 3.2. A function y € C(J, X) is said to be a mild solution to

(1)-(2) if

_ 1 - t 1 t
1) = e+ e [ eRhus)ds + e [ e s yo)s
0

e‘ft/ / K(r,5,y(s))drds.

Now let’s consider the following hypotheses:
(H1) h: C(J,X) — X is continuous, bounded and there exists M €
(0,1) such that ||h(u) — h(v)|| < M||u — v]|co, for u,v € C(J, X).
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(H2) f:J x X — X is of Carathéodory, i.e. for any u € X, f(¢,v)
is strongly measurable with respect to t € J and for any t € J, f(t,u)
is continuous with respect to u € X. Moreover, there exists 6 € (0,1],
L > 0 such that

I f(t,u) — f(t,0)|| < Lllu—v|)?,t € Ju,v € X.

(H3) K : D x X — X, is continuous on D and there exists v € (0,1],
p € L1(J) such that

HK(T’ S, u(s)) - K(Tv S5, U(S))H < p(T)HU - U‘P’ (7-? 5) € D’ u,v € Xv
where D = {(t,s) : 0 < s <t <1}.

Now we state and prove the following result.

Theorem 3.3. Assume (H1),(H2) and H(3) hold. Then equation (1)-
(2) has a solution in C(J,X) on J .

Proof. We transform problem (1)-(2) into a fixed point problem.
Define F': C(J,X) — C(J,X) by

=By 1 -8, =By

Fy(t) = e %'y + ~e@ / e25h(y(s ))ds+le : / e f(s,y(s))ds

0
e‘ft/ / K (7, 5,y(s))drds.

Let F be the sum of two operators P and (), defined as follows:

_ 1 t
Py(t) = % lyo + e / e h(y(s))ds, (4)
0

and

«

t t
Qult) = = [ e flspleds e [ e
0 . « 0 (5)
x/ K(7,s,y(s))drds.

For any function z € C and for some j € N | we define as in [1] the
following norm:

2]l = sup{e ™| 2(t)| : t € J}.
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Step 1 : Consider B, = {z € C : [[z]; < r}. We first prove that
Pz+Qz* € B, CC, for every z,z* € B,.

Let us set
o= sup | f(s;27(s))l;
(s,2*)eJx By
t
o= sup K (7,s,27(s))||dT,n = sup [|h(z)],

(1,8,2*)€EDX B, Js 2€B;y

and there exists
n+o+ox

3 + 1

r= |zl +

For z,2* € B, and t € J, we have

| Pz(t) + Qz" (1)
1 - t 1 - t
< ||zou+eft/ eis”h(z(s))uds+eft/ ehs
o 0 « 0

* 1 =B ! P !
X |If(s,27(s)l|ds + —eo® [ ea® [ |[K(7,5,2(s))|drds
«Q 0 s

L o—sy [ s,
< llzoll + e ea® supzep,||h(z(s))ds
0
1 -5 t B *
+ ae a t/ ea’ sup(&z*)eijer(s,z (s)|lds
0

L o—sy [* s, ! ;
+ ae a e SUP(rs -)eDx B, |K (7, s,2"(s))||drds
0 S

*

g g
<ol +2+24+2

g B B
—ww+”+g“7

Finally,

Mm+Qfm5ef@muﬂ+”+”)<n

8

This means that Pz + Qz* € B,.
Step 2 : We prove that the operator P is a contraction map on B,..
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Proceeding from the assumptions and B, as in Step 1, for z,z* € B,
and t € J, we have

o

1P=(t) = P2 (8)]| < 16ft/0 ex*[[(=(s)) = h(="(s)|ds

IN

1 - t
eft/ egsMHz(s) — 2%(s)|ds
0

o

1 =By ! B js —js *

M—e= ea’elsupe||z(s) — 2" (s)||ds
0

M

IN

& seJ
15 12(s) — 2*(s)1l;-

Since .
; 1 -8 By s
Il = —eat | eafelids,
« 0
we have

) (1 =5, [* 5y s ‘
|Pz(t) — Pz*(t)|| = M |—e= ea®el¥ds| ||z — 2¥||;
0

| &

o " '
=M eaBt/ e(f¢+])sds} ||Z—Z*||j
0

| &

'1 -~ t i
=M eaBt/O e(ﬁtzj)sds] |z — 2%||;

| &

=By
€ « Btaj %
vl R Lot

< Me= telteat — 1]||z — 2|

< Meél'|lz — =*|;.

Thus,
1Pz — Pz*||; < M|z = 27|;.

Since M < 1, we conclude that P is a contraction map on B,.
Step 3: We show that the operator () is completely continuous on B,.
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Now we prove that (QB,) is uniformly bounded, (QB,) is equicontinu-
ous, and Q) : B, — B, is continuous.

First, we show that (@B, ) is uniformly bounded.

For z € B, and t € J, we have

1Q=(1)]l

t
<Lz / 25| £(s, 2(5)) — £(5,0)]|ds

(07

1 t
b e / €251 £(5,0) | ds

f/ /HKT” ) — K(r,5,0)|drds
ot / K (7, 5,0)|[drds
t

1 - , 1 -5, [t
< eaﬁt/ easLeQJSHzH?ds—i-eat/ ea*R ds
o 0 a 0

1
+ J—
Oz
1
+ J—
«
1 - t t 1 ¢
+oew [eb [pmamensjas+ Sew [ eore s
o 0 s 0

1 -8, [t 5. . 1 -8, [t s
< Wl + ol 2o [ etveivas R+ RILew [ efoas

< (" + ol et + EEEL

Thus,
R+ R*
Q=1 < L+ ol 0+ L
where
R =sup | (s, 0.
seJ
and

= sup / | K(T,s,0)|dr.
(r,8)eD



AN EXISTENCE RESULT FOR SOME FRACTIONAL... 11

Therefore, @B, C By for any z € B,, i.e., the set {Qz : z € B,} is
uniformly bounded.

Next, we prove that (QB,) is equicontinuous. For z € B, and for
ti,to € J, with t; < 1o,
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1Qz(t2) — Qz(t1) ]l

1 [t - -
<L / et — TR f(s, 2(s))|ds
0

(0%

1 [ -
+ a/ e 2en f(s, 2(s)) |ds

t1

1 (M s By By [T
+/ et —eat1|eas/ 1K (. 5, 2(s))||drds
@ Jo s

1 [ —5, 5. [P
—I-/ eathas/ | K (7, s,2(s))||drds
t1 s

(0]
1 t1 to

+/ eaﬂtlegs/ 1K (7, 5, 2(s))||drds
@ Jo t1
I A -

<1 / (50 — )k £(5, 2(s))||ds
@ Jo

1 [ -
o [ e, 2(9)) ds
t
1“ -8 8, B, [
+ / (eatl—eat2)ea5/ | K (T,s,2(s))||drds
0 s
to _s 3 to
/ eat%as/ | K (7, s,2(s))||drds

t1 t2 h
eatichs [/ HK(T,S,Z(S))HdT_/ 1K (7,5, 2(s))[|dT | ds

-8 -8 8
+eal2 —eall - 2ea(t1t2)]
o

g

24 e%ﬁtQ - e;ﬁt1 — Zeg(tl_tQ)]

1 — ealti—to) .
— .
B

We notice that ||Qz(t2) — Qz(t1)| — 0 as t; — to. Therefore,
(QB,) is equicontinuous.
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And because f and K are continuous, we can conclude that Q) : B, — B,.
As a consequence of step 3 with Arzela-Ascoli’s theorem, (QB,) is a rela-
tively compact set. Therefore, the operator () is completely continuous.
We now conclude the result of this theorem based on Krasnoselskii’s

theorem. g
To prove the existence of a unique solution to Eq(1)-(2) via Weissinger’s
fixed point theorem, we define an operator

_ 1 - t 1 - t
Ay(t) = e tyo + —e ff/ S h(y(s)ds + —ew ! | eatf(s,y(s))ds

0
—e o t/ / K(1,s,y(s))drds.

Given y,z € C(J,R),t € J,

|A(y)(t) — A(x)(?)]
1 -8, tegs s)) — Alz(s)]ds le%ﬁt tegs s, y(s
e~ /0 |h(y(s)) — h(z(s))|ds + /0 | f(s,y(s))

a

IN

— f(s,z(s))|ds + —e o / / |K(1,s,y(s)) — K(7,s,x(s))|drds
1 -5, [t By B ,s
oo [ eRaly(s) — alo)ds + e /0 Lly(s) — 2(s)lds
t
et [ete / Il ly(s) — w(s)drds

(e%

1 - t 1 t
oo [ R My~ allwds + Se [ oLy - aluds
0 0

«
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1 8 t 8 t
+oe® [t [ ol - alwdrds
« 0 s
1 -8 t g 1 -8 t g
<eatMHy—x||oo/ easds—i—eatLHy—:cHoo/ ea’ds
(6% 0 (6% 0

1 -8 tﬁ
+wﬂwuwyﬂww/eww
« 0

1 -8 a. B 1 -8 a. B8
§a6’atM||y—l‘||ooB[€at— ]"‘&eatLHy—l‘HooE[e“t— ]
1 -5 a. B
+ S¢° el lly — 33”oog[eat — 1]
§M|’y_x”oo+LHy_xHoo+ ol lly — o
B B B
ML ol
= ly — 2|l co-
B
Therefore,
M—|-L+ Pl
Iy - Acfoe < L, gy

Theorem 3.4. [2] Assume (H1),(H2), and (H3) hold, and in addition,
assume that M + L < 3, |pllp1 < 4. Then

(M + L+ pllp)"T"

1y = 2loo- (6)

Proof. We prove using the principle of mathematical induction. For
this, we assume that n € {0,1,2,...},t € J.
For n = 0, the statement is trivially true. Assuming (6) is true for n = k,
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we prove the inequality for n = k + 1.

ARy (1) — AM a(n)]

<

IA

= |A(A"y(t)) — A(A%x(D))|

%J”Aeﬁmm%@»—mA%@m@

(67

b et / ea*| (s, Ay(s)) — f(s, Aha(s)|ds

+;mﬁ/ /ﬁKTsAy §)) — K (7,5, AFz(s))|drds

1 -8 B
/ 25 M| (AFy(s)) — (AFa(s))lds
« 0
L -5y ! L k
+ & L|A%y(s)) — A%x(s)|ds
1 k AF
Ee o )| A%y A%z(s))|drds
1 - t Mk+1 k
Lo / b Iy - allocds
« 0
1 t Lk—l—l k
+ —e aﬁt/ ea lly — z||cods
@
k+1 k‘
1 N
L[ f HpH s
ot
1 - Mk
—eat a:HOO/ ea’stds
« 0
1 Lk+1 t
+ e ly — a:Hoo/ ea’stds
(6% k' 0

k+1 t
1
1 led ﬁthH ‘y_xHoo/ ea sk’ds
[0 k' 0

We let a > 3. Then, we get

15
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1 -5 Mk+1

¢
=8 a s

Eeat = Hy—meﬁeat/O sFds
1 -8 LF+1

t
o B
—i—ae t o ||y—x\|ooﬁeat/o stds

k+1 t
1
L lew ﬂth” Hy_xuooaeit/ Sde
& B 0

IN

ARy (1) — A (1))

k!
Mk+1Tk+1 k+1k+1
<=yt |y —a
||p||k+1 k+1
WH?J — Z|oo
_ Q04 2R e
M+ L+ lelLl)’““T’f+1
Therefore,
||AK+1y— AK—I—leOO < ( Hp”Ll) — 2|so.

Bk +1)! Iy

In order to show that the operator A satisfies the assumptions of
Weissinger’s fixed point theorem with

(M + L+ [lpll)"T"

= Bn! ’
o0
we just need to show that the series Z Q,, converges. So,
n=0
S, - ;i (O L I T
n=0 ! ’8 = n + 1) .

Fixing 8 € (0,1) so that % = &, we get the power series representation
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of the Mittag-Leffler function

PE L1 (M + L+ |[pll)T).

Therefore, the series converges and thus A has a unique fixed point.
Therefore Eq (1)-(2) has a unique solution due to Weissinger’s fixed
point theorem. O

4 An Example

Consider the following nonlinear fractional integro differential equation

Dhat) = 3 (Y et ey + [ oS4 )‘l‘ds
(7

(y())* + y(s) +1

with the initial condition
y(0) =0 (8)

Here o = 5, h(y(1)) = § ({45057 ) (L y(®) = (7 = t+ 1D)(y(1)2,

=

and K(t,s,y(s)) =t (yé()le *

For u,v € X = R" and t € J, one can see that

U v
uZ4+1 v?2+1

1)~ ho)| = 5

2 2 ‘

u? — 2 ’

(w2 +1)(v2+1)

1

2

(u—v)

u+v ‘
(u2 +1)(v2+1)

N =

< |U—1}|7

N | =

17



18

M. MEBRAT AND G. N'GUEREKATA

Thus (H1)is satisfied with M = 1,

1f(tu) = f(t,0)]

=[l(e™" —t+ D)[u]z — (e~ —t + 1)[0]3|
=[l(e™" — t + 1)(uz —v3))]

[NIES

<2||uz — o3|

<2flu— |z

Thus (H2) is satisfied with = 1, L = 2. Finally,

U
u—+1

<t||ut — v1|

v
v+1

1K (¢, 5,u) — K (t, 8,0)|| =|[t[——]7 — t}——]7]|

<tlu— o3

Thus, (H3) is satisfied with v = 1,¢ € L'(0, 1].
By applying Theorem 3.3, we conclude that the problem (1)-(2) has a
solution on J.
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