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Abstract. In this paper we present some fixed point theorems for map-
pings satisfying contractive conditions on C*-algebra-valued b-metric
spaces and some nonunique fixed point theorems in C*-algebra-valued
b-metric spaces. Specifically we extend some fixed point results on ba-
sic metric space to C*-algebra valued case and prove the related fixed
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1 Introduction

Forty years ago, Bogdan Rzepecki [1],presented a generalized metric dg
on a set X in a way that dg : X x X — S where F is a Banach space
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and S is a normal cone with partial order <. In that article, the writer
generalized the fixed point theorems of Maia type [2]. Seven years later,
Shy-Der Lin [3] presented the notion -metric spaces by substituting real
numbers with cone in the metric function, that is, dg : X x X — K.
In that writing, some conclusions of Khan and Imdad [4] on fixed point
theorems were considered for K-metric spaces. In 2007, the notion of
cone metric spaces (CMS) by replacing real numbers with an ordering
Banach space was declared by Huang and Zhang [5]. In that article, they
also argued some properties of convergence of sequences and verified the
fixed point theorems of contractive mapping for cone metric spaces. In
2013 Liu and Xu [6] came to some new conclusions by substituting the
usual real contraction constant with a vector constant and scalar mul-
tiplication with vector multiplication and confirmed that their results
were different from those in cone metric spaces. Lately, many results
on fixed point theorems have been developed in cone metric spaces (see
e.g. [7-10]). To make it clear, now we remind some fundamental defi-
nitions, notations, and conclusions of C*-algebras. The descriptions of
C*-algebras can be attained in [11-15].
An algebra is a vector space E together with a bilinear map

E* > E, (eg)— ey,

such that, e(gh) = (eg)h (e,g,h € E).

A subalgebra of E is a vector subspace G such that g,¢" € G then
g9 € G. Endowed with the multiplication got by restriction, G is itself
an algebra. A norm ||.|| on E is said to be submultiplicative if

legll < llellllgll (e, g € E).

In this case the pair (E, ||.||) is called a normed algebra. A complete
normed algebra is called a Banach algebra. An involution on an algebra
E is a conjugate-linear map e — e* on E, such that e** = e and (eg)* =
g*e* for all e,g € E. The pair (E, %) is called an involutive algebra, or
a x — algebra. A Banach * —algebra is a x — algebra E together with
a complete submultiplicative norm such that ||e*|| = ||e]| (e € E). If, in
addition, E has a unit such that ||1]|| = 1, we call E a unital Banach x
—algebra. A C* —algebra is unital Banach x-algebra such that, |e*e|| =
lel> (e € E).
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It is clear that under the norm topology, L(H ), the set of all bounded
linear operators on a Hilbert space H, is a C*-algebra. Furthermore,
given a C*-algebra E, there exists a Hilbert space H and a faithfully
s-representation (7, H) of E such that 7E can be made a closed C*-
subalgebra of L(H) [13].

An element a of a C*-algebra E is positive if e = e* and its spectrum
o(e) € IRT. We write e = 0 to mean that e is positive, and denote by
ET the set of positive elements of E.

Theorem 1.1. [13] Let E be a C*-algebra and e € ET. Then there exists
a unique element g € E1 such that g* = e.

If E is a C*-algebra, we make E;, = {t € E : t = t*} a poset by
defining e < g to mean g — e € ET. The relation < is translation-
invariant; that is, e < g = e+ k X g+ k for all e,g,k € Ej. Also,
exg=re3rgforallr€e R",ande<g& —e> —g. Let E' = {e €
E:eg=ge, VgeE} andE', =ETUF"

Theorem 1.2. [10] Let E be a C*-algebra.
1. The set ET is equal to {e*e | e € E}.
Ife,g € Ep and k € E, then e < g = k¥ek < k*gk.

If Og X e 2 g, then [le]| < |g]|

e

If E, is unital and e, g are positive invertible elements, then e <
g=0g=<gt=<el

Notice that in a C*-algebra, one cannot conclude that eg = Og wher-
ever e,g = Og.

Definition 1.3. Let E be a C*-algebra, and X be a nonempty set. Let
E’. be such that ||b|| > 1. A mapping D =: X x X — ET is said to be
a C*-algebra-valued b-metric on X if the following conditions hold for
alle, g,k e E:

1. D(e,g) = og if and only if e = g.
2. D(e,g) = D(g.e).
3. De,g) < b[D(e, g) + D(g, k)].

s

The triplet (X, E, D) is called a C* — algebra — valuedb — metricspace

3
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with coefficient b. A C*-algebra-valued metric space is C*-algebra-
valued b-metric space, but the converse is not true. If b = I, then
the ordinary triangle inequality condition in a C*-algebra-valued metric
space is satisfied. Thus a C*-algebra-valued b-metric space is an ordinary
C*-algebra-valued metric space. In particular, if E = C and b = 1, the
C*-algebra-valued b-metric spaces are just the ordinary metric spaces.
The following example illustrates that, in general, a C*-algebra-valued
metric space is not necessary a C*-algebra-valued b-metric space. For
some details of C*-algebra-valued metric spaces, one can see [17].

Example 1.4. P =, is set of sequences {e,} in IR when ) 7 | |e, |’ <
oo such that 0 < p < 1. If E = M3(IR) and e = e,,9 = gn € [, define
Dy : X x X — E as follow:

Dy(e,g) = (>0 len — gnlP)? 0 )

1
0 (Xonet len — gnl?)?
We have D, is a C*-algebra-valued b-metric space with coefficient

1
b= (2” Ol) such that ||b|| = 22. When that:
0 2»

> 11 1S 1
O len —kal?)? <22[> len — gnl”)? + O lgn — knl) 7).
n=1 n=1 n=1

Thus D, is not a usual C*-algebra-valued metric on P.

Example 1.5. Let P = IR and E = M,,(IR). Define

D(eag) = diag (61’6 - g‘ta 02‘6 - g|ta s ,Cn’6 - g‘t)

where diag denotes a diagonal matrix, and e,g € R,¢; > 0 (i =
1,2,,n) are constants and ¢ > 1. It is clear that D(.,.) is a complete
C*-algebra-valued b-metric. To see that condition (3) in Definition 1.3
is consistent, we have:

le —gl" < 2(le — k|" + [k — g["),

thus D(e,g) < b[D(e,k)+D(k,qg)] for alle, g,k € P, where b= 2!] € E’
and clearly b = I since 2! > 1. But not that |e — g|' < |e — k| + |k — g*
is impossible for all e > k > g [14]. Then (P, M, (IR), D) is not a C*-
algebra-valued metric space.
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Definition 1.6. Let (P,E, D) be a C*-algebra-valued b-metric space,
t € P, and {t,} a sequence in P. Then:

1. {t,} converges to t with respect to E whenever for any € > 0, there
is an n €N such that ||[(D(t,t)|| < € for all n > N. We denote
this by Limy—ocotn, =t or t, — t.

2. {t,} is a Cauchy sequence with respect to E if for each ¢ > 0,
there is an N € IN such that ||(D(t,,tm)|| < € for all n,m > N.

3. (P,E, D) is complete if every Cauchy sequence in P is convergent
with respect to E.

Definition 1.7. Suppose that (P, E, D) is a C*-algebra-valued b-metric
space. We call a mapping F': P — P is a C*-algebra-b-valued contrac-
tive mapping on P, if there exists an A € E with ||A|| < 1 such that
D(Ft,Fs) < X*D(t,s)\ for all t,s € P.

Theorem 1.8. [17, Theorem2.1] If (P,E, D) is a complete C*-algebra-
valued b-metric space and F' is a contractive mapping, then F has a
unique fixed point in P for F.

Theorem 1.9. [17, Theorem?2.2] Let (P,E, D) be a complete C*-valued
b-metric space. Suppose the mapping F' : P — P satisfies for allt,s € P

d(Ft,Fs) < X [D(Ft,s) + D(Fs,t)|\,

3 1
where X € E and [|A| < 7 Then there exists a unique fized point in
P.

2 Unique fixed point theorems

In the last two decades, many researchers investigated fixed point theo-
rems in C*-algebra valued metric spaces. In this section, we will prove
some fixed point theorems for mapping with different contractive condi-
tions in the setting of this spaces.

5
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Limi_oo F(F™)(t) = Fz for any ¢ in P, where {n;};>1 C IN. The
C*-algebra-valued metric space(P, E, D) is named F' orbitally complete

when that all of cauchy sequence of the form {F"(t)}, t € P, converges
on (P,E, D).

It can be clearly if ' be orbital continuity then for any m in IN, T™
is orbital continuity.

Theorem 2.2. If F': P — P be an orbitally continuous mapping over
C*-algebra-valued metric space (P,E, D). And (P,E, D) is F orbitally
complete such that

U(t,s) — D(Ft,s) < \*D(t, s)\ (1)
where A € ET with ||\|| < 1 and every t,s € P, when
U(t,s) € {D(t,Fs), D(Ft,Fs), D(Fs,s)}.

Then,
Vte P{F"(t)} — z

when z is a fixed point of F'.

Proof. Fix ty € P. For n > 1 set t; = Fty and recursively t,41 =
F(t,) = F""Y(tp). It is clear that the sequence {t,}, is Cauchy when the
equation t,41 = t, holds for some n € IN. Consider the case t,1 # t,
for all n € IN. By replacing t and s with ¢, and ¢,_1, respectively, in
(2.1), one can get

Ultn—1,tn) — D(Ftp_1,tn) I X' D(tp_1,tn)\

Since U(tn_l, tn) — D(Ftn_1, tn) S {D(tn, tn+1), D(tn_l, tn)}.

But ||[A|| < 1, so this case yields contradiction.

Thus, D(tp,tn+1) = X*D(tp—1,tn)\. By B we denote the element
D(t1,10) in E. So we have

N D(tn, tn-1)A < (A*)?D(tn-1, tn—2)X?
= (A)D(t, t) A" = (\*)"BA™.

D(tna 75n—|—l) j
=
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So for n+ 1 > m, we get
D(tn—‘rla ) = D( n+17tn) + D(tnptn—l) -+ D( m+17 )

(A)*BAF = Z(A*)kB%B%Ak

k=m

I
M:

B
Il
3

I
NE

(B2 (B2XY) < Z\|32H 1N

>
Il
3

B Z e < st o

l\’)\»—‘

as m — oo.

Therefore {t,} is a Cauchy sequence in (P, E, D). By the complete-
ness of (P,E, D) there exists z € P such that lim,_t, = z. Since
(P,E, D) is F orbitally complete,

Limy ooty = Limy 0o F™ (tg) = 2.
Given that F' is orbital continuty, we have
F(2) = Limy_0o F(F™(ty)) = Limp e F(F"(tg)) = z.
Then, z is a fixed point for F. U

Example 2.3. let P = [—1,1] and E = Msy2(IR) with || E|| = max;;|e;;|
where e;; are entries of the matrix E' € May2(IR). Then, (P,E,D) is a
C*-algebra-valued b-metric space with

[t

where the involution is given by E* = (E)7,

t — s|? 0
pit) = [ e

and partial ordering on E is given as

|:6]_1 6]_2:| j |:g].]. g].2:| — eij S gl‘] VZ,] - 1727374
€91 €92 g21 922

Define a mapping F' : P — P by Ft = t3. F satisfies contraction of
Theorem 2.2 implying that F' has a fixed point, Fiz(F) = {0, £1}.
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Definition 2.4. A point z is said to be a periodic point of a function
F with period m if F™(z) = 2z, where F°(t) = t and F"™(t) is defined
recursively by F™(t) = F(F™ 1(t)).

Theorem 2.5. If F' be an orbitally continuous self-map on a C*-algebra-
valued metric space (P,E, D) and ¢ € ET. Suppose that there exists a
point tg € P such that D(tg, F(ty)) =< & for some natural numbers n such
that

0< D(t,s) Re=Ul(t,s) A" D(t,s)A (2)
for every t,s € P and some A € ET ||\ ||< 1, where
U(t,s) € {D(t, F(£)), D(F(t), F(s)), D(F(5), 5)}.
Then, F' has a periodic point.

Proof. M = {n: D(t,F"(t)) < ¢ for some t € P}. It is clear that M #
¢. m=min M, fixt € P thus D(t, F"(t)) X e soe—D(t, F™(t)) € E*.
Put m =1 and s = F(t) in (2.2), we have

U(t, F (1)) < A*D(t, F())A
Regarding || A|| < 1the case D(t,F(t)) = AN*D(t, F(t))A, can not be
happen.
Thus, D(F(t), F2((t)) < AM*D(t, F(t))\. According to Theorem 2.2, we
can get t,11 = F(ty),t = to so Fz = z for some z € P, and F has

a periodic point of period 1. Now if m > 2. So for each s € P, the
condition

e—D(s,Fs) ¢ ET. (3)
But D(t,F™(t)) < € and by (2.2), we have
U(t, F™(t)) < X*D(t, F™(t)) . (4)
Suppose that F™(t) = z. By (2.3),(2.4) turns into

D(t, F™(t)) < X*D(t, F™())\
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By using the similar proof in theorem 2.2, we can find that {¢,} so that
is a Cauchy sequence in P. Thereform (P, E, D) is F orbitally complete,
and that is some z € P such that

Limy o0 F" (tg) = 2.
Given that Definition 2.1, F' is orbital continuity. Thus
F™(2) = Limp—oo F™(F"(to))
= Limn_,ooF("H)m(to) = z.
and complete proof, because z is a periodic point of F. ([l

Theorem 2.6. Suppose F' be an orbitally continuous self-map in the
C*-algebra-valued b—metric space (P,E, D). And exist e1,e2,€3,e4 in E
such that self mapping F satises the conditions
Ig Re1+e3<2lg, 0O =ey—ey.
e1D(F't,Fs)+ (I —e1)[D(t, Ftz) 4+ D(s, F's)] + e2[D(s, F't) + D(t, F's)]
< e3D(t,s) +esD(t, F*t) Vt,s e P. (5)

Then, F' has at least one fized point.

Proof. Let ty € P be arbitrary. Construct a sequence {t, }as follows:
thy1:=Ft, n=0,1,2,...
When we put ¢t = t,, and s = t,41 in (2.5), thus
61D(Ftn, Ftn+1) + (I — 61)[D(tn, Ftn) + D(tn+1, Ftn+1)] + GQ[D(tn+1, Ftn)
+ D(tn, Ftui1)] = e3D(tn, tny1) + eaD(ty, F2t,)

for all €1,€2,€3,€4.

e1D(tnt1,tnt2) + (I —e1)[D(tn, tnt1) + D(tnt1, tnt2)] + e2[D(tnt1, tns1)
+ D(tny tn+2)] = 63D(tna tn—i—l) + 64D(tn7 tn+2)-
By a simple calculation, one can get

D(tn+1, tn+2) + (62 — 64)D(tn, tn+2) = (63 +e1— ])D(tn, tn—i—l) which
implies

D(tny1,tnre) 2 kD(ty, tnr1) (6)
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where k = e3 + e2 — I. We have Og < k < Ig. Taking account of (2.6),
we have get inductively
D(tn,tny1) = kD(tn-1,tn) X k2D(tn—2,tn-1) = -+ < k" D(to, t1).
In the following, we prove that {¢,},emn will be a Cauchy sequence.

D(tn,tnip) 2 bD(tn,tny1) + 02 D(tns1, tnga) + ..+
+ bp_zD(tn+p—3> tntp-2) + bp_lD(tn+p—27 tntp-1)+
+ pr(tn—l-p—l: tn+p)
< bE"D(tg,t1) + 2" D(tg, ty) + ... +
+ OP2E"PTE D (t, 1) + WPTIEM TP T2 D (g, t)+
+ bpk"ﬂ’—lD(to, t1)
= [b”“k:”“D( t)+ ...+
+ bnﬂ’ L1 D (tg, 1) + b PR P D(tg, 11)]

[bn+1k"+1D(t0,t1) 4+ bn+pkn+pD(t0,t1)]

- b”k
1 1

= — bk D(tg, t — b'E*D(tg, t1).
k2 P ) = Z ot

The precedent inequality is

D (tn, tnp)|| < H Z b'.k".D(to, t1)|| — 0
1=n+1

as n — oo. Thus {t,}nenis a Cauchy sequence. As in the proof of
previous theorem, regarding the construction t,, = F™{y together with
the fact that (P, E, D) is F-orbitally complete, there is z € P such that
t, — z. Again by the orbital continuity of F',we deduce that ¢, — Fz.
Hence z = Fz. O

Corollary 2.7. F be an orbitally continuous self-map in the C*-algebra
valued metric space (P,E, D). And exist e1, es, e3, ey in E, self mapping
F . P — P satises the conditions

Ie Re1+e3<2lg, O <Xey—ey4.
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e1D(Ft,Fs)+ (I —e1)[D(t, Ft) + D(s, F's)| + ea[D(s, F't) + D(t, F's)]
< e3D(t,s) + esD(t, F?t)
hold for all t,s € P. Then, I’ has at least one fized point.

Example 2.8. If P be the C*-algebra-valued b—metric spaces in Ex-
1 1
ample 2.3, and F': P — P be a self map on P by F't = §t + 3 and let

1
e1 =1,e9 =e4 =0 and e3 = 3 F satisfies hypothesis of Theorem 2.6.

2
Then F' has at least one fixed point,and Fix(F') = {g}

3 Nonunique fixed point theorems and n-periodic
points

Let IN be the set of positive integer and (P, E, D) be a C*-algebra-valued
metric space. If F': P — P is mapping, then an n—periodic point of F, is
a point tg € P such that tg = F™ty and to # F¥ty for k=1,2,3,...,n—1
for some n € IN.

The orbit of F' at a point ¢ is defined by Op(P) = {F"t : n > 0}.
Suppose that ® is the set of all nondecreasing ¢ : ET — E* where
o(t) <t forallteET.

Obviously ¢(t) = y*ty € ® for all v € E, where ||v]| < 1.

We discuss the existence of fixed points for above mappings F.

D(Ft,Fs)+ D(Fs,Fz) < o(D(t,s) + D(s, z)) (7)
where t,s,2 € X with t #£ s # z # t, and ¢ € ®; or
Sup{D(F't,Fs), D(Fs,Fz)} < o(Sup{D(t,s),D(s,z)}) (8)

where t,s,2 € P with t #£ s # 2z # t, and ¢ € ®. The definition of
n-periodic point follows that:

Lemma 3.1. Let FF : P — P be a mapping on a C*-algebra-valued
metric space (P,E, D). Then F'ty # Fity for any n-periodic point ty € P
of F, where 0 <1< j<n-—1.
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Theorem 3.2. Suppose that F' is a mapping from a complete C*-algebra-
valued metric space (P, E, D) into itself and satisfy (3.1).

Then

(1) There are at most two distinct fized points for F in P;

(2) The number of 2-periodic points for F, in P is zero or two;

(3) Ifn >3 then F has any n-periodic points in P;

(4) If F has an orbit without 2-periodic points then F has a fized
point in P.

Proof. Suppose that F' has three distinct fixed points ¢, s, z, in P. Then
get that

D(t,z) + D(z,s) 2 p(D(t,z) + D(z,s)) < D(t, z) + D(z, s),

which is a contradiction.

If s € P is a 2-periodic point of F. Then F's is also a 2-periodic point
of F' distinct from s. We assert that F' has the only two 2-periodic points
s and F's.

Now suppose that z € P other 2-periodic point of F' such that s #
z # Fs. Thus we have F's # Fz # F2?s # F's. Then

D(s,z) 4+ D(z,Fs) = D(F?s, F?z) + D(F?z, F3s)

< ©?(D(F?s, F?2) + D(F?z,Fs)) < D(s, z) + D(z, Fs),

which is a contradiction. Thus F' has exactly two 2-periodic points.
Now we show that F' has any n-periodic point for n > 3. If {5 € P is
an n-periodic point of F' for n > 3 then t;, = FFtg, Dy = D(tg, tpr1) +
D(tg41,tp42) for all 0 < k < n. By Lemma 3.1, we infer that

Dy, = (D (tg—1,tx) + D(tk, try1)) < D1,
for all 1 < k < n. We have that
D(] = Dn < (P(Dn—l) =< Dn—l <. =< D(),

which is a contradiction.
Let, there exists a point {g € P which is F' has no 2-periodic points in
OF(t()). Set t, = Futg, Dy, = D(tn,tn+1) + D(tn+1,tn+2) for any n > 0.



Some results of fixed points on C*-algebra valued metric spaces 13

If there exists some n > 0 with ¢, = t,+1, then %, is a fixed point of F;
if t,, # t,41 for any n > 0, we get

Dn = @(Dn—l) = 902(Dn—2) <. = SOH(DO)

For each ¢, 5,1 € IN such that ¢ > j > [, by the triangular inequality, we
have that

i—1 i—1 0
D(ti,t)) =Y D =Y ¢"(Do) =Y _(v)"Doy"
n=I n=I

— n=1

o
1D )l <> [P Dol
n=1
When |7]| < 1 ensures that {t,}n>0 is a Cauchy sequence in P. It
follows from completeness of (P, E, D) that there exists a point a € P
such that lim, _.ot, = a. Obviously, there exists some integer k € IV
with ¢, # a for all n > k. We obtain that

D(tns1, Fa) + D(Fa, Fts2) < ¢(D(tn, a) + D(a, trs2))
=< D(tna a) =+ D(a, tn+2) —0

as n — oo, which implies that lim,_,t, = Fa. Hence Fa = a. This
completes the proof. O

Corollary 3.3. If F': P — P and (P,E, D) is a complete C*-algebra-
valued metric space such that satisfy

D(Ft,Fs)+ D(Fs, Fz)+ D(Fz, Ft) X o(D(t,s) + D(s,2) + D(z,t))

forallt,s,z € P witht # s # z #t, where p € ®. Then the conclusions
of Theorem 3.2 hold.

Definition 3.4. If E is a (C*-algebra-valued metric space then E is
called minihedral if Sup{t, s} exists for all ¢,s € E and strongly mini-
hedral if every subset of E which is bounded from above has a supre-
mum.(equivalently, if every subset of E which is bounded from below
has an infimum.)
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Theorem 3.5. Suppose that F' is a mapping from a strongly minihedral
complete C*-algebra-valued metric space (P,E, D) into itself. Satisfy
(3.2). Then the conclusions of Theorem 3.2 hold.

Proof. For an n-periodic point ¢ for n > 3 of F set t, = F¥ty, D), =
D(tg,tg4+1) for all 0 < k < n. From Lemma 3.1, we have

Sup{Doy, D1} = Sup{Dy, Dy41}
= Sup{D(Ftn_1, Fty,), D(Fty, Ft,+1)}
= p(Sup{D(tn—1,tn), D(tn, tny1)})
= p(Sup{Dn-1, Dy})
= ¢"(Sup{Do, D1}) < Sup{Do, D1},

which is a contradiction.

Now, we prove that F' has a fixed point in P provided that F’ has an
orbit without 2-periodic points in P. Suppose zg € P such that F' has
no 2-periodic points in Op(zp).

Set z, = F"zp, Dy, = D(2p, 2n+1) for all n > 0. We have two cases:

Case 1. There exists some n > 0 with 2z, = z,+1. Then z, is a fixed
point of F' in P.

Case 2. Otherwise if z,, # z,41 for any n > 0 then z,, # z,,. We have

Sup{Dy,, Dpy1} = Sup{D(Fzp_1,Fz,), D(Fzp, Fzpnt+1)}
= SD(SUP{D(Zn—lp Zn)a D(Zn’ Zn—i—l)})
< @*(Sup{Dp—2, Dn_1}) = ... 2 " (Sup{Dyg, D1}).

For each n € IN and p € IN, using the triangular inequality, we get that

n+p 1 n+p—1

D Znazn+p Z D = Z SUp{DOaDl})

< ng (Sup{Dg, D1}) =< Z
1

1

1D (20, 2nap) [l < D I D]
i=1
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When ||v|| < 1 show that {z,}n,>0 is a Cauchy sequence in P. By
completeness of (P, E, D) that there exists a point a € P such that
limp—o0ozn = a. Obviously, there exists some integer k € IN with z, # a
for all n > k. We obtain that

Sup{D(Zn+17 Fa)a D(Faa FZnJr?)} = @(SUP{D(ZTH CL) + D(a’ Zn+2)})
< Sup{D(zp,a) + D(a,zp42)} — 0

as n — oo, which implies that lim,_00zn = Fa. Hence Fa = a. This
completes the proof. O

Corollary 3.6. Let (P,E,D) be a strongly minihedral complete C*-
algebra-valued metric space and F : P — P satisfy
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Sup{D(Ft,Fs),D(Fs,Fz),D(Fz,Ft)} < o(Sup{(D(t,s), D(s,z),D(z,1t))})

forallt s,z € P witht # s # z # t, where ¢ € ®. Then the conclusions
of Theorem 3.2 hold.

Example 3.7. Let E = Myy2(IR) be endowed with the norm
Bl = maw; j|ai;|,
where a;; are entries of the matrix £ € Mx2(IR), and the involution

given by E* = (E)f' = EF. Clearly, each matrix of type E = [g 2}

belongs to ET if o, B > 0. This implies

a 0 0 0

< < < .

o<l Gonss os
Let P = {1,2,3,4} and D : P x P — E be a function defined by
D(1,2) = Ig, D(2,3) = 3Ig, D(1,3) = 4Ig, D(2,4) = 2Ig, D(1,4) =
5 7
§IE, D(3,4) = §IE, D(z,z) = 0g and D(t,s) = D(s,t) for all t,s € P.
Let F : P — P be a mapping defined by F1 = 1, F2 = 2, F3 =

3z
4, F4 = 2. Take p(z) = [é 3%] for t > 0. It is easy to check that the

conditions of Theorem 3.5 are satisfied, and F' has two fixed points in
P. But the Banach contraction principle is not available and F' has no
2-periodic point in P.
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It is clear that orbital continuity of F' implies orbital continuity of
F™ for any m in IN .

Theorem 3.8. Let (P,E, D) be a strongly minihedral C*-algebra-valued
metric space and F be an orbitally continuous self mapping on P, such
that (P,E, D) is F orbitally completed. Suppose that 1) € ®

U(t,s) = V(t,s) 2P(D(, s)) (9)
for all t,s € P where
U(t,s) =inf{D(Ft,Fs),D(s, Fs)},

V(t,s) = inf{D(t, Ft)D(t, Fs), D(s, Fs)D(Ft, s)}.

Then, the sequence {F"(tg) }nev converges to a fized point of F for any
tg € P.

Proof. Let tg € P be an orbital element. Set t, = F"ty. If t, = t,,—_1
for some n € IN then t, 1 is a fixed point for F. Otherwise if t,, # t,,_1
for all n € IN be inequality 3.3, we have that

U(tn—la tn) = inf{D(Ftn—lyFtn)v D(thtn)}
= D(tn, Fty)

Vitn_1,tn) = inf{D(tn_1, Ftn_1)D(tu_1, Ftn), D(tn, Ftn)D(tn, tn)} = 0

U(tn—h tn) - V(tn—la tn) = D(tn7 Ftn)
= wD(tn—la tn)

¢D(tn71, tn) = wQD(tnf% tnfl)
o 2P D(to, t).

D(t,, Ft,) = D(ty, tn—1) =
=

The rest of the proof is alike in the proof of Theorem 3.5. g
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