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Abstract. We say that an isometric immersion hypersurface x : Mn →
En+1 is of null Lk-2-type if x = x1+x2, x1, x2 : Mn → En+1 are smooth
maps and Lkx1 = 0, Lkx2 = λx2, λ is non-zero real number, Lk is the
linearized operator of the (k+1)th mean curvature of the hypersurface,
i.e., Lk(f) = tr(Pk◦Hessianf) for f ∈ C∞(M), where Pk is the kth New-
ton transformation, Lkx = (Lkx1, . . . , Lkxn+1), x = (x1, . . . , xn+1). In
this article, we classify δ(2)-ideal Euclidean hypersurfaces of null L1-2-
type.
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1 Introduction

Let x : Mn → En+1 be an isometrically immersed Euclidean hypersur-
face. It is well-known that the Laplacian of M is the first element of
n-term sequence of operators L0 = ∆, L1, . . . , Ln−1, where Lk is the lin-
earized operator of the first variation of the (k+1)th mean curvature (see
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[11, 12]). These operators are formulated by Lk(f) = tr(Pk ◦ Hessianf)
for any f ∈ C∞(M), where Pk is the kth Newton transformation related
to the second fundamental from of M . Motivated by this considera-
tion, S.M.B. Kashani [6] developed the idea of finite type submanifold
to Lk-finite type hypersurface in the Euclidean space.

The position vector x and the (k+1)th mean curvature vector
−→
H k+1

of Mn in En+1 are related by generalized Beltrami’s formula:

Lkx = ck
−→
H k+1,

where ck = (n−k)
(
n
k

)
(see [1]). When k = 0, this turns into the classical

Beltrami’s formula ∆x = n
−→
H . This states the well-known result: Mn is

a k-minimal hypersurface of En+1 if and only if its coordinate functions
are Lk-harmonic, i.e.,

Lkx = 0.

Particularly, k-minimal hypersurfaces of En+1 are made by eigenfunc-
tions of the operator Lk with eigenvalue zero. There are many examples
of k-minimal hypersurfaces in the space forms (see for instance [14]).

From [6], we see that a right spherical cylinder R× Sn−1 in En+1 is
composed of both Lk-harmonic function and eigenfunction of Lk with
a single nonzero eigenvalue, say λ, when 0 < k < n − 1. Therefore,
the position vector x of a right spherical cylinder R × Sn−1 takes the
following simple spectral decomposition

x = x1 + x2, Lkx1 = 0, Lkx2 = λx2, (1)

for some non-constant smooth maps x1 and x2.
Baesd on Lk-finite type theory, a Euclidean hypersurface is said to

be of null Lk-2-type if its position vector takes the spectral resolution
(1). Similarly, a Euclidean hypersurface is said to be of Lk-1-type if its
position vector satisfies the condition Lkx = λx (cf. [6, 7, 9, 8]). Accord-
ing to the genralized Takahashi’s theorem [7], a Lk-1-type hypersurface
of a Euclidean space is either a k-minimal Euclidean hypersurface or an
open part of a hypersphere. Specially, because of the simplicity of null
Lk-2-type hypersurfaces, after the classification of the Lk-1-type hyper-
surfaces, it seems reasonable to propose the following problem.
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Problem: Classify all null Lk-2-type hypersurfaces in Euclidean
spaces.

Until now, only few results have been obtained concerning this prob-
lem. In [7], the first author and Kashani obtained the first results. They
proved that there exists no null Ln−1-2-type Euclidean hypersurface,
specially, there is no null L1-2-type Euclidean surface. When k ̸= n− 1,
they also showed that every null Lk-2-type Euclidean hypersurface with
at most two distinct principal curvatures is a right circular cylinder.

Now, assume that M is a Riemannian n-manifold. Denote by K(π)
the sectional curvature of a 2-plane section π ⊂ TpM, p ∈ M . The scalar
curvature τ at p is defined by τ(p) =

∑
i<j

K(ei ∧ ej), where e1, . . . , en is

an orthonormal basis of TpM . By choosing e1, . . . , er, a r-orthonormal
basis of the r-plane section Lr, the scalar curvature τ(Lr) is defined by

τ(Lr) =
∑
i<j

K(ei ∧ ej), 1 ≤ i, j ≤ r.

For an integer r ∈ [2, n− 1], the δ-invariant δ(r) of M is defined by

δ(r)(p) = τ(p)− inf{τ(Lr)},

where Lr runs into all r-plane sections of TpM .
For any n-dimensional submanifold M in Em, Chen [3] proved that

the δ-invariant δ(2) satisfies the following inequality

δ(2) ≤ n2(n− 2)

2(n− 1)
∥H∥2. (2)

The equality case of (2) is called the δ(2)-equality. The classification of
submanifolds in the Euclidean space Em which satisfy the δ(2)-equality
condition is an interesting and important subject to research (see [4]). A
submanifold Mn in Em is called δ(2)-ideal if it satisfies the δ(2)-equality.

Inspired by the above observation, it was proved in [5] that a null
2-type hypersurfaces in En+1 is an open part of a spherical cylinder
Sn−1 × R if and only if it is δ(2)-ideal.

The main purpose of this paper is to extend this classification result
to null L1-2-type hypersurfaces as follows.
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Theorem 1.1. A null L1-2-type hypersurface in the Euclidean space
En+1 with n ≥ 3, is an open part of a spherical cylinder Sn−1×R if and
only if it is δ(2)-ideal.

Note that from the before mentioned, if n = 2, there is no null
L1-2-type surface in E3.

2 Null L1-2-type Hypersurfaces

Let x : Mn → En+1 be an isometric immersion, with Gauss map N .
Denote by ∇ and ∇ the Levi-Cevita connections on Mn and En+1, re-
spectively. The formulas of Gauss, Weingarten and Codazzi are given
respectively by

∇XY = ∇XY + ⟨SX, Y ⟩N,

SX = −∇XN,

(∇XS)Y = (∇Y S)X,

for X,Y ∈ X(Mn), where S : X(Mn) → X(Mn) is the shape operator of
Mn arises from the Gauss map N .
The equation of Gauss is given by

R(X,Y )Z = ⟨SY,Z⟩SX − ⟨SX,Z⟩SY,

for X,Y, Z ∈ X(Mn) where R is the Riemann curvature tensor. The
eigenvalues of S are called the principal curvatures of Mn.
Let {k1, . . . , kn} be the n principal curvatures of Mn. Associated to the
principal curvatures, the 2th mean curvature H2 of the hypersurface is
defined by (

n

2

)
H2 =

n∑
i1<i2

κi1κi2 .

H2 defines an intrinsic invariant which is relevant to the scalar curvature
of Mn.

Related to the shape operator S, the classical Newton transformation
P1 : X(M

n) → X(Mn) is defined by

P1 =

(
n

2

)
H2I − S. (3)
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Now, consider the second-order linear differential operator

L1 : C
∞(M) → C∞(M),

which is given by

L1(f) = tr(P1 ◦Hessianf).

For isometric immersion x : Mn → En+1, it is well-known (see [1]),

L1x = n(n− 1)
−→
H2, (4)

where
−→
H2 = H2N defines the 2th mean curvature vector field. By for-

mula in [1] page 122, we find

L1
−→
H2 =−

(
n

2

)
H2∇H2 − 2(S ◦ P1)(∇H2)

− (H2 tr(S
2 ◦ P1)− L1H2)N. (5)

Suppose that M is of null L1-2-type hypersurface, from (4) we get

L1
−→
H2 = λ

−→
H2. (6)

By combining (5) and (6) we obtain

(S ◦ P1)∇H2 =
n(1− n)

4
H2∇H2, (7)

L1H2 −H2 tr(S
2 ◦ P1) = λH2. (8)

Consequently, ∇H2 is an eigenvector of S ◦ P1 whenever ∇H2 ̸= 0.

For the proof of our theorem we need the following lemma from [10].

Lemma 2.1. Let M be a hypersurface of a Euclidean space. Then the

2th mean curvature vector field
−→
H2 satisfies the condition L1

−→
H2 = λ

−→
H2

for some constant λ if and only if M is one of the following hypersurfaces

(a) a L1-biharmonic hypersurface,

(b) a L1-1-type hypersurface,

(c) a null L1-2-type hypersurface.
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3 Proof of Theorem 1.1

Suppose that M is a null L1-2-type hypersurface of En+1, which is
δ(2)-ideal. Because M is a δ(2)-ideal, there is an orthonormal frame
{e1, ..., en} such that the shape operator with respect to this frame takes
the following form [Lemma 3.2 of [2]]

S =


α 0 0 · · · 0
0 β 0 · · · 0
0 0 α+ β · · · 0
...

...
...

. . .
...

0 0 0 · · · α+ β

 , (9)

for some functions α and β on M .
If H2 is constant, then M is non 1-minimal from lemma 2.1. So,

(8) implies that tr(S2 ◦ P1) is constant. Since H2 and tr(S2 ◦ P1) are
constant, it follows from (9) that M is isoparametric. According to a
well-known result of Segre [13], any isoparametric hypersurface of En+1

has l distinct principal curvatures with l ≤ 2. If l = 0, then M is 1-
minimal which is impossible by lemma 2.1. (9) shows easily that case
l = 1 does not occur. So, l = 2. Therefore, from (9) we conclude that
one of the principal curvatures is simple. Thus, M is locally isometric
to Sn−1 × R by Theorem 3.12 of [7].

From now on we assume that H2 is non-constant. First, from (3)
and (9) we see that the classical Newton transformation P1 satisfies

P1 =


(n− 2)α+ (n− 1)β 0 0 · · · 0

0 (n− 2)β + (n− 1)α 0 · · · 0
0 0 (n− 2)(α+ β) · · · 0
...

...
...

. . .
...

0 0 0 · · · (n− 2)(α+ β)

 .

Therefore, we have

S ◦ P1 =


α((n− 2)α+ (n− 1)β) 0 0 · · · 0

0 β((n− 2)β + (n− 1)α) 0 · · · 0
0 0 (n− 2)(α+ β)2 · · · 0
...

...
...

. . .
...

0 0 0 · · · (n− 2)(α+ β)2

 , (10)

and

S2 ◦ P1 =


α2((n− 2)α+ (n− 1)β) 0 0 · · · 0

0 β2((n− 2)β + (n− 1)α) 0 · · · 0
0 0 (n− 2)(α+ β)3 · · · 0
...

...
...

. . .
...

0 0 0 · · · (n− 2)(α+ β)3

 . (11)
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Put ∇H2 =
n∑

i=1
λiei for some functions λ1, ..., λn on M , then from

(10) we have

(S ◦ P1)∇H2 =
n∑

i=1

λi(S ◦ P1)ei

=α(β + (n− 2)(α+ β))λ1e1 + β(α+ (n− 2)(α+ β))λ2e2

+

n∑
i=3

(n− 2)(α+ β)2λiei

=((3− n)αβ + (2− n)β2)λ1e1 + ((3− n)αβ

+ (2− n)α2)λ2e2 + (n− 2)(α+ β)2∇H2.

Thus, Eq. (7) yields

((n− 2)(α+ β)2 +
1

4
n(n− 1)H2)∇H2 =((n− 3)αβ + (n− 2)β2)λ1e1

+((n− 3)αβ + (n− 2)α2)λ2e2.

Hence, λ3 = · · · = λn = 0 and

[(n− 2)(α+ β)2 +
1

4
n(n− 1)H2 + (3− n)αβ + (2− n)β2]λ1 = 0, (12)

[(n− 2)(α+ β)2 +
1

4
n(n− 1)H2 + (3− n)αβ + (2− n)α2]λ2 = 0.

Since ∇H2 is a nonzero, which implies at least one of λ1 and λ2 does not
vanish. If both λ1 and λ2 do not vanish, then we find either α = β or
α = −β. If α = β, then M has at most two distinct principal curvatures,
so from [7] we know that any null L1-2-type hypersurfaces with at most
two distinct principal curvatures have constant 2-th mean curvature,

this is a contradiction. If α = −β, then H2 =
4β2

n(n− 1)
. Hence, we get

n(n− 1)H2 = tr(S ◦ P1) = −2β2 = −n(n− 1)

2
H2,

which implies H2 = 0, but this is impossible.
Therefore, we have either
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(a) λ1 ̸= 0 and λ2 = 0, or

(b) λ2 ̸= 0 and λ1 = 0.

We only need to consider the case (a), case (b) can be done in a similar
arguments as case (a).

First, from relation (12) we obtain that

H2 =
4α ((α+ β)n− 2α− β)

n (1− n)
. (13)

On the other hand, since tr(S ◦P1) = n(n− 1)H2, by using (10) we can
write

H2 =
1

n(n− 1)
[α ((n− 2)α+ β (n− 1)) + β ((n− 2)β

+ α (n− 1) + (n− 2)2 (α+ β)2]. (14)

Comparing (13) and (14), then after a straightforward computation, we
find that there exist real numbers in terms of n, say a1, a2, such that
{α, β} = {a1

√
H2, a2

√
H2}. Note that since ∇H2 is a nonzero without

loss of generality, we may assume that H2 > 0.
Next, by taking e1 in the direction of ∇H2, the shape operator sat-

isfies

S =


a1
√
H2 0 0 · · · 0

0 a2
√
H2 0 · · · 0

0 0 a3
√
H2 · · · 0

...
...

...
. . .

...
0 0 0 · · · a3

√
H2

 ,

where a3 = a1 + a2. Moreover, we have

e1(H2) ̸= 0, ek(H2) = 0, ∀k > 1. (15)

We put ∇eiej =
∑n

k=1 ω
k
ijek, then using the equation of Codazzi for

X = ei and Y = ej we get

(∇eiS)ej =
aj
2

ei(H2)√
H2

ej +
√

H2

∑
k

(aj − ak)ω
k
ijek.

Then, we consider the special cases of i and j.
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For i = 1, j = 2, one obtains

a2
2
e1(H2)e2 +H2

∑
k

(a2 − ak)ω
k
12ek = H2

∑
k

(a1 − ak)ω
k
21ek.

Under the identification the coefficients corresponding to {e1, ..., en},
we have the following

ω1
12 = 0, (16)

e1(H2) + 2(1− a1
a2

)H2ω
2
21 = 0, (17)

a1ω
k
12 = a2ω

k
21, k ≥ 3. (18)

Similarly, for i = 1, j ≥ 3, we obtain the following

ω1
1j = 0, j ≥ 3, (19)

ω2
1j = (1− a2

a1
)ω2

j1, j ≥ 3, (20)

aje1(H2)δjk + 2a2H2ω
k
j1 = 0, j, k ≥ 3.

Finally, for i = 2, j ≥ 3 we get

ω1
2j = (1− a1

a2
)ω1

j2, j ≥ 3, (21)

ω2
2j = 0, j ≥ 3,

ωk
j2 = 0, j, k ≥ 3.

From (15), we see easily [e2, ej ](H2) = 0. So, we have∑
k

(ωk
2j − ωk

j2)ek(H2) = 0.

Again, using (15), we get ω1
2j = ω1

j2, for j ≥ 3. Combining this with
(21) yields

ω1
2j = ω1

j2 = 0. (22)

Since {ek}nk=1 is an orthonormal basis, we have

0 = ei⟨ej , ek⟩ =⟨∇eiej , ek⟩+ ⟨ej ,∇eiek⟩ = ωk
ij + ωj

ik,

∀i, j, k = 1, ...., n. (23)
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By using (23), we derive that

ω1
11 = 0, ω2

12 = 0, ωj
1j = 0, j ≥ 3, (24)

ω1
21 = 0, ω2

22 = 0, ωj
2j = 0, j ≥ 3, (25)

ω1
k1 = 0, ω2

k2 = 0, ωj
kj = 0, j, k ≥ 3. (26)

Combining (23) with (16), (17) and (22) we find that

ω2
11 = 0, ω1

22 = (
a2

2(a2 − a1)
)
e1(H2)

H2
, ω2

j1 = 0, j ≥ 3. (27)

By applying (20) and (27) we obtain

ω2
1j = 0, j ≥ 3. (28)

Moreover, it follows from (23), (28) and (18) that

ωj
12 = 0, ωj

21 = 0, j ≥ 3.

In the same way, we derive that

ωj
11 = 0, ωj

22 = 0, ω1
jj = (

a1 + a2
2a2

)
e1(H2)

H2
, j ≥ 3. (29)

Now, it follows from the Codazzi’s equation that∑
k

(aj − ak)ω
k
ijek =

∑
k

(ai − ak)ω
k
jiek, i, j ≥ 3.

Therefore, we get

ω1
ij = ω1

ji, ω2
ij = ω2

ji, i, j ≥ 3.

Then, (15), (16) and (25) imply that [e1, e2](H2) = 0. Hence, we have

e2e1(H2) = 0.

From (15), (19) and (26) we also have

eje1(H2) = 0, j ≥ 3.
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Applying Gauss’s equation to ⟨R(e1, e2)e1, e2⟩, ⟨R(e1, ej)e1, ej⟩ and
⟨R(e2, ej)e2, ej⟩, we respectively obtain that

e1(
e1(H2)

H2
) +

a2
2(a1 − a2)

(
e1(H2)

H2
)2 + 2a1(a1 − a2)H2 = 0, (30)

e1(
e1(H2)

H2
)− a1 + a2

2a2
(
e1(H2)

H2
)2 − 2a1a2H2 = 0,

(
e1(H2)

H2
)2 − 4a2(a1 − a2)H2 = 0. (31)

On the other hand, from (17), (24), (29) and the definition of L1, we
find

L1H2 = b

[
e1(e1(H2)) +

c(e1(H2))
2

H2

]√
H2, (32)

for some real numbers b and c.

Now, using (8), (11) and (32), we obtain that

b

[
e1(e1(H2)) +

c(e1(H2))
2

H2

]√
H2 = dH2

2

√
H2 + λH2, (33)

for some real numbers b, c and d.
By substituting (31) into (30), we get

e1(e1(H2)) =

[
2a1 − 3a2

2
(a1 + a2)

]
H2

2 . (34)

Also, substituting (31) into equation (33) gives

e1(e1(H2)) =

[
bca2(a1 − a2)− d

b
− λ

H2

√
H2

]
H2

2 . (35)

By comparing (34) and (35), we conclude that H2 is constant, which is
a contradiction.

This completes the proof of the theorem.
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