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Abstract. We say that an isometric immersion hypersurface z : M" —
E"*! is of null Li-2-typeif x = x1+x2, x1,22 : M™ — E™*! are smooth
maps and Lizi =0, Liyze = Ax2, A is non-zero real number, Ly is the
linearized operator of the (k4 1)th mean curvature of the hypersurface,
i.e., Li(f) = tr(ProHessianf) for f € C°°(M), where Py is the kth New-

ton transformation, Lyx = (L1, ..., LkZnt1), £ = (T1,...,Zny1). In
this article, we classify §(2)-ideal Euclidean hypersurfaces of null L;-2-
type.
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1 Introduction

Let z : M™ — E™! be an isometrically immersed Euclidean hypersur-
face. It is well-known that the Laplacian of M is the first element of
n-term sequence of operators Lo = A, Ly, ..., L,_1, where Ly, is the lin-
earized operator of the first variation of the (k+1)th mean curvature (see
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[11, 12]). These operators are formulated by Ly(f) = tr(P; o Hessianf)
for any f € C°°(M), where Py, is the kth Newton transformation related
to the second fundamental from of M. Motivated by this considera-
tion, S.M.B. Kashani [(] developed the idea of finite type submanifold
to Li-finite type hypersurface in the Euclidean space.

The position vector x and the (k4 1)th mean curvature vector ﬁ k+1
of M™ in E"*1 are related by generalized Beltrami’s formula:

Lyx = Ckﬁk—i-l,

where ¢, = (n—k)(}) (see [1]). When k = 0, this turns into the classical

Beltrami’s formula Az = nﬁ This states the well-known result: M™ is
a k-minimal hypersurface of E**! if and only if its coordinate functions
are Li-harmonic, i.e.,

Lix =0.

Particularly, k-minimal hypersurfaces of E"*! are made by eigenfunc-
tions of the operator L with eigenvalue zero. There are many examples
of k-minimal hypersurfaces in the space forms (see for instance [11]).

From [6], we see that a right spherical cylinder R x S*~1 in E"*! is
composed of both Lg-harmonic function and eigenfunction of L, with
a single nonzero eigenvalue, say A\, when 0 < £k < n — 1. Therefore,
the position vector = of a right spherical cylinder R x S*~! takes the
following simple spectral decomposition

T =x1+ 22, Lyw1 =0, Lyze = Ao, (1)

for some non-constant smooth maps x; and x».

Baesd on Lg-finite type theory, a Euclidean hypersurface is said to
be of null Li-2-type if its position vector takes the spectral resolution
(1). Similarly, a Euclidean hypersurface is said to be of L-1-type if its
position vector satisfies the condition Lyz = Az (cf. [6, 7, 9, 8]). Accord-
ing to the genralized Takahashi’s theorem [7], a Li-1-type hypersurface
of a Euclidean space is either a k-minimal Euclidean hypersurface or an
open part of a hypersphere. Specially, because of the simplicity of null
Li-2-type hypersurfaces, after the classification of the Li-1-type hyper-
surfaces, it seems reasonable to propose the following problem.
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Problem: Classify all null Lg-2-type hypersurfaces in Euclidean
spaces.

Until now, only few results have been obtained concerning this prob-
lem. In [7], the first author and Kashani obtained the first results. They
proved that there exists no null L,_;-2-type Euclidean hypersurface,
specially, there is no null Li-2-type Euclidean surface. When k # n — 1,
they also showed that every null Lg-2-type Euclidean hypersurface with
at most two distinct principal curvatures is a right circular cylinder.

Now, assume that M is a Riemannian n-manifold. Denote by K ()
the sectional curvature of a 2-plane section m C T, M, p € M. The scalar

curvature 7 at p is defined by 7(p) = > K(e; A e;), where eq, ..., ey is
1<j

an orthonormal basis of T),M. By choosing e1,...,e,, a r-orthonormal

basis of the r-plane section L", the scalar curvature 7(L") is defined by

T(LT):ZK(ei/\ej), 1<d,5<r.

1<j
For an integer r € [2,n — 1], the J-invariant 6(r) of M is defined by

o(r)(p) = 7(p) — nf{r (L")},

where L" runs into all r-plane sections of T, M.
For any n-dimensional submanifold M in E™, Chen [3] proved that
the d-invariant §(2) satisfies the following inequality

5(2) < n?(n — 2)

< Gy 11 @

The equality case of (2) is called the §(2)-equality. The classification of
submanifolds in the Euclidean space E™ which satisfy the §(2)-equality
condition is an interesting and important subject to research (see [1]). A
submanifold M™ in E™ is called §(2)-ideal if it satisfies the §(2)-equality.

Inspired by the above observation, it was proved in [5] that a null
2-type hypersurfaces in E"*! is an open part of a spherical cylinder
S"~1 x R if and only if it is §(2)-ideal.

The main purpose of this paper is to extend this classification result
to null L1-2-type hypersurfaces as follows.



A. MOHAMMADPOURI AND R. HOSSEINOUGHLI

Theorem 1.1. A null Li-2-type hypersurface in the Fuclidean space
E"*L with n > 3, is an open part of a spherical cylinder S*~! x R if and
only if it is §(2)-ideal.

Note that from the before mentioned, if n = 2, there is no null
L1-2-type surface in E3.

2 Null L;-2-type Hypersurfaces

Let z : M™ — E"! be an isometric immersion, with Gauss map N.
Denote by V and V the Levi-Cevita connections on M" and E"*!, re-
spectively. The formulas of Gauss, Weingarten and Codazzi are given
respectively by

VyY = VyY + (SX,Y)N,
SX = —-VxN,
(VxS)Y = (Vy9)X,
for X, Y € X(M™), where S : X(M"™) — X(M™") is the shape operator of

M™ arises from the Gauss map N.
The equation of Gauss is given by

R(X,Y)Z = (SY,Z)SX — (SX, Z)SY,

for X,Y,Z € X(M™) where R is the Riemann curvature tensor. The
eigenvalues of S are called the principal curvatures of M".

Let {ki,...,ky,} be the n principal curvatures of M"™. Associated to the
principal curvatures, the 2th mean curvature Hy of the hypersurface is

defined by
n
(2>H2 = Z IiilﬁiQ.

11 <12
Hs defines an intrinsic invariant which is relevant to the scalar curvature
of M™.
Related to the shape operator .S, the classical Newton transformation
Py X(M™) — X(M™) is defined by

P = (Z) HoI — 8. (3)
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Now, consider the second-order linear differential operator
Ly :C*(M) — C>*(M),
which is given by
Li(f) = tr(P; o Hessianf).
For isometric immersion z : M™ — E"*! it is well-known (see [1]),
Liz =n(n— 1)[?2), (4)

—>
where Hy = Hs N defines the 2th mean curvature vector field. By for-
mula in [1] page 122, we find

Lo Hy = — (Z) HoVHy — 2(S 0 P1)(VHy)
— (Hytr(S? o P1) — L1 H5)N. (5)
Suppose that M is of null L;-2-type hypersurface, from (4) we get
Ly Hy = \Hy. (6)
By combining (5) and (6) we obtain

n(l —n)

(SoP)VH; = HyV Ho, (7)

LiHy — Hotr(S? o P1) = A\H,. (8)

Consequently, V Hs is an eigenvector of S o P whenever VHy # 0.
For the proof of our theorem we need the following lemma from [10].

Lemma 2.1. Let M be a hypersurface of a Euclidean space._f;hen zﬂg
2th mean curvature vector field Hy satisfies the condition L1Hs = AHo
for some constant X if and only if M is one of the following hypersurfaces

(a) a Ly-biharmonic hypersurface,

(b) a Li-1-type hypersurface,

(c) a null Ly-2-type hypersurface.
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3 Proof of Theorem 1.1

Suppose that M is a null L;-2-type hypersurface of E"*! which is
5(2)-ideal. Because M is a 0(2)-ideal, there is an orthonormal frame
{e1, ..., en } such that the shape operator with respect to this frame takes
the following form [Lemma 3.2 of [2]]

a0 0 - 0
08 0 - 0

s=[0 0 a+ts - 0 [, (9)
00 0 - a+8

for some functions « and 5 on M.

If Hs is constant, then M is non 1-minimal from lemma 2.1. So,
(8) implies that tr(S? o P;) is constant. Since Hy and tr(S? o P;) are
constant, it follows from (9) that M is isoparametric. According to a
well-known result of Segre [13], any isoparametric hypersurface of E"+1
has [ distinct principal curvatures with [ < 2. If [ = 0, then M is 1-
minimal which is impossible by lemma 2.1. (9) shows easily that case
[ =1 does not occur. So, | = 2. Therefore, from (9) we conclude that
one of the principal curvatures is simple. Thus, M is locally isometric
to S»~! x R by Theorem 3.12 of [7].

From now on we assume that Hs is non-constant. First, from (3)
and (9) we see that the classical Newton transformation P; satisfies

(n—=2)a+(n-1)8 0 0 0

0 (n=2)8+(n—-1)a 0 0

P = 0 0 (n—=2)(a+pB) - 0
6 0 0 (n— 2)'(@ +5)

Therefore, we have

a((n—2)a+ (n—1)8) 0 0 0
0 B((n=2)B+ (n—1)a) 0 0
Sop = 0 0 (n—2)(a+p7 - 0 ‘ (10)
0 0 0 o (n=2)(a+B)?
and
a*((n —2)a+ (n—1)8) 0 0 0
0 B2((n—2)B+ (n—1)a) 0 .. 0
§20p = 0 0 (n-2a+p)? - 0 . (11)

d 0 0 (n—2)(a+B)?
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n
Put VHy = > \e; for some functions Aq, ..., A\, on M, then from
i=1

(10) we have

(S o Pl)VHQ :Z)\Z(S o Pl)ez-
=1
=a(f+ (n—2)(a+p))Aier + Bla+ (n —2)(a+ 5))A2e2

+ Z(n —2)(a+ B)*Aie;
=3

=((3=n)aB + (2—n)BHAer + ((3 —n)ajs
+ (2 =n)aP)haes + (n — 2)(a + B)2°V Hy.

Thus, Eq. (7) yields

(n=2)(a+p)*+ in(n — 1)Hy)VH; =((n —3)aB + (n — 2)8%)A1e
+((n = 3)aB + (n — 2)a?) Azes.

Hence, A\g =--- =\, =0 and
((n—2)(a+ B)%+ in(n 1) Hy + (3= n)aB + (2= n)B% M =0, (12)
[(n—2)(a+ B)? + 1n(n —1DHy+ (3—n)af + (2—n)a?ra = 0.

4

Since V Hs is a nonzero, which implies at least one of A1 and A9 does not
vanish. If both A\ and A9 do not vanish, then we find either o = 3 or
a = —0F. If a = (3, then M has at most two distinct principal curvatures,
so from [7] we know that any null L;-2-type hypersurfaces with at most
two distinct principal curvatures have constant 2-th mean curvature,

4 2
this is a contradiction. If o = — 3, then Hy = L Hence, we get
n(n —1)
—1
n(n — 1)Hy = tr(So P)) = —253% = —n(nQ)HQ,

which implies Hy = 0, but this is impossible.
Therefore, we have either
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(a) A\ #0 and Ay =0, or
(b) )\2 75 0 and )\1 =0.

We only need to consider the case (a), case (b) can be done in a similar
arguments as case (a).
First, from relation (12) we obtain that
da (a4 B)n —2a = B)

Hy = = . (13)

On the other hand, since tr(S o P;) = n(n — 1)Hs, by using (10) we can
write

1

= el (= Dat B(n-1) +8((n-2)8

+an—1)+(n-2)%*(a+p)%. (14)

Comparing (13) and (14), then after a straightforward computation, we
find that there exist real numbers in terms of n, say ai, as, such that
{a, B} = {a1v/Ha,a2y/Hs}. Note that since VHy is a nonzero without
loss of generality, we may assume that Hs > 0.

Next, by taking e; in the direction of V Hs, the shape operator sat-
isfies

a1y Hs 0 0 0

0 a2\/H2 0 0

S = 0 0 a3\/H2 0
0 0 0 a;ng

where a3 = a1 + as. Moreover, we have

el(HQ) 75 0, ek(HQ) =0, vk > 1. (15)

We put Veej = > wfjek, then using the equation of Codazzi for
X =¢; and Y = e; we get

a;je;(Ha)
(Veis)ej = 2] \/72 e+ v HQZ wljek

Then, we consider the special cases of ¢ and j.
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For ¢« = 1,j = 2, one obtains
%el(Hz)eg + Hy Zk:(ag — ak)wﬁek = Hy zk:(al — ak)wlzclek.

Under the identification the coefficients corresponding to {ey, ..., e },
we have the following

w%? = 07 (16)
a

e1(Hy) +2(1 — ;;)sz% =0, (17)

aywhy = agwh, k> 3. (18)

Similarly, for ¢ = 1,5 > 3, we obtain the following

wi; =0, =3 (19
ag .

W%j =(1- G*I)W?b Jj =3, (20)

ajeq (H2)5jk + QCLQHwal =0, 7,k > 3.

Finally, for i = 2,5 > 3 we get

al .
wy; = (1— ;2)0131‘27 Jj =3, (21)
wy; =0,  j=3,

why=0,  jk>3.

From (15), we see easily [e2, ej](H2) = 0. So, we have
Z(ng - W?Q)ek(HQ) = 0.
k

Again, using (15), we get w%j = wjl-z, for j > 3. Combining this with
(21) yields

Since {ey}}_, is an orthonormal basis, we have

0= ei(ej, er) =(Ve,ej,ex) + (€, Ve,ex) = wfj + wgk,
Vi, jk=1,...n. (23)
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By using (23), we derive that

1 ; :
wip =0, wip =0, wj;=0, j=>3,

1 .
wyp =0, wyy =0, w%jZO, Jj=3,

Wi =0, Wiy =0, w;=0, jk>3
Combining (23) with (16), (17) and (22) we find that

2 1 az e1(Ha) 2
= 0 =
w11 ) Wag (2((12 _ al) H2 )

By applying (20) and (27) we obtain
wi; =0, j>3.

Moreover, it follows from (23), (28) and (18) that

In the same way, we derive that

a; + a2)€1(H2)
Hy ’

J o _ 1 _
wy =0, Wy =0, wj; = ( 2y

Now, it follows from the Codazzi’s equation that

> (a5 —a)wier = Y (a;i — ar)wher, 5> 3.

k k

Therefore, we get

1,1 2 _ 2 .
Wij = Wi, Wi = Wi, 1,5 > 3.

(29)

Then, (15), (16) and (25) imply that [e1, e2](H2) = 0. Hence, we have

€2€1(H2) = 0.
From (15), (19) and (26) we also have

eje1(Hy) =0, Jj>3.
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Applying Gauss’s equation to (R(e1,ez)er,ea), (R(e1,ej)er, ;) and
(R(e2,€ej)e, e;), we respectively obtain that

61(811(1[};’2)) + 2(a1ai az) (ell(ﬁ_llf) )? + 2a1(a1 — ag)Hy = 0, (30)
el(ell(qhzb)) _ a12—;2a2 (615212))2 — ayasHy = 0,
(61(H2>)2 — das(ar — az)Hs = 0. (31)
Hy

On the other hand, from (17), (24), (29) and the definition of L;, we
find

L1Hy = b |:61(€1(H2)) + W] \/FQ, (32)

for some real numbers b and c.

Now, using (8), (11) and (32), we obtain that

b [el(el(HQ)) + W} VHy = dH3\/Hy + A\Hay,  (33)

2

for some real numbers b, ¢ and d.
By substituting (31) into (30), we get

e1(e1(Hz)) = [2%;%2(@1 + a2)] Hj. (34)

Also, substituting (31) into equation (33) gives

er(er(Ha)) = [b“”((“ et \A/F} H. ()

By comparing (34) and (35), we conclude that Hs is constant, which is
a contradiction.

This completes the proof of the theorem.

11
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