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Abstract. Fuzzy fractional heat equations (FFHEs) are utilized to
analyse the behaviour of the certain phfg@hmena in various mathematical
and scientific models. The main goal of this paper is onst.ruct the
solution of fuzzy fractional heat equations by taking a reliable recipe
of Sumudu transformation method and homotopy analysis method into
account. This method allow us to remove the difficulties and restrictions
confronted in other methods. The feasibility of this method is confirmed
by given numerical examples. the result presented that the proposed
method is suitable, powerful and liable for obtaining the solution of
fuzzy fractional problems with FFHEs.
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1 Introduction

It is evident from the scientific studies that fractional differential equa-
tions (FDEs) have been gaining growing attention last two decades. By
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ans of fuzzy quantities crisp quantities in the FDEs can be replaced
to reflect imprecision and uncertainty. This emerges fuzzy fractional

erential equations (FFDEs). As a result there are many different
studies on the solutions of FFDEs [11], [13], [2], [9], [7], [15], [3]. Since
real-world problems includes uncertainty, modelling them with fuzzy pa-
rameters is more suitable and more realistic. Consequently studying on
the approximate solution of FFDE¥ls trend topic of the applied mathe-
matics. Therefore we do research on the series solution of fuzzy heat-like
equations in this paper.
2 Preliminaries

In this section fundamental definitions and concepts are presented.
Fuzzy numbers 1 (g) : R™ — [0, 1] in the space E™ of n-dimensional fuzzy
numbers satisfy the following conditions:

e 1(q) is called normal, if 3gy € R™ for which t (gg) = 1,

o 1(q) is called fuzzy convex, if Vg1, g2 € R®, 2 € [0, 1], % (xq1 + (1 — x) q2) >
mint (q1), (q2),

e The support of the £ (q) is defined as suppt (¢) = {g cER:t(q) > U}
and its closure cl(supp?(q)) is compact,

e {(g) is upper semi-continuous.

The p-cut set of a fuzzy number r(q) € E represented by [?( g)]p, is
described as

w_J{eeR:t(gzpn}, 0O<p<t
F(Q)] a {ci (supp?(q)) , p=20

which is a closed and bounded interval [ﬁ(q),t_ﬁ(q)] where {#(q) repre-
sents the left-hand endpoint of [ﬂv(q)]p and 77 (q) the right-hand endpoint
of [f(q)]"-

Definition 2.1. A pair [ﬁ(q),t_f‘(q)] of functions t*(q),#(¢),0 < p <1

is said to be the parametric form of a fuzzy number r(q) Moreover the
following conditions are satisfied:
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e 1#(q) is an increasing left continuous function.

e 17(q) is a decreasing left continuous function.
o th(q) <t(q),0=p=<1

Definition 2.2. The fuzzy Sumudu transformation of a continuous
fuzzy function b : R — F(R) for which b(ug) @ e™% is improper fuzzy
Riemann integrable is defined as [1]

Guo=SFwﬂuo=ﬂwﬁwﬁafwmuekﬁth

where pi1, i > 0. The parametric form of fuzzy Sumudu transformation
is denoted as:

s[t@)] ] = Bl@] @),5 B@)] (w)] -

[22]
3 Fuzzy Time Fractional Heat Equation

This part is devoted to the presentation of time fractional heat equation

is given by taking the fundemental fuzzy properties [1], [10], [5], [1]] into
account in a fuzzy environment. Consider the one-dimensional fuzzy
fractional problem with FFHEs:

P (o) o
r(p,0) =g(p)
where r(p,t), % denote a fuzzy function [10] and the fuzzy time

fractional derivative (FTFD) of order a respectively. Moreover the fuzzy
function g(p) is described as follows [6]:

g (p) = pd(p) (2)
where d(p), jt represent the crisp function of the crisp variable p and the
fuzzy convex number, respectively. The fuzzification of Problem (1) for

all 3 € [0,1] is as follows [6]:

[F(p.t)] 5 =[x (p t; B), Flp,t; 8)], (3)

[N
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{3“5‘"(33“’:‘0)] _ {3“£(p.t.a;,{3) 9T (p, t,a; 3) 4
et . oot ‘ dat )
(D7 (p,1)] , = [Dyr (p, 8 8), DyF (0. t: )] (5)
[F(p.0)lg = [c(p. 0; B) ,7(p, 0; B)], (6)
[9 ()]s =g (p;B),3(p; B)] (7)

where
G ()]s = [ (B),m(B)] dlp). (8)

The function described by utilizing the fuzzy extension principle [6]:

{m.n:ﬁ) = min {7 (7 (8) 1) : i (8) € F(p, t; B)}, o)

7 (p,t; B) = max {F (i (B) ,t) : i (B) € T (p,t; B)}

is called the memlnship function.

Based on [0], after fuzzfication @) roblem (1) and defuzzfication of Egs.
(2-9), Problem (1) is rewritten in the following form:

The lower bound of problem (1)

Tt _ iy p,1,9), @)
r(p,0;8) = p(8) d(p).

The upper bound of problem (1)
AT (p,ten 3 o
FIED < DI (p 1 9). )
T (p,0;8) = 1 (8) d(p).

4 Sumudu homotopy analysis transform method

(SHAM) for FTFD Equation

Consider the following fuzzy problem including heat-like fuzzy time-
fractional r]jffereraial equation
2
DT (pt) = DT (p,t) 0 <p<1,t>00<a<l (12)

7(p,0) = g(p). (13)
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The initial condition can be treated homogeneously for simplicity. Based
on the proposed method, the Sumudu transformation is applied to both
sides of the Eq. (12):

S [“DfF (p.t)] =S [DFF (p.1)] (14)
wS[F (p,t)] - w7 (p,0) = S [D}7 (p,1)]
S[F (p.1)] — w™S [D}7 (p.t)] — 7 (p,0) =0.

Eq. (14) is rewritten in terms of nonlinear operator as follows:

o N[F(p,t)] =0,

1

where 7 (p,t),70 (p,t) andh # 0 denote unknown function, initial ap-
proximation and an auxiliary parameter, respectively. The nonlinear
operator can be defined in terms of embedding parameter e € [0, 1] as
follows:

N [a(p t: P)i| =8 [a(p t: 0)] — w8 [D;}q:‘;(p t:e)} - q:‘;(p 0;e) = 0.
We construct such a homotopy [3], [12]
(1-e)S[6(ptie) =T (p.0)] = chHP.ON [6(p.tie)]  (15)

is zeroth-order deformation equation. Here, H (p,t) # 0. The zero-
order deformation equations are obtained by taking e = 0 and e = 1, as
follows:

& (p,1;0) = 7o (1), & (p.t:1) = T (p, ). (16)

51- (p,t;e) can be obtained in the power series form in e by the help of
Taylor’s theorem as follows:

O(p.tie) =70 (p.t) + Y fi(p,)e (17)

=1

where _
— 19 (p, te
S (p,t) = 100(p tie)

T Bel (18)

e=l

w
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The parameter h is utilized to make (1?m3n\rergent. The series (17)
converges at e = 1 for properly chosen the auxiliary linear operator,
the initial guess, the auxiliary function and the auxiliary parameter h.

Hence -
7(p,t) =To (p‘!E- > Flp.t) (19)
1=1

is the obtained solution of the original nonlinear equations. It is seen
from the above expressiomlat exact solution r(p,t) and the initial guess
ro(p, t) have a relationship in terms of y(p,£){l = 1,2,3,...).
In order to determine them, the following vectors are defined

F= {70 (0. 0). T (0. 0) T (0:1) .- .. Filp. 1)} - (20)
The I*"-order deformation equation is obtained in the following form
S[F () = xifio ()] = hH () B (Tiea () . (21)

If both sides of Eq. (21) is operated the inverse Sumudu transform, then
the following expression is obtained:

R ) = xima (0,0 + 57 [ ) R (Fan)] @2)

where _
| 0N B te)

R{(?ﬁ—l(p‘t)) = (E_l)' Bei_l (23)
e=(
and
0, 1<1

= 24
u {1, > 1. 2y

In our case
Bi (Fia(p,t)) = “DEF (p,t) - D2F(p,1). (25)

As a result 7 (p,t) for I > 1, at M*" order is obtained without any diffi-
culty. Therefore an approximate solution of the Eq. (12) is constructed

as
M

Fp.t) = 3 Alp.1) (26)
=0
where M — oc.
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eorem 4.1. [f the series (26) converges as M — oo, then, the limit
must be the exact solution Eg. (12)

Proof. Assume that the series (26) is convergent. Hence
D onpt) =To () + ) _Talpst) = K(pt).
=0 I=1

As a result limy;_, . 7(p, t) = 0. Hence taking the Eq. (21) info account
the following is obtained

M
J‘EL [hﬂ (p, ﬁ);Rz (f"z—l(iﬂ‘ I5))‘| = llm (ZS ri(p.t) = xim—1 (p, f)])
l lim Z [n (pt) = xfi1 ( pd)”

o)
= 0.

Since h # 0,H (p,t) # 0, therefore, > 7 R (i?g_l(p,t)) =0. From
(3.15)

1]

[=+]

ZR,;(?‘£1P,3)) D DT (pt) - ZD?f‘zl(Pf)
=1 | .
> R (falp ) = D7 s (0,0) - DY it ()
=1 =1 =1

00 od

gL

=
Il
-

Ry (Fioap, ) = D7 3070 t) - DY 7 (t)
=0 =0

§ DK (p,t) — D2K (p,t) = 0. (27)

Above equation (27) shows that, K(p. t)satisfies the original problem
(12). O




S. Cetinkaya and A. Demir

5 Numerical Illustrations

In this section is devoted to illustrated examples for demonstrating the

efficacy of SHAM.

Example 5.1. Consider the following fuzzy problem [12]:

2
{CD?‘F(p,t) =D¥(pt), 0<p<lit>00<a<l

_ . = (28)
r(p,0)=g(p) =ksin(mp), 0<p<1.
The general definitions of the fuzzy problems
2
{CDE‘?(p,t)zDgT(p,t). 0<p<l, t>0,0<a<l )
7(p,0) =7(p) =k (B)sin(mp), 0<p<1
2
{Cpglg(p,:) =D2r(pt),0<p<1,t>0,0<a<l
r(p,0) = g (p) = k(B)sin (mp), 0<p<1
(30)

Application of the Sumudu transform to both sides of Problem (29)
vields

S[F(p.t)] —w*S [DIF (p.1)] —F(p.0) = 0.
The operator N becomes

N [6(p t;e)] =S[b(p,t;e)] —w*S [Dig (p,t;e)] = 0,6 > 0,0 <e<1

and thus

Ry (Fi-1(p: 1)) = SF-1 (p,1)] — wS [D}F_1(p,1)] = 0,1> 0

The deformation equation of order [ hecomes

S[Fi(p.t) = xiFie1 (p,t)] = hH (p,t) Ry (Fia(p,t)) -

Applying the inverse Sumﬁl transform yields
12

Tt (p,t) = xiTi—1 (p,t) + 7' [RH (p,t) R (Fi—1(pst))] -
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Obtaining the solution of above equation for I = 1,2,.... By choosing

Hpt)=1 yieﬁq
7 (p.t) = xiTi—1 (pt) + §71 [h' [S [Fi-1(p,t)] — w"S [Dg?i—l (ps r)]” ;

al
_ 27, ;
1(p,t) = hr?k (5)sin (mp) T@+1)
o o P e rer
7o (p,t) = hrik sin (7 8— + Rk sin (7 + hzﬂ'dﬁ sin (7p) =——
2 (p, t) (8)sin ( p)F(a+1) (8) sin ( p)[‘(a-l-l) (8) Py T2a 1)
- e - o 5 4+ 2ex
r3(p,t) = ho*k () sin (ﬂp)m + W27k (8) sin ﬂ-p)i—}—l) + K27k (B) sin ﬂp)m
(e o 2{1
+ I ﬂ'zk sin (m 7—#!3 :'T)'k sin (7 7—#!1-: ?Td."i sin (mp) ——
(3) p) Py (8) ») Y (8) P} 2ot 1)
5 4 rZr.t rer 5 E fm
+ h*m7k (3) sin ﬁp)ﬁ + R R ( (8)sin ?Tp)ﬁ—}—h k(3)sin ﬂp)m.
Therefore the series solution is determined as
Fp, t:8) =To (0. 1:8) + Y _Tulp,1: B).
I=1
The following approximate solution is obtained at h = —1
o 2w
7 (p,t; 8) =k (8) sin (7p) — 2k (B) sin ( :frp) ! =y + 74k (8) sin ( ﬂp)ﬁ
oy
6T . :
—mk (ﬁ)sm(ﬂ'p)—_ Ba 1 1) +
I)J e
I@) sin ?Tp) Zﬂ T_i_]_)

Similarly, the solution for the Problem (30) is determined as

l)J mlipie

r(p,t;8) = k(8)sin( ﬂ-p)ZT‘f‘l)

The approximate solutions SHAM of order 11 are compared and plotted
for a = 0.9, 0.95, 1,p=025and t =0.25 and 3 = (0.754+0.255;1.25 —
0.253) in Figure 1.
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Figure 1: The approximate solutions for Example 1
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Example 5.@ Consider the following fuzzy problem [12]:

{CDEIF(p,t):%pQ;DE_F(p,t), D<p<lt>00<a<l (31)

7 (p0) =g (p) = kp?, 0<p<l

The general danitions of the fuzzy problems
{PD“_p,t)—D?p,t) 0<p<l, t>0,0<a<l (32)
TP =g =k@)p°, 0<p<l

“Dgr (p,t) = Dir (p,1) 0<p<l,t>0,0<a<l

r(p,0)=gp)=k(B)pP.0<p<l

(33)
Application of the Sumudu transform to both sides problem (33) yields
— o 1 22— =
S[F(p,t)] — w*S {Ep D7 (p, r)] -7 (p,0) = 0.
The operator N is
N [(ptie)] =S [(p.tie)] —u“S[ p*D26 (p,t: p)] =0,t>00<e<1
hus

R (ﬁ;’_](p,t)) = S[Fg_1 (p,t)] w*s |: p 2p? ?g 1 (p, f):| =0,t >0

The deformation equation of order [ hecomes
S (pt) = xaTi-1 (p,t)] = RH (p, t) R (Fi-1(p, 1)) -
ajplying the inverse Summl transform yields
71 (pt) = xiFi-1 (p,t) + ST [RH (p,t) R (Fi—1(pst))] -

On solving above equation for [ = 1,2,.... For simplicity, we choose
H (p, t) = ].,
_ — —1 — e 1l 22—
i (p,t) = xiTi-1(p, 1) + 8 [h- |:S[?‘E—1 (p, )] — wS {Eﬁ? DyFi (P~3)”] ;

1(p,1) = —hp"k (B) ot D)
o e rzu

2 () = ~hek () Ry ~ 10 O) iy +1)+h‘p2£ Y T@a+1y
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o o o e R tZu o
73 (p,t) = —hp*k — h2p%k(B) ———— + B2p°k (B) ———— — W%’k
T3 (p, 1) wp (’G)r-(a+1) p (ﬁ)r(a+1)+1p (ﬁ)r(20+1) ptk ()
o ey Doy
3 97 : 2 97 :
i h. k() =—— flat1) + h'pk (B) 71"(204— 0 +hpTk(B) 7I"(2(x )
3o
3 o7 d 3 o7 t
+ hp k(ﬁ) (20 1) — hopok( 7[“(30*-!— 0"
Therefore the series solution is determined as
(p, t:8) =70 (p, 1 8) + Zﬁ(p. t; 3).
=1
The following approximate solution is obtained at h = —1
Fti8) =E@) R +E0) B EB) P i F@) P 4
PEA=REIP RO P P ar T P TCa+D VP TBa+l)

_ J{I
=kl 'B)pzzrj(x—f—l)

=k (B)P°E,(1).

Similarly, the solution of Problem (77) in terms of one parameter Mittag-
Leffler function F,(t) is given by

{I

cptf) =k ﬁ}pzzrmﬂ) k(8) P Ea(t).

The approximate solutions SHAM of order 11 are compared and plotted
for a = 0.9, 095, 1,p =1 and ¢t = 0.25 and 3 = (0.75 4+ 0.253;1.25 —
0.253) in Figure 2

6 Conclusion

In this research, the approximate analytical solutions of the fuzzy prob-
lems including fuzzy fractional heat-like equation is constructed by im-
plementing the proposed Sumudu homotopy analysis method. The ad-
vantages of this method are requiring less computational work and im-
plementing without any difficulty as well as being effective and powerful.

t(l

T(a+1)




Beta

09

0.8

0.7

0.4

031

0.2

Solutions of Fuzzy Time Fractional Heat Equation

alpha=0.9
* alpha=0.95
alpha=1

& 1 1 1 1 1 | g

0.1

1
1 1.1 1.2 1.3 1.4 1.5 1.6
r(p,t)

Figure 2: The approximate solutions for Example 2
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The numerical examples illustrated that the convergence and accuracy
of the solution is very high.
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