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1 Introduction

The concept of n-group was introduced by Dérnte[9], which is a nat-
ural generalization of the notion of group. Since then, many papers
concerning various n-ary algebras have appeared in literature. Another
field which proved to be relevant was of algebraic hyperstructures. Alge-
braic hyperstructures are a suitable generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two
elements is an element while in an algebraic hyperstructure, the compo-
sition of two elements is a set. The notion of hypergroup was introduced
in 1934 by a French mathematician F. Marty [15], at the 8" Congress
of Scandinavian Mathematicians. He published some notes on hyper-
groups, using them in different contexts: algebraic functions, rational
fractions and non-commutative groups. Since then, hundreds of papers
and several books have been written on this topic and several kinds of hy-
pergroups have been intensively studied, such as: regular hypergroups,
reversible regular hypergroups, canonical hypergroups, cogroups, cyclic
hypergroups, reduced hypergroups and associativity hypergroups(for ex-
ample see [2, 3, 1]).

The recent book on hyperstructures [6] points out their applications
in fuzzy and rough set theory, cryptography, codes, automata, probabil-
ity, geometry, lattices, binary relations, graphs and hypergraphs. More-
over, Davvaz and Vougiouklis [7] have established a connection between
the two domains in the form of an extension of the concept of n-ary
groups to the concept of n-ary hypergroups, which has also proved to
be of great interest and they were studied by Ghadiri and Waphare [11]
and others [5, 8, 10, 17, 16, 20, 1].

In this paper, we define the left(right) G-sets in the context of n-
ary semihypergroups. Furthermore, we define direct system and direct
limit of G-sets and prove that some properties about them. We note
that this concepts defined and considered only by binary operation and
binary hyperoperation [13, 18]. We generalized this concept by external
hyperoperation on n-ary semihypergroups. Finally, we introduce the
concept of tensor product that is a non-additive modification of classi-
cal in module theory and play an important role in homological algebra
[19]. Also, we prove that the tensor product exists and is unique up to
isomorphism.
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2 Basic definitions

In this paragraph, we present some definitions concerning n-ary semihy-
pergroups. Let G be a non-empty set and f be a mapping f: GXx G —
P*(G), where P*(G) is the set of all non-empty subsets of G. Then, f
is called a binary hyperoperation on G. We denote by G" the cartesian
product G x G.... x G, where G appears n times. The couple (G, f) is
called hypergroupoid. When, n = 2, for any two non-empty subsets G
and G of GG, we define

G1 (¢] G2 == U g1 © g2.
91€G1,92€G2

In this case, a hypergroupoid (G, f) is called semihypergroup if for all
91,92 and g3 of G, we have (g1 0 g2) 0 g3 = g1 0 (g2 © g3).

In general, f : G — P*(G) is called an n-ary hyperoperation on G

and (G, f) is called n-ary hypergroupoid.
Let G1,Go,...,G,, be non-empty subsets of G. Then, we define

f(G1>G27"'7GTL) = U f(gla.g27"'7gn)‘

gi€Gy,ie{1,2,....n}

The sequence g;, gi+1, ..., g;, Will be denoted by gf For j < 4, gg is the
empty set.

Definition 2.1. [7] The n-ary hypergroupoid (G, f) is called n-ary
semihypergroup if for any 7,5 € {1,2,...,n} and g%n—l €aq,

o . _ 1 i1 _
f(gi 17]0(9?4_Z 1)791%1i1):f(g{ ’f(g;'H_] )791213-]'1)'

An n-ary semihypergroup (G, f) has an identity element if there is

an element e € G such that

xef (e(i_l)jx,e(i_1)> ,

forallz € Gand alll <37 <n.

An n-ary semihypergroup (G, f) is commutative if for all g7 € G and

any permutation o of {1,2,...,n}, we have

f(g?) = f(ga(l)agU(Q)v "'790’(n))‘
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Let (G, f) be an n-ary hypergroup such that there exists a unique
0 € G such that g = f (101),9, (nOZ)) Also, there exists a unitary
operation — on G such that
g € f(g7) implies that ¢; € f(—gi—1,...,—91,9, —9ns ---, —git1), for all
1 < i < n. Then, (G, f) is called n-ary polygroup and a commutative
n-ary polygroup is called canonical n-ary hypergroup.

Let (G, f) be an n-ary semihypergroup and H be a non-empty subset
of G. Then, H is an n-ary sub semihypergroup of G if it is close under
the n-ary hyperoperation f, i.e., for every (hi, ha, ..., h,) € H" implies
that f(h1,heo,...,hy) C H.

The n-ary semihypergroup (G, f) is called n-ary hypergroup, when
the equation g € f (gifl,xi,gﬁrl) has the solution z; € G for any
gi_l,g,gzﬂl eGand1<i<n.

Let(Gy, f1) and (Ga, f2) be two n-ary semihypergroups. Then, a
mapping ¢ : G1 — G is called a homomorphism if for all 7 € G, we
have

o(fi(z1, 22, oy mn)) = fa(p(21), (22), .y (1))

When G and G are n-ary semihypergroups with identity, p(e1) = es.

Example 2.2. Let (G, +) be a semihypergroup and f be an n-ary hy-
peroperation on GG as follows:

Vor € G, f(gh) = g
=1

Then, (G, f) is an n-ary semihypergroup.

Example 2.3. Let G be a group and < z,y > be a subgroup of G
generated by x and y. Then, we define

f(gla.927 7971) =<91,92,--,9n >
where g} € G. We obtain that (G, f) is an n-ary hypergroup.

Example 2.4. Let G be a semigroup and N be a normal subsemigroup
of G. Then, for all g} € G, we define f(g1,92,...,9n) = 9192...gnN.
Hence, (G, f) is an n-ary semihypergroup.
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Example 2.5. Let D be an integral domain and F' be its field of frac-
tions and snd U be the group of the invertible elements of D. Then, we
define

(@1, 92, -, 9n) = {9 : Fuf € U,g =191 +uzga + ... + ungn},
where g; € F/U with 1 <4 < n. Hence, (F/U, f) is an n-ary semihy-
pergroup.

Example 2.6. Let V be a vector space over an ordered field F' and
T1,22,...,Ln € V. Then, we define

f(.%'l,xg, ,.’En) = {zn: Nii i A > O,i)\i = 1} .
=1 =1

Hence, (V, f) is an n-ary semihypergroup.
Example 2.7. Let G = {a1,a2,a3}. Then, G is a 3-ary semihypergroup
by following hyperoperation:

fla1,a1,a1) = f(ag,az,a2) = {a1,a2}, f(as,as,a3) = {as},

flas,a1,a1) = f(a1,a3,a1) = f(a1,a1,a3) = {as},
f(as,a1,a2) = f(a1,a3,a2) = {as},

flar,a2,a3) = {as}, f(a3, az,a2) = f(az,as3,a2) = f(az,az2,a3) = {as}.

3 Left(right) G-sets

In this section, we generalize the concept of tensor product of left(right)
G-sets as a generalization of semigroups|!2].

Let G be an n-ary semihypergroup and X be a non-empty set. Then,
we say that X is a left G-set if there is an external hyperoperation
h:G" ! x X — P*(X) with the property

h(f(g1), 9272, 2) = b (g1, f(95, gns1), 92757 x) = . = h (g7 1 b (62772, 7)),

where g%n_2 € G and x € X. If e is an scalar identity of G, we say that

X has an unitary when h (e("_l),:v) =z, for every z € X.
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Dually, a non-empty set X is a right G-set if there is an external
hyperoperation h : X x G~ 1 — P*(X),

h(@ g™ f(9n207) = o = h(h(2,977") 02" 7)

In the same way, we say that X has an unitary when h (w, e("_l)) =z,
for every z € X.

Let G and H be n-ary semihypergroups. Then, we say that X is a
(G, H)-set if it is a left G-set by external hyperoperation h; : G"~! x
X — P*(X) and a right H-set by external hyperoperation hg : X x
H" ! — P*(X) and

ha(ha(gy ™t @), 8771) = ha(g7 ™" haa, 1771),

where g?_l € G,t?_1 € H and xz € X.

Let G be a canonical n-ary hypergroup and X be a left G-set.
Then, we say that X is reversible if x1 € h(g1,92, "+ ,gn—1,%2) im-
plies that zo € h(—gn-1,—9gn-2,"*,—g1,%1), where z1,z9 € X and
91,92, "+ ,9n-1 € G.

Let X be a left G-set, G be an n-ary semigroup and b : G" ' x X —
X. Then, we say that X is a multiplicative left G-set.

Example 3.1. Let G be a canonical n-ary hypergroup and N be a sub
canonical n-ary hypergroup of G. Then, we define the relation N* on G
as follows:

aN*'y<— f (ac, —y,O(”_2)> NN # 0.

It is not difficult to see that N* is an equivalence relation. Hence,
N*(z) = f (N, x, O(”*Q)) and the set of all equivalence classes G/N* =
{N*(x) : x € G} is a left G-set as follows:
h:G" ! x G/N* — P*(G/N*)
(g1 L N*(2)) — {N*(t) -t € flgi o))

Definition 3.2. Let G be a canonical n-ary hypergroup and X be a
reversible left G-set. Then, we define the relation = on X as follows:

T = Tg = Elg{“1 €cG: x € h(g’ffl,xg).
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Proposition 3.3. Let G be a canonical n-ary hypergroup and X be a
reversible left G-set and has an unitary. Then, the relation = is an
equivalence.

Proof. Suppose that = € X. Since z = h(e® !, z), it implies that

the relation = is reflexive. Let x1,22 € X and 1 = 9. Then, z1 €
h(g?_l,:cg). Since X is reversible, we have zo € h(—gp—1, —gn—2, -, —g1, T1).
Hence, = is symmetric. Let x1,z9,73 € X such that z1 € h(g’ffl,xg)

and z9 € h(k’f_l,xg), where g?_l, k{‘_l € GG. This implies that

€ h(g! ™! w2) C h(g! ™ h(ky ™ ws)) = h(f (g™ k), k" as).

Then, there exists g € f(g?il,kzl) such that z; € h(g, k:g‘*l,xg). This
implies that the relation = is transitive. Therefore, the relation = is
equivalence. O

We denote the equivalence class of € X with respect to the equiv-
alence relation = by orb(z) and it is called orbital of x. Hence,

orb(z) = {te X : gt eq, te h(gf’_l,x)} .

Definition 3.4. Let G be an n-ary semihypergroup and X be a left
G-set and z € X. Then, stabilizer x defined as follows:

Stab(z) = g € G2 =Nh(g,9, - ,g,7)
N——

n—1

When X is a left G-set with unitary and x € X. We have z =
h(e"=V z). Hence, Stab(z) # 0.

Proposition 3.5. Let G be a commutative n-ary semihypergroup, X be
a left G-set with unitary and x € X. Then, Stab(zx) is a commutative
n-ary sub semihypergroup of G.

Proof. Since e € Stab(x), we have Stab(z) is a non-empty set. Let
91,92, -+, gn € Stab(z). Then,

h(ghgl,“' 79171:) = h(92792)"' 792)x) == h(gnygnv"’ 7g’n7x) = .
—_— —_— —_—

n—1 n—1 n—1
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Since G is a commutative n-ary semihypergroup, we have

h(f(gla.QZa"' agn)vf(gla.927"' 7gn)7"' af(gl>.92a"' ,gn),fL') =Z.
ntl
This implies that h(g,g,---,g,2) = z, for every g € f(g1,92, " ,gn)-
—_—
n—1

Therefore, f(g1,92, - ,9n) C Stab(x). This completes the proof. O

Example 3.6. Let G be a canonical hypergroup and X = G. Then, X
is a reversible left G-set by external hyperoperation h : Gx X — P*(X)
such that h(g,z) = g 'zg, where g € G and = € X. Indeed,

h(g1, h(g2, %)) = g7 hlga, 2)g1 = g7 g5 ' xgag1 = h(g1g2, ).

Let 21 € h(g,x2), where z1,79 € X and g € G. Then, 1 € g 'xag.

Hence, there exists k € g~ 'zy such that z; € kg. This implies that
k € 197! and x5 € gk. Then, x5 € gr19~ " = h(g~!,21). Therefore, X
is a reversible left G-set. Also, for every z € X, we have

orb(z)={teX: Jgc G, tcgleg}, Stab(z)={g€ G :gxr=uxg}.

Proposition 3.7. Let G be a commutative n-ary semihypergroup and
X be a left G-set. Then, X is a (G,G)-set.

Proof. Since X is a left G-set, there exists an external hyperoperation
h:G" ! x X — P*(X) such that

h(f(g!), 9227% ) = h (g1, F(95+ gnt1), 92752 @) = . = h (g7 R (g2 72, 2)) .

Let right external hyperoperation h:X x Gl — P*(X) defined by
h(x,g{“l) = h(g{“l, x), where g’f71 € G and z € X. Then, one can see
that X is a right G-set and (G, G)-set. O

Example 3.8. Let K4 be a Kelain group and S = {a1,as,as, a4, as}.
Then, S is a left K4-set by following hyperoperation:

ay a as a4 as
e | {a} |{az,a3} | {az,a3} | {as} {as}
a | {az,a3} | {a1} {a1} {as} {as}
b | {as} {as} {as} {ar} | {ag, a3}
ab | {as} {ad} {as} | {as,as} | {a1}
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Where K4 = {e,a,b,ab} such that a®> = b*> = e and ab = ba. Since K, is
an abelian group, we can consider S as a right Ky-set.

Definition 3.9. A map ¢ : X — Y from a left G-set X into a left
G-set Y is called G-map if

o(hi(g7 ™" ) = ha(gi ™", p(x)).

When X and Y are (G, H)-sets and ¢ : X — Y is G-map and H-map,
then ¢ is called (G, H)-map. A G-map ¢ is called isomorphism, when
it is both one to one and onto.

Let Mor(X,Y) be the set of all G-maps from X into Y such that X
and Y be left G-sets and hy : G" 1 x X — P*(X), he : G" ' xY —
P*(Y). Then, we define

h:G" ! x Mor(X,Y) — Mor(X,Y)
(g1 e) — B,

where ©: X — Y and @(x) = he (gf’*l, ¢(x)). Hence,
@(hl (g?_lvx)) = h2 (gll_la W(hl (g?_la x)))

= ha (g7, ha (g7t ()
=hy (97", ®(2)) .

This implies that € Mor(X,Y). Moreover, for every x € X,

h(F(g7), 00507 9) (@) = ha(f(g}), 9217 o(@))
= h’Z(glv f(g§7 gn+l)v 97217452’ QO(SC))
= h(gh f(g? gn+1)’ 972L74Lr527 SD) (x)

This implies that h(f(g7), 92517 ) = (91, F (95 9n+1): Gz s @)+ In
the same way, we can see

h(F(g0), 92772, ¢) = hlgn, F(95. Gns1), 9252 ) = - = h (g7 1 h(g2" 2, ) -

Hence, Mor(X,Y) is a left G-set.
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Let X be a left G-set, p be an equivalence relation on X and A, B C
X. Then, we define

ApB <= Ya€ A, dbe B:apb and Ybe B, da € A: apb.

Also,
ApB < VY aec ANV be B, apb.

An equivalence relation p is called regular on a left G-set X, when
mip @2 = h(gi ™" @1)p h(g ! x2), Vg ! € G

An equivalence relation p is called strongly regular on a left G-set X,
when
z1p 33 = h(gy ™", 21)p (g™, 22), Vg7 ' € G.

The quotient set [X : p] is a left G-set by h : G ! x [X : p] —
P*([X : p]), where
(g™ p(a)) = {p(t) : t € h(gi ™", @)}
We note that there is a G-map ¢ : X — [X : p] by ¢(x) = p(z).

Example 3.10. Let G be an n-ary semigroup. Then, G is a (G, G)-set,
where the action of G on G is defined by means of multiplication.

Example 3.11. Let H be an n-ary subsemigroup of G. Then, G is a
(H, H)-set in the obvious way.

Example 3.12. Let G be an n-ary semihypergroup and X be an n-ary
subsemihypergroup of G and

h:G"1lxX —X

(i ha) e

where e is a scalar identity and g{‘_l € G and z € X. Then, X is a left
G-set.

Example 3.13. Let G = J,,5( An such that Ag = {0}, A, = [n,n+1)
and X be positive integers numbers. We define
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f:G" — P*Q)
(97) > Ay,

where t = max{mi, ma,....,my} and g; € A,,. Then, (G, f) is n-ary
semihypergroup. Also,

h:G"1xX —X

(g?‘l,m) — max{my, ma,...,Mp_1,T}.

Then, X is a left G-set.

It is clear that the cartesian product X x Y of a left G1-set X and
a right Go-set Y becomes (G1, G2)-set by the following definitions:

hi(gy" (2, y) = (h(g7 ™ 2), ),

EQ((x7 y)? t?_l) - (.%', h2(y7t711_1))7

where x € X,y €Y, g€ Gyand t; € Go, for 1 <i <n—1 and

1<j<n-1

Definition 3.14. Let X be a left GG-set with unitary. Then, we define
aBmb <= g G, 1<i<m1<j<n—-12zcX

: {a,b} S h (ggﬁlﬁ (g?nil)lvh (gnnimv L h(giT ) ))) ’

where a,b € X and m > 1. Let g = Um21 Bm. Clearly, the relation f is
reflexive and symmetric. We denote by 8* the transitive closure of 3.

Let X be a left G-set. Then, we define

pP= {h (ggl_ll,h (g?ﬂ:ﬁl)l,h (gggiml, <o+ h (g’fl_l,x) ))) cxeX,me N} .

Theorem 3.15. Let X be a left G-set with unitary. Then, 5* is the
smallest strong reqular relation on X.
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Proof. Suppose that af*b and k:’f_l € G. It follows that there ex-
ist x0 = a,x1,22,...,x, = b such that for all i € {0,1,2,--- ,n — 1},
we have x;8z;1. Let u; € h(k} * a) and uy € h(k}',b). We check
that u18*us. From x;8z;1q, it follows that there exists a hyperprod-
uct P; such that {z;,z;11} C P;. Hence, h(k?™*, 2;) C h(k?™!, P;) and
h(EP™ 2i41) C h(KP™Y, Py), which means that h(k7 ", z;) Bh(ET ™!, i1 1).
Hence, for all © € {0,1,2,--- ;m — 1} and for all s; € h(k?il,xi), we
have s;8s;11. We consider sg = uj and s,, = ug. It follows that, u; 5 us.
Then, the equivalence relation 5* is strongly regular.

Let p be a strongly regular relation. Since p is reflexive 81 C p.
Suppose that 8,1 C p and afB,b. Hence

{00 €0 (5% (o (kG )-).

There exist u,v € h <g?r;i1)1’ h <g?n;i2)1, h (g?n;ig)l, -, h (g?{l,m) )))
such that a € h (g’f_l, u) and b€ h (g?_l,v). We have uf3,,_1v and ac-
cording to the hypothesis, we obtain upv. Since p is strongly regular, it
follows that apb. Hence, 3,, C p. Therefore, 8* C p. O

Definition 3.16. Let X be a left G-set. Then, 5* is called fundamental
relation on X and the set of all equivalence classes [X : 3] is called the
fundamental G-set.

Definition 3.17. Let G be an n-ary semihypergroup with scalar identity
and X be a left G-set. Then, we define

a/b={xe€eX:ac h(e(n72)7b7 z)},
where a € X and b € G.

Definition 3.18. Let G be an n-ary semihypergroup with scalar identity
and X be a left G-set. Then, (X, h) is called a join space if the following
condition holds for all a,b € X and all ¢,d € G:

a/enb/d#0 = hEe™ 2 a)nh(Ee™ Y, b) £ 0.

Definition 3.19. Let G be an n-ary semihypergroup with scalar identity
and a left G-set X be join space. Then, we define the following relation
on X:

vJay <= h(e™ 2 G, z) N h(e™ 2 G, y) £ 0.
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Theorem 3.20. Let G be an n-ary semihypergroup with scalar identity
and a left G-set X be join space. Then, the relation Jg is an equivalence
relation on X and the equivalence class of an element a € X 1is as follows:

Ja(a) = h(e™ 2 G a)/G.

Proof. It’s obvious that Jg is reflexive and symmetric. Now we prove
that Jg is transitive: Suppose that a.Jgb and bJge. Hence, h(e™~2), G, a)N
h(e=2 G,b) # 0 and h(e™ 2 G,b) N k(e 2, G,c) # 0. There
exists di € h(e™ 2, G,a) N h(e™ 2 G,b) and dy € h(e™ 2 ,G,b) N
h(e"=2),G,c). We have

dgeG:dyeh(e™? gb) —bed/gCh(e™? G, a)/G,

39 € G:dych(e™? g b) —bedy/d Ch(e™?,G0)/G.

Hence,

h(e™2 G a) /G (e, G, e) /G 0,

h(e™ 2 G a) N h(e™ 2, G, c) £ 0,
which completes the proof. O

Definition 3.21. Let X be a left G-set and A be a non-empty subset
of X. Then, we say that A is a complete part of X if for any non-zero
natural number m and g;; € G, where 1 <7 <m, 1 <j <n—1and
x € X, the following implication holds:

Anh (g;anl’h (g(nn;il)l’h (g?g;)l? o h (gt x) ))) + () =

B (gnt b (gt b (gn 7y ok (gl he) ) ) € A

If B is a subset of X, denote by C(B) the complete closure of B,
which is the smallest complete part of X that contains B.
Let K1(A) = A and for all n > 1, we define
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Kni1(A) = {y e X: Elgfnjl,g?rgil)l, ...,g?fl eG,xe X,

yeh (gmlla h (g?n:il)l,h (gzly;iz)p b (g?l_l,m) ))) )
Kol A) 0k (g (g 1o b (9 oy ok (g 2) ) ) ) # 0
Also, we define K (A) = 51 Kn(A).

Theorem 3.22. Let X be a left G-set and A be a non-empty subset of
X. Then, C(A) = K(A).

Proof. Suppose that
K(A) 0k (g (g0t h (g ko o (g )+ ) )) 0.
Then, there exists n > 1 such that
Ka(A) 0k (gt b (gt iy b (9 b (g he) -+ )) ) #0.
This means that
B (gt h (gt h (90 o+ B (g1 0) ) ) ) € Kaa(A) € K(A).

Hence, K(A) is a complete part. Now, if A C B and B is a complete
part of X, then we show that K(A) C B. We have K;(A) = AC B
and suppose that K,(A) € B. We check that K,;1(A) C B. Let
z € Kp+1(A). Then, there exists a hyperproduct

h(gpl h( Iip- 1)1”1(9&112)1"" ’h(g?fl’m)'”)»’

such that
2ch (9;7?1’ h (97;:11)1”1 (98;_12)1, eh(gh ) ))) '

Hence,

Bmh(gpl h(g(p 1)1,h<g&112)1,..- ’h(g?l_l’x)"'») #0.
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Since B is a complete part, we obtain

h(gpr b (a5 (g oy o (g ) ) ) € B.

We obtain z € B. Therefore, K(A) is a smallest complete part contains
A. This implies that C(A) = K(A). O

Proposition 3.23. Let X be a left G-set and x be an arbitrary element
of X. Then,

(1) For all n > 2, we have K, (Ka(z)) = Knt1(z),
(2) v € K,(y) <=y € K,(x).

Proof. (1) We proof this proposition by induction. We have

KQ(KQ(ZL’)) = {y c X 3931_1,9&_,11)1’ "'>g?1_1 €aq,

YEh (gg;ll)l,h (ga;lg)y s h (9?1_1733))>

Ka(2) N0 (g0 ) b (g w)) # 0} = Ks(a).

(
Suppose that K,_1(K2(z)) = K, (z). Then,

Kn(KQ(ZU)) = {Z € X: aggflagzlpill)lv "'ag?fl €aG,

z€h (9&111)1’ h (9&112)7 e h (g?fl,x))> )

K(n—l)(K2(x)) Nh (g(;;_ll)p h <gg;_12)a ey h (g?fl’ .T))) 7é ®} = K(n-l—l)(x)

(2)We check the equivalence by induction. For n = 2, we have
S K2(y) = {Z e X: ggflag&:ll)lv “"9111171 c G,t cx
Zeh <9?P—1)1’h (gr;;_Q)p t 7h (g?l 7t) .. ))

Ki(y) Nk (9&:11)17h <972112)17 k(g )) # (Z)}.
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Hence, {y,z} C h< 9 1)1,h<g& 12)1, . ,h(g?l_l,t)-n)). This im-

plies that y € Ka(z). Let x € K(,_)(y) if and only ify € Kgp—y)(z). If

r € K,(y), then there ex1stsh(g& 1)1,h( I 2)1 . ,h(g?l_l,t)---»

such that z € h ( 9o 1)17h (g&_IQ)l - h (911 ) )) and

h (9&111>1’ h (9&112)1, (g ) )) N Kp-1)(y) # 0.

Hence, there exists v € X such that

vEh <g&111)1,h ( ? 12)1 ’ 7h' (9?1_1715) ' >> mK(n—l)(y)
Also,
Ks(x) = {z eX: ggfl,gg:_ll)l, ...,g?fl eG,teX,
z€h <gnp_,11)17h (g?p_,lg)p e 7h (g?l_lat) o ))

K@) 0 (g8, 0o (9 e o (08 100) ) ) # 0}

By definition Ks(x) we have v € Ks(x). Also, by induction hypothesis
v € K(,,—1)(y) implies that y € K, _1)(v).

It follows that v € Ka(x) andy € K(,,_1)(v). Hence, y € K(,_1)(Ka()) =
K, (z). Similarly, we obtain the converse implication. [

Corollary 3.24. Let X be a left G-set. Then, the following relation s
an equivalence:

zK y<= dIn>1: ze€ Ky(y).

Theorem 3.25. Let X be a left G-set. Then, the equivalence relation
K and B* are coincide.

Proof. Suppose that z,y € X and xfy. This implies that

{:L‘,y}gh(gpl h((p o ’h(g?fl,l’)"'>>,

for some g;; € G, where 1 <7 <pand 1 <j <n — 1. This implies that
x € Ky(y) € K(y). Hence, 5 C K whence 8* C K. Now, if we have
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xKy and z # y, then there exists n > 1 such that xK,y, which means
that there exists

such that

Let

A O SR I U O R ) Iak Ak

Then, xfBz1. Thus, 21 € K,(y). In the same way, after a finite number
of steps, we obtain that there exist x,_1 and xz,, such that x,_108x, and
Ty € Ky_(n—1)(y) = {y}. Therefore, z3"y. O

Proposition 3.26. Let X and Y be left G-sets and o : X — Y be a
G-map. Then, a map & : [X : §*] — [Y : B*], defined by a(B*(z)) =
B*(a(x)) is a G-map.

Proof. Suppose that §*(a) = pB*(b), where a,b € X. Then, there
exist 1,29, - ,x, € X such that ;1 = a and z,, = b and z;6x;11, for
1 <% <n—1. This implies that

{xi,xiﬂ} Ch (gm 1,h ( ( 71)1’ h (98;172)1’ - h (g?f1>$) .. ))) ,
where z € X, m; € N and gy, 1 € G. Since « is a G-map, we have
{az:), @)} € b (gt (gl b (g a(@) - ).

This implies that 8*(a(a)) = 5*(«(b)) and @ is well-defined. Also, for
every f*(z) € [X : f*] and ¢1,92, - ,gn—1 € G, we have

a(h (g7 8% (@) =a{p ) :teh(gr o)}
—{5* a(t)) : teh(g’f 1,x)}

= {B*(a) a=qat), te h(g'{l_l,x)}
{67(a) rach(gi " al2)}

Therefore, the map & is a G-map. O
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4 Direct limit of (G, H)-sets

Let (I, <) be a partially ordered set and {X; : i € I} be a collection of
(G, H)-sets, where G and H be n-ary semihypergroups. Also, for every
i,j € I such that ¢ < j, there are (G, H)-maps «a;; : X; — X; such
that

(1) iz = Ix;,
(2) Otz‘j o ajk = k-

Then, we say that (X, oj)ijer is a direct system of (G, H)-sets.

A (G, H)-set X is called a direct limit of (X, cj)i jer if there exists
(G, H)-maps B; : X; — X such that for all i < j, B0, = ;. Also, if
there exists a (G, H)-set Y with the property that there exists (G, H)-
maps ; : X; — Y such that «; o aj; = 75, where i < j, then there is a
unique (G, H)-map § : X — Y such that 6 o 8; = ~;, for every i € I.
We write lim;e; X; = X.

Theorem 4.1. Let (X;, a;j)ijer be a direct system. Then, the direct
limit exists and is unique up to isomorphism.

Proof. Suppose that (Xj, ;)i jer is a direct system. Then, there is
no loss of generality in supposing that the sets X;(i € I) are pairwise
disjoint. Let Z be the union of all the sets X;. Then, Z is a (G, H)-set
in an obvious way. We define

p=1{(zi,yj) : i € Xy, y; = a5(25), 4,5 €1, i < j},

and p* be an equivalence relation generated by p. Let z;py; and g?il €
G. Then, a;j(x;) = y;. This implies that

h(gh yi) = h(g) ™t aij(ai)) = aij(h(g] ™, ).

Hence, for every b € h(g} ™', y;) there exists a € h(g]™ ', ;) such that
a;j(a) = b. Thus, apb. Also, xp*y implies that there exist 1, x2, ...,z €
Z such that z;px;1+1. Hence, h(g?_l,a:i)ﬁh(g?_l,:ciﬂ) implies that

h(g’f‘l,xi)Eh(gf’_l,le). We have a (G, H)-map 3; : X; — [Z : p*]
defined by B;(z;) = p*(x;). Then, B;(ay;(z;)) = p*(auj(zi)) = p*(zi) =
Bi(x;), for every x; € X; and so fj o a;j = oy If Y is a (G, H)-set and



Direct limit and tensor product for left(right) G-sets on hypergroups 19

vi : X; — Y be G-maps such that v;jo;; = ;, for each 4,5 € I, ¢ < j,
then we have a (G, H)-map ¢ : Z = U;erX; into Y such that ¢(x;) =
vi(z;), where xz; € X; and i € I. Also,

p(aij(mi)) = vj(ij(2i) = vi(wi) = @)

Hence, there exists a (G, H)-map w : [Z : p*| — Y defined by w(p*(x;)) =
vi(z;). Moreover, w o B;(x;) = w(p*(x;)) = 7vi(z;), for all z; € X;. Fi-
nally, the (G, H)-map w is unique: If wy is another (G, H)-map with the
same properties, then for all z; € X; we have

w1(p™ () = wi(Bi(ws)) = 7i(z:) = w(p™(wi))-

Hence w = wi. Let X and Y be direct limit of the direct system
(X, @ij)ijer- Then, we have a unique (G, H)-map wi; : X — Y and
wo : Y — X such that B;ow; = ; and ~y;ows = ;. Hence ;0wiowy = B;
and 7; o ws owy = ;. This implies that w; o wy = I'd and wy o wy = Id.
Therefore, the direct limit is unique up to isomorphism. O

Theorem 4.2. Let (X;, a;j)ijer be a direct system of left G-subsets of
X, G be a commutative n-ary semihypergroup and B* be a fundamental
relation on X. Then, ([X; : 5*],@ij)ijer is a direct system of [X : B*].
Also, limicr[X; : B*] = [limier X : B*].

Proof. Suppose that (X;, a;j)i jer is a direct system and o : X; — X
be (G, G)-maps for i < j. By Proposition 3.26, ay; : [X; : ] — [ X :
B*] are (G, G)-maps, where i,j € I and ¢ < j. Also,

aii (B (z)) = B (ui(x)) = B* (),
where §*(z) € [X; : f*] and
Qij(Qjk (B (7))
*g%‘ o ajp(x))

¥
B*(cvir())
aix(B*(z))

aigj 0 (B (x) )
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where 8*(x) € [X; : B*]. Hence, ([X;, 8%], Q)i er is a direct system.

Let X' be the direct limit of the direct system (Xj, ;)i jer. Then,
a;j : X; — Xj and o; : X; — X’ such that o o ajj = 0;. We define
0 ¢ [ Xi: B — [ X2 B*] by 6i(8*(xi)) = B8*(0i(x;)), where z; € X;.
By Proposition 3.26, o; are well-defined and (G,G)-maps. Also, the
maps a;; ¢ [ X; @ f*] — [X; : B*] are well-defined and (G, G)-maps.
Thus,

aj 0 (5" (2:)) = 67 (0 0 aij(wi)) = B*(oi(wi)) = ai (B (24))-

Let T be an another (G, G)-set and ; : X; — T be (G, G)-maps such
that v; 0 a;; = ;. Then, 7; o &;; = ;. Hence, there exists a unique
(G,G)-map ¢ : X' — T such that J o 0; = ;. By Proposition 3.26,
6:[X": ] — [T': B*] is a (G, G)-map and easy to see that § 0 5; = ;.
Now, ¢ is unique: R

If 61 is another (G, G)-map with the same properties of d, then

01(6:(B* (1)) = B*(01 0 ai(wy))
= [*(6 0 oi(i))
— 5o 6i(8" (@)
This completes the proof. [l

5 Tensor product

In this section, we generalize the concept of tensor product of n-ary
semihypergroups as a generalization of semigroups|!2].

Let X, Y and Z be (G1, G2)-set, (G2, G3)-set and (G1, G3)-set,respectively.
Then, we know that X x Y is a (G1,G3)-set. We say that a map
p: X xY — Zis called bimap if for all z € X, g?_l € Gy and
y €Y, we have

® (hl(xag?_1)>y) =@ (.%', hQ(g?_lvy)) .

A pair (P, ) consists of a (G1,G3)-set P and a bimap ¢ : X XY —
P will be called a tensor product of X and Y over Gs if for every (G1, G3)-

set Z and every bimapiﬁ : X XY — Z, there exists a unique bimap
B : P — Z such that Soy = £.
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Suppose that p* is the equivalence relation on X x Y generated by
the relation

p= {((tlvy) ’ (l’,tQ)),IE eX,ye Y».g?il € G27t1 =M (xvg?il) yla = h2(g?71)y)} :

where g’f_l € (G5 are scalar elements. This means that for every x € X
and y € Y we have | by (:B,g?il) |=1and | ha(g7 !, y) |= 1. We denote
a typical element p*(z,y) of [X x Y : p*] by x ® y and we define X ® Y
to be [X x Y : p*]. By definition of p* we immediately have that

h(z, gt ) @y =2 ha(g) 1, y).

Example 5.1. Let G be an commutative n-ary semihypergroup and X
be a non-empty set. Then, X is a left G-set as follows:

h:Gmlx X — P*(X)
(9711_17 l‘) — {.’E}
Hence for every z,y € X, we have p*(z,y) = {(z,y)}. Also, if we define
h(g?_l,:c) = X, then we obtain p*(z,y) = X x X.

Example 5.2. Let G = {aj,a9,a3} be a canonical hypergroup by fol-
lowing hyperoperation and X = G. Then, X is a left G-set as follows:

a1 a2 a3
ai ai ag as
az | as as {a1,a2,a3}
as as {ala as, aS} as

hiGxX — PHX)
(9,2) — g tag

Hence [X xY : p*] =X x Y.

Example 5.3. Let (G, +) be a canonical hypergroup and N be a non-
zero subcanonical hypergroup of G. Then, we define an equivalence
relation N* on G as follows:

Ny < (z —y) NN # (),
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where z,y € G. The set of all equivalence classes G/N* = {N*(z) : z €
G} is a left G-set as follows:

h:GxG/N* — P*(G/N*)
(9, N*(x)) — {N*(t):t € g+ x}.

Indeed,
h(g1, h(g2, N*(z))) = {h(g1,N*(t)) : N*(t) € h(ga, N*(x))}
={h(g1, N*(t)) : t € g2 +u}
= {N*(t'): t/€91+tcg1+(g2+l‘) = (91 + g2) + =}
= {N*(t') : t' € (g1 + g2) + =}

= h(g1 + g2, N*(x)).

Also,
h(0, N*(z)) = {N*(t) : t € 0+ x} = N*(x).

Let g be a scalar element of G. Then, for every N*(z) € G/N*, we have
| h(g, N*(x)) |= 1. We claim, g = 0. Let g # 0. Then, | h(g, N*(0)) |=
1. We have | N*(g) |= 1. Since g € N*(g) and for every a € g+ N, a €
N*(g), we have a = g. This implies that N = {0} which is contradiction.
Thus, the only scalar element of G is {0}. Therefore,

G/N*@G/N* ={p"(N*(g1),N*(92)) : 1,92 € G}
={(N*(91), N*(g92) : 91,92 € G}
=G/N* x G/N*.

Proposition 5.4. Let X andY be (G1,G2)- and (G2, G3)- sets, respec-
tively, then T1 ®y1 = T2 Qyo if and only if there em’st a1,02,...,0n € X,
bi,ba,....,bp_1 € Y and scalar elements tﬁ , Le @y where 1<i<
n—1and1<j<n such that

_]1

z1 = hy (a1, iy 1) )

hy (al,t" 1) =M (a27831 1) )
h (a’htn 1) = hl (ai+178n2‘:_11)1) )

h1 <an—lat?n_,11)1> =M ($2’ Zl 1) :
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ha (si1tun) = he (177 b1)
ho (shit,b1) = ho (th 1 ba)
hQ(S?ﬂ_labn—l) = Y2,

Proof. Suppose that we have given sequence of equivalence equations.
Then,

r1@y1=hi (a1, 877 ) @y1 = a1 @ ha(ty yn) = hi(an iy @ m
= hy (ag, s5 ") @y

=22 ® ho(s!'7 ' bn1)
= T2 ® Yy2.

Conversely, suppose that 1 ®y; = roa®y2. Hence there is a sequence

<p17 h1)7 (p27 h2)7 ceey (p’m hn) SUCh that ([Bl: yl) - <p17 h1)7(pn7 hn) - (1.27 y2)
and ((pi, hi), (Dit1,hit1)) € p, i =1,--- ;n — 1. By the definition p, we
have the given sequence of equations. This completes the proof. O

Proposition 5.5. Let X and Y be (G1,G2)-set and (G2, G3)-set, re-
spectively. Then, X @ Y is a (G1,G3)-set.

Proof. Since X and Y are (G1,G2)- and (G2, G3)-sets, respectively, by
definition

hi: X x GEL— PY(X),  h GV x X — PH(X),
hy: GR L XY — PHY),  hy: Y x Gt — P(Y).
We define
ho (x ® vy, 5?71) =r® h/2 (y, s’f*l) ,
hi (KL z®y) = hy (K71 z) @y,

where s’f*l € Gs, k‘?il eGiandxe X,yeY.
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Suppose that 1 ® y1 = 2 ® y2. By the Proposition 5.4, we have

1 =hi (a1, s5Y),
hi (an,ti7t) =M (a2, 857")

hi (ai, 651 =M (ai+1,8&111)1> ;
h1 <an_1,t?;_11)1> =h (3727321—1) )

ho (Tt ) = hae (87101,

ho (5173 01) = ha (t517",02)

ha (8?1_1, bi—1) =hs (t?l_l, bi)

ha (8?7:1)1, bn—2> : ha (t?n_fl)l, bn—l) :
ho(sit bno1) =y,

where a1, ao, ...,a, € X, b1,ba,....,b,_1 € Y and t?l_l,s?fl € Go where
1<i<n-—1and 1< j<n. This implies that

, 1 hll (k?ilﬂfl)
hy (kY™ b (an, 7))

By (K (i)
L (s )

7 e 67)) = (k7 (0,577

h/l (k?_la hy <an—17t7(1n_—11)1)> : hll (k?_17h1 (x27521_1)) :

Thus,
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hy (hl (k » n— 1) t?ril)l) : ha (hll (]‘C?_I’@) 7321_1) .

This implies that h,1 (k’ffl,xl) Ry = h/1 (k:?*l,xg) ® yo and the map
hy is well-defined. We can see that X ® Y is a left G;-set by hi. In
the same way, X ® Y is a right Gs-set by the map ho. Also, for every
rRYyeX®Y, k?_l € G1 and s’f_l € Gy

Bo (R (2 00) 517 = o (b (1 2) @ 9, 547)

= hy

ﬁll (kn ! )®h2(y7 1 1)

= hy (K}~ Uy (x@y,sl D).
Therefore, X ® Y is a (G1,G3)-set. This completes the proof. [

Definition 5.6. Let X and Y be (G1,G2)- and (G2, G3)-sets, respec-
tively. We defineamap 7: X XY — X QY with n(z,y) =2z ®y. It’s
easy to see that 7 is a bimap and is called canonical bimap.

Theorem 5.7. Let X and Y be (G1,G2)- and (Ga,G3)-sets, respec-
tively. Then, (X ® Y, m) is a tensor product of X and Y over Gj.

Proof. Suppose that Z is a (G1,Gs)-set and 8 : X XY — Z is a
bimap. We define §: X ® Y — Z by

Blz@y) = B(x,y),

where z € X and y € Y. Let 1 ® y1 = x2 ® y2. Then, by Proposition
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5.4, we have

B(x1,y1) = B(ha (a1, s77Y) sy1) = Blar, ha (siy 1))
Blax, ho (7', b1)
B(hy(ar, ti7 "), by)

; ﬂ(xg, hQ(S?le bn—l))
= B(z2,y2).

Hence, (21 ® y1) = B(x2 ® y2). This implies that 3 is well-defined. It
is now routine to establish that § is bimap and S o7 = 8. Moreover, 3
is unique with respect to these properties. O

Proposition 5.8. Let X and Y be left G1- and right Go- sets, respec-
tively. Then, the tensor product of them is unique up to isomorphism

Proof. Suppose that (P, @Z)) and (P',1") are tensor product of X and
Y. Then, we find a umque w P — . P’ and w P’ — P such that

o 1/1 ¢ and ¢ oz/J 1/) Hence, 1o 1/} oq/) 1 and by the uniqueness
property, we have v’ o 1/1 = Id. In the same way, w ' = Id and so

P = P'. This completes the proof. O
Let G1 and G2 be n-ary semihypergroups. Then, a map ¢ : G; —
G4 is called morphism, when

o(f(91,92, - 9n)) = f(p(g1),0(g2), -, £(gn)),

where g7 € G;. When G; and Gy are n- ary semihypergroups with
identities elements, p(e1) = es.

Definition 5.9. Let H be an n-ary sub semihypergroup of G and g € G.
Then, we say that H dominates g, when for any n-ary subsemigroup T
and all morphisms @1, @2 : G — T, the following implication holds

Y he H, pi1(h) =pa(h) = ¢1(9) = ¢2(9).

More informally, H dominates ¢ if any two morphisms of G that
coincide on elements of H, coincide also on g. The set of elements
dominated by H is called dominion of H in G and is written Dom g (G).



Direct limit and tensor product for left(right) G-sets on hypergroups 27

It is clear that H C Dompy(G). When G is a n-ary semigroup, Dom g (G)
is an n-ary subsemigroup of G. Indeed, suppose that ¢1,92,...,9n €
Domp(G) and morphisms ¢, 2 : G — T such that ¢i(h) = @a(h),
for all h € H. Hence, v1(g;) = v2(g:), for 1 < i < n. Hence,

e1(f(91,92,-.9n)) = f(e1(91), p1(92)---01(gn))
= f(p2(91), p2(92)---p2(gn))
= @2(f(91,92,--,9n))-

Theorem 5.10. Let H be an n-ary subsemihypergroup of G, g € G,
which G has identity element and g ® e = e ® g. Then, g € Domg(G).

Proof. Suppose that g®e = e® g and we have an n-ary semihypergroup
T such that ¢1,p9 : G — T are morphisms. Let ¢1(h) = ¢2(h), for
every h € H. Then, T is an (H, H)-set if we define
h:H" 'xT —T
R — R"Le)) t e e, ... €),
(h™,1) fa(e1(f1(h1™"€)) )
n—2
K :TxH'"™' —T
(t,h77Y) = fat, o1 (fi(hTe)) e e, e).
2
e

We define ¢ : G x G — T as follows

(91,92) — fa(p1(g1), v2(g2), €, ¢, ..., €).

n—2

Hence, ¢ is an (H, H)-map and is even bimap. Indeed,

O(filg, BT, 92) = faler(filgr, hE7Y), 2(g2) es€, .o €)
n—2

= fa(fa(w1(g1), p1(h1), -+, p1(hn-1)), p2(g2), €, €, ..., €)

n—2
= fa(fa(e1(g1)s p2(h1), -+ s 2(hn-1)), p2(g2), €, €, ...,
n—2
= f2(§01(gl)1f2(902(h1)7"' a(p2(hn—1)7§02(92))7e7€7"'7
———

n—2

=Y(g1, fo(R7 7, 92)).

)
)
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It follows that there is amap ¥ : G® G — T

(91 ® g2) — ¥(g1, 92),

for every g1 ® go € G ® G. Since g ® e = e ® g, we have

901(9) = fQ(QOl(g)’SDZ(e)veve"'ve) = E(g@e) = @(6(89)
f2(901(€)a902(9)?6767'“76)
p2(9)-

This completes the proof. O

Let X1, Xo and X3 be left G-sets, ¢1 : X1 — Xo, 9 : X1 — X3,
Y1+ Xo — X and 9 : X3 — X be morphisms such that 1 o 1 =
g 0 @o. If there exist a left G-set X' and morphisms 1//1 c Xy — X
and @ZJIQ : X3 — X' such that 1/;'1 o = w; o 9, then there exists a
unique morphism w : X —» X' such that

wot =1y, wohy =y

Hence, we say that [X;, ¢;,¢,], 1 <@ <3,1 <5 <21<r<2is
a push out system. We note that X = [Ug’zl X; : p*] of the disjoint
of X1, X, X3, where p* is the congruence relation generated by the
following relation:

x1 pre <= 1w € X7 and z9 = p1(x1) or xy = pa(z1).
The map ¢; : Xo — X and ¢3 : X3 — X,

Yi(ze) = p(x2), 2(x3) = p*(73).

Let x5 € X3 and x3 € X3 and ¥1(z2) = 2(x3). Then, xo € Imep;.
Indeed, We have p*(z2) = p*(x3). This implies that there are by, ba, ..., by,
such that by = 9 and by = x3 and (b;, bi+1) € p. Such a sequence cannot
even unless z2 € Imyp;.

Definition 5.11. Let H be an n-ary subsemihypergroup of n-ary semi-
hypergroup G with identity. We say that H has the extension property
in G if for every left H-set X and right H-set Y the map X x Y —
X®GERY defined by r ® y — =z ® e ® y is one to one.



Direct limit and tensor product for left(right) G-sets on hypergroups 29

Theorem 5.12. Let H be an n-ary subsemihypergroup of an n-ary semi-
hypergroup G with identity and H has the extension property in G and
¢ : X — Y be a morphism and y @ e = p(x) ® g in Y ® G. Then,
y € Imep.

Proof. Suppose that [X, X,Y,Y, P] is a push out system, where @1, 2 :
X —Y,¢1,92:Y — P. Hence [ X®G, X®G,Y®G,Y®G, PG,
where )1 QT : X QG —Y G, 021 : X G — Y RG, 1 R1:
Y®RG—PRGand 2 ®1:Y ® G — P ® G is a push out system.
Let y® e = p(r) ® g in Y ® G. Then,

Vi) @e= (1 @)(y®e) = (1@ I)(p(x)®@g) =t1p(z)@g
=1p(x) ®g
= (2@ 1I)(p(r) ®9)
=@ )(y®e)
=a2(y) ®e.

By the extension property the map y — y® e from Y to Y ® H is one
to one. Hence 91 (y) = 12(y). This implies that y € I'me. O

Theorem 5.13. Let X, Y and Z be left G-sets. Then, X ® Y and
Mor(Y, Z) are left G-sets and

Mor(X®Y,Z)= Mor(X,Mor(Y, Z)).

Proof. Suppose that g1,92,...,9n—1 € G, h1 : G" ' x X — X, hy :
G"'xY — Y, h3:G" ' xZ — Z and a € Mor(Y, Z). We define
h:G"v Y x Mor(Y,Z) — Mor(Y, Z) by

hgi™h o) (2) = hs (97, a(z)),
where x € Y. Hence,
h(f(g1), o272 a) (@) = hs (f(g]), 9272, a(z))
= ha(gP 1, he(g2"2, ()
= h(g7 ™" (g2 % a)) (@),

for every x € Y. This implies that Mor(Y,Z) is a left G-set. By
Proposition 5.5, X ® Y is a left G-set.
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Let f € Mor(X ®Y,Z). Then, f is a G-map. Hence,
f <h' (6 ez @ y)) =hs (o771 fz@y)) .

for every g?_l cGandzrz®ye X®Y.
For every z € X, we define f,(y) = f(z ® y). Hence f, € Mor(Y,Z).
Indeed, for every g7 ! € G we have

felho (977 y) =

We define
v:Mor(X®Y,Z) — Mor(X,Mor(Y,Z))

f — Tf,
where Ty : X — Mor(Y,Z by Ty(x) = f,. Hence v is a morphism.
Indeed, for every g7 ' € G, 2 € X,y €Y and f € Mor(X ® Y, Z),
¥ (g™ D) (@@ y) = Ty pl@@y) =higi™, Naly)
= h3 (91 _1af(37 ® y))
= h3 (glilafx(y))
=h(gi9(f)) (z@y).

Let f € Mor(X,Mor(Y,Z)) and T : G ' x Mor(Y,Z) — Mor(Y, Z).
Then, for every x € X, f(z) is a morphism. We define

¢ Mor(X,Mor(Y,Z)) — Mor(X®Y,Z)
f—1

where f(z ®y) = (f(z))(y). We have

o (Mgt f) (@) =h (g7 ),
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where

h(gi™ f)@ey) = (" ANy =T (" @) )
=T (g7 ", (f(2)(v))
=T(g7 " (p()(@)(w),

for every x € X and y € Y. Hence ¢ is a morphism. Moreover, for every
feMor(X®Y,Z)andz®@ye XY,

(po)()zey) =pW(f)zey) =T (z)y) = foly) = flz©y)

Hence potp = Iyror(xgy,z)- On the other hand, for every f € Mor(X, Mor(Y, Z)),

(W op)(f) =v(e(f) =v(f) =T5

such that TF € Mor(X ®Y,Z) and for every s @y € X ® Y, we have

Tz ®y) = f(z@y) = (f(2)(y).

Hence,
Yo = Injor(X,Mor(Y,2))-

This completes the proof. Il

Theorem 5.14. Let (X;, ayj)ijer be a direct system of left (G, H)-sets
and X be a right G-set. Then, (X; ® X, 0j)i jer is a direct system and
limiej(Xi ® X) = (limieri) ® X.

Proof. Suppose that a;; : X; — Xj and o : X; x X — X; @ X
defined by @;;(zs, ) = auj(x;) ® x. Hence,

aij(h(a:i,t’ffl), x) = h(xi,t?71)®a: = xi®h(t?71,x) = oy, (i, h(trffl,x)).

Then, @;; is a bimap. Thus, there is a;; : X; ® X — X; ® X such that
aij(z; ® ) = oyj(z;) ® @, where z; € X; and € X. Also,

Qjk 0 Qi (2 ® ) = g 0 () @ = g () @ © = () ® ).

and
aii(r; @ x) = Oéqjj(l'i) Rr=x;x.



32

N. Rakhsh Khorshid and S. Ostadhadi-Dehkordi

Letiﬁi X, — limieri and Bi X, x X — limieIXi ® X deﬁl}\ed
by B;(t,x) = Bi(t) ® x. Then, §; is a bimap. Thus, there exists j3; :
X; ® X — limjer X; ® X such that §;(t ® x) = Bi(t) ® «.

~

Bjo @iz ® x) = B(agj(z:) ® ) = Bi(;) ® & = Bi(w; @ ).

Let € X be a fixed element and o; : X; — X; ® X defined by
oi(x;)) = z; ®x and Y be a (G,H)-set and 7; : X; ® X — Y such
that 7 o &;;j = 7. Then, ;0 05 0 azj = 7; 0 0;. Thus, there exists
§ 1Y — lim;erX; such that § o v; 0 0y = f;. Therefore, v; 0 a;; = v
and limiE[(Xi ® X) = (limieri) ® X. ]

6 Conclusion

The study of homological concepts in the context of hypergroups theory
is a new research theory. This generalizes the existing research of these
concepts on hyperstructures, done especially in from a different point
of view [13, 18]. In the present paper, we have introduced and studied
left(right) G-sets on n- ary hypergroups and resent some examples. Also,
the various properties of these concept are emphasized. Moreover, we
have introduced and studied direct limit and tensor product of left(right)
G-sets on n-ary semihypergroups. A possible future study could be
devoted to the introduction and analysis of flat left(right) G-sets and
”Tor” functor.
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