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1 Introduction

Crossed modules and its applications play very important roles in cat-
egory theory, homotopy theory, homology and cohomology of groups,
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Algebra, k-theory and etc. Crossed modules were initially defined by
Whitehead [35] as a model for 2-types. Loday explored and gave the
new direction to the category of crossed modules by defining equivalent
category of cat1-groups in his work [31]. Norrie gave a good example
of crossed module such as actor crossed module in [32]. Conduché has
defined a 2-crossed module as a model for 3-types [17]. His unpublished
work determines that there exists an equivalence between the category
of crossed squares of groups and that of 2-crossed modules of groups.

In [7], Arvasi and Porter showed how to go form a simplicial alge-
bra to a 2-crossed module of algebras and back to a truncated form of
simplicial algebra, and the link between simplicial algebras and crossed
squares is explicitly given. The polygroup theory is a natural general-
ization of the group theory. In a group the composition of two elements
is an element, while in a polygroup the composition of two elements is a
set. Polygroups have been applied in many area, such as geometry, lat-
tices, combinatorics and color scheme. There exists a rich bibliography:
publications appeared within 2012 can be found in “Polygroup Theory
and Related Systems” by Davvaz [24]. This book contains the principal
definitions endowed with examples and the basic results of the theory.
In [25], Dehghani, Davvaz and Alp defined crossed polysquare and some
of its properties.

In this paper, we give a new application of crossed squares. This
application is so important because we use the notion of polygroup to
obtain crossed square. Therefore this application can be taught as a gen-
eralization of crossed square on groups. In the first two section of the
paper, we review some basic facts about crossed squares and polygroups
that underline the subsequent material. To define crossed polysquare,
we need the notion of polygroup action. Finally we consider a crossed
polysquare and by using the concept of fundamental relation, we obtain
a crossed square.

2 Crossed Squares

As an algebraic model of connected 3-types, the notion of 2-crossed
module was introduced by Conduché in [17], and these 2-crossed modules
are equivalent to simplicial groups with Moore complex of length 2.



On Crossed Polysquare Version of Homotopy Kernels 3

Crossed squares and quadratic modules are other algebraic models of
connected 3-types defined by Loday and Guin-Walery [27] and Baues [10]
respectively. Arvasi and Ulualan in [8] explored there relations among
2-crossed modules, quadratic modules, crossed squares and simplicial
groups, and the homotopy equivalences between these structures.

Definition 2.1. Let G be a group and Ω be a non-empty set. A binary
operator τ : G× Ω −→ Ω that satisfies the following axioms:

1. τ(gh, ω) = τ(g, τ(h, ω)), for all g, h ∈ G and ω ∈ Ω,

2. τ(e, ω) = ω, for all ω ∈ Ω.

For ω ∈ Ω and g ∈ G, we write gω := τ(g, ω).

Definition 2.2. A crossed module χ = (M,G, ∂, τ) consists of groups
M and G together with a homomorphism ∂ : M −→ G and a (left)
action τ : G×M −→M on M , satisfying the conditions:

1. ∂(gm) = g∂(m)g−1, for all m ∈M and g ∈ G,

2. ∂(m)m′ = mm′m−1, for all m,m′ ∈M .

The standard examples of crossed modules are inclusion M −→ G
of a normal subgroup M of G, the zero homomorphism M −→ G when
M is a G-module, and any surjection M −→ G with center central.

There is also an important topological example: if F −→ E −→ B is a
fibration sequence of pointed spaces, then the induced homomorphism
π1F −→ π1E of fundamental groups in naturally a crossed module [12].
To get more idea about category of crossed module we refer to read
[1, 2, 3, 5, 14, 28].

In [27], Loday and Guin-Walery introduced the notion of crossed
square as an algebraic model of connected 3-types.

Definition 2.3. A crossed square is a commutative diagram of groups

G1
p̄1

//

∂
��

Γ1

∂′

��

G0 p̄0

// Γ0
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together with actions of the group Γ0 on G1, Γ1 and G0 (and hence
actions of Γ1 on G1 and G0 via ∂′ and of G0 on G1 and Γ1 via p̄0.)
and a function h : Γ1 × G0 −→ G1, such that the following axioms are
satisfied:

(i) the maps p̄1, ∂ preserve the actions of Γ0. Furthermore with the
given actions the maps ∂′, p̄0 and ∂p̄0 = p̄0∂ are crossed modules;

(ii) p̄1h(β, g) = β gβ−1, ∂h(β, g) =β gg−1;

(iii) h(p̄1(α, g)) = α gα−1, h(β, ∂(α)) =β αα−1;

(iv) h(β1β2, g) =β1 h(β2, g)h(β, g), h(β, g1g2) = h(β, g1) g1h(β, g2);

(v) h(σβ,σ g) =σ h(β, g);

for all α ∈ G1, β, β1, β2 ∈ Γ1, g, g1, g2 ∈ G0 and σ ∈ Γ0.

Note that in these axioms a term such as βα is α acted on by β, and
so βα =∂′(β) α. It is a consequence of (i) that ∂,p̄1 are crossed modules.
Further, by (iv), h is normalized and by (iii), G0 acts trivially on Kerp̄1

and Γ1 acts trivially on Ker∂.

In [13, 31] exist some useful identities:

(a) β(gα)h(β, g) = h(β, g) g(βα);

(b) β1(g1h(β2, g2))h(β1, g1) = h(β1, g1) g1(β1h(β2, g2));

(c) h(p̄1h(β, g1), g2) = h(β, g1) g2h(β, g1)−1;

(d) h(β2, ∂h(β1, g)) =β2 h(β1, g)h(β1, g)−1;

(e) h(p̄1(α1), ∂(α2)) = α1α2α
−1
1 α−1

2 ;

(f) h(β1
g1β−1

1 ,β2 g2g
−1
2 ) = h(β1, g1)h(β2, g2)h(β1, g1)−1h(β2, g2)−1;

(g) βh(β−1, g) = h(β, g)−1 =g h(β, g−1);

(h) β(gh(β, g)) = h(β, g);

(i) h(p̄1(α1)β1, ∂(α2)g2)α2
g2α1 = α1

β1α2h(β1, g2);
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for all α, α1, α2 ∈ G1 and g, g1, g2 ∈ G0. The last three identities do not
appear in any text and they are deducted from the axiom (iv).

Definition 2.4. A morphism of crossed squares

G1
p̄1

//

∂
��

Γ1

∂′

��

G0 p̄0

// Γ0

Φ
//

G′1
p̄′1

//

∂̄
��

Γ′1

∂̄′

��

G′0 p̄′0

// Γ′0

consists of four group homomorphisms ΦG1 : G1 −→ G′1, ΦG0 : G0 −→
G′0, ΦΓ1 : Γ1 −→ Γ′1 and ΦΓ0 : Γ0 −→ Γ′0 such that the resulting cube of
group homomorphisms is commutative; ΦG1(h(β, g)) = h(ΦΓ1(β),ΦG0(g))
for every β ∈ Γ1, g ∈ G0; each of the homomorphisms ΦG1 , ΦG0 , ΦΓ1 is
ΦΓ0-equivariant.

Example 2.5. (a) Given a pair of normal subgroups N1, N2 of a
group G, we can form the following square:

N1 ∩N2
//

��

N1

��

N2
// G

in which each morphism is an inclusion crossed module and there
is a commutator map

h : N1 ×N2
// N1 ∩N2

(n1, n2) // [n1, n2]

.

This forms a crossed square of groups.

(b) [32] Let

G1
p̄1

//

∂
��

Γ1

∂′

��

G0 p̄0

// Γ0
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be a crossed square with a function h : Γ1 × G0 −→ G1. Then
〈p̄1, p̄0〉 is a morphism of crossed modules, and ∂′ : Γ1 −→ Γ0 acts
on ∂ : G1 −→ G0.

(c) [15] Crossed squares can be seen as crossed modules in the category
of crossed modules and they provide algebraic models of connected
3-types.

(d) [18] A 2-crossed module constructed from a crossed square

L
λ

//

λ′

��

M

µ

��

N ν
// P

as

L
(λ−1,λ′)

//M oN
µν

// P .

To get more idea about category of crossed square we refer to read
[6, 9, 11, 13, 18, 33].

3 Polygroups and polygroup action

Suppose that H is a nonempty set and P∗(H) is the set of all nonempty
subsets of H. Then, we can consider maps of the following type: fi :
H × H −→ P∗(H), where i ∈ {1, 2, . . . , n} and n is a positive inte-
ger. The maps fi are called (binary) hyperoperations. For all x, y of
H, fi(x, y) is called a (binary) hyperproduct of x and y. An algebraic
system (H, f1, . . . , fn) is called a (binary) hyperstructure. Usually n = 1
or n = 2. Under certain conditions, imposed to the maps fi, we obtain
the so-called semihypergroups, hypergroups, hyperrings or hyperfields.
Sometimes, external hyperoperations are considered, which are maps of
the following type: h : R ×H −→ P∗(H), where R 6= H. An example
of a hyperstructure, endowed both with an internal hyperoperation and
an external hyperoperation is the so-called hypermodule. Applications
of hypergroups appear in special subclasses like polygroups, that they
were studied by Comer [16], also see [20, 21, 22].
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Specially, Comer and Davvaz developed the algebraic theory for poly-
groups. A polygroups is a completely regular, reversible in itself multi-
group.

Definition 3.1. [16] A polygroup is a multi-valued system M = 〈P, ◦, e,
−1〉, with e ∈ P ,−1 : P −→ P , ◦ : P ×P −→ P∗(P ), where the following
axioms hold for all x, y, z in P :

1. (x ◦ y) ◦ z = x ◦ (y ◦ z),

2. e ◦ x = x ◦ e = x,

3. x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ z.

In the above definition, P∗(P ) is the set of all the non-empty subsets
of P , and if x ∈ P and A,B are non-empty subsets of P , then A ◦B =⋃
a∈A, b∈B

a ◦ b , x ◦ B = {x} ◦ B and A ◦ x = A ◦ {x}. The following

elementary facts about polygroups follow easily from the axiom: e ∈
x ◦ x−1 ∩ x−1 ◦ x, e−1 = e and (x−1)−1 = x. For further discussion of
polygroups, we refer to Davvaz’s book [21]. Many important examples of
polygroups are collected in [21] such as Double coset algebra,Prenowitz
algebra, Conjugacy class polygroups, Character polygroups, Extension
of polygroups, and Chromatic polygroups.

Example 3.2. Suppose that H is a subgroup of a group G. Define a
system G//H = 〈{HgH | g ∈ G}, ∗, H,−1 〉, where (HgH)−1 = Hg−1H
and

(Hg1H) ∗ (Hg2H) = {Hg1hg2H | h ∈ H}.
The algebra of double cosets G//H is a polygroup.

Lemma 3.3. [21] Every group is a polygroup.

If K is a non-empty subset of P , then K is called a subpolygroup of
P if e ∈ K and 〈K, ◦, e,−1 〉 is a polygroup. The subpolygroup N of P
is said to be normal in P if a−1 ◦ N ◦ a ⊆ N , for every a ∈ P . If N is
a normal subpolygroup of P , then 〈 PN , •, N,−1 〉 is a polygroup, where
N ◦ a •B ◦ b = {N ◦ c | c ∈ N ◦ a • b} and (N ◦ a)−1 = N ◦ a−1 [21].

There are several kinds of homomorphisms between polygroups [21].
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Definition 3.4. Let 〈P, ◦, e,−1 〉 and 〈P ′, ∗, e,−1 〉 be two polygroups. Let
Φ be a mapping from P into P ′ such that Φ(e) = e. Then Φ is called

1. an inclusion homomorphism if Φ(a◦b) ⊆ Φ(a)∗Φ(b), for all a, b ∈
P ,

2. a weak homomorphism if Φ(a◦b)∩Φ(a)∗Φ(b) 6= ∅, for all a, b ∈ P ,

3. a strong homomorphism if Φ(a ◦ b) = Φ(◦) ∗Φ(b), for all a, b ∈ P .

A strong homomorphism Φ is said to be an isomorphism if Φ is one
to one and onto. Two polygroups P and P ′ are said to be isomorphic if
there is an isomorphism from P onto P ′.

For the definition of crossed polysquare, we need the notion of poly-
group action.

Definition 3.5. [22] Let P = 〈P, ◦, e,−1 〉 be a polygroup and Ω be a
non-empty set. A map α : P × Ω −→ P∗(Ω), where α(p, ω) :=p ω is
called a (left) polygroupaction on Ω if the following axioms hold:

1. eω = ω,

2. h(pω) =h◦p ω, where pA =
⋃
a∈A

pa and Bω =
⋃
b∈B

bω for all A ⊆ Ω

and B ⊆ P ,

3.
⋃
ω∈Ω

pω = Ω,

4. for all p ∈ P , a ∈ pb⇒ b ∈ p−1
a.

Example 3.6. Suppose that 〈P, ◦, e,−1 〉 is a polygroup. Then, P acts on
itself by conjugation. Indeed if we consider the map α : P×P −→ P∗(P )
by α(p, x) = px := p ◦ x ◦ p−1, then

1. ex = x,

2. h(px) =h (p◦x◦p−1) = h◦p◦x◦p−1 ◦h−1 = (h◦p)◦x◦(h◦p)−1 =⋃
b∈h◦p

(b ◦ x ◦ b−1) =
⋃
b∈h◦p

bx = h◦px,
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3.
⋃
x∈P

px =
⋃
x∈P

p ◦ x ◦ p−1 = P ,

4. if a ∈ pb = p◦b◦p−1, then p ∈ a◦p◦b−1 and hence b−1 ∈ p−1◦a−1◦p.
This implies that b ∈ p−1 ◦ a ◦ p.

Now, we give the notion of crossed polysquares.

Definition 3.7. A crossed polysquares is a commutative diagram of
polygroups

P1
p̄1

//

∂
��

Γ1

∂′

��

P0 p̄0

// Γ0

together with polyactions of the polygroup Γ0 on P1, Γ1 and P0 (and
hence polyactions of Γ1 on P1 and P0 via ∂′ and of P0 on P1 and Γ1

via p̄0) and a function h : Γ1 × P0 −→ P∗(P1), such that the following
axioms are satiesfied:

1. the maps p̄1, ∂ preserve the polyactions of Γ0. Furthermore, with
the given polyactions the maps ∂′, p̄0 and ∂′p̄1 = p̄0∂ are crossed
polymodules;

2. p̄1h(β, p) = βpβ−1, ∂h(β, p) = βpp−1;

3. h(p̄1(α), p) = α pα−1, h(β, ∂(α)) = βαα−1;

4. h(β1β2, p) = β1h(β2, p)h(β1, p), h(β, p1p2) = h(β, p1) p1h(β, p2);

5. h(σβ,σ p) = σh(β, p);

for all α ∈ P1, β, β1, β2 ∈ Γ1, p, p1, p2 ∈ P0 and σ ∈ Γ0.

It is a consequence of (1) that ∂, p̄1 are crossed polymodules. Fur-
ther, by (4), h is normalized and by (3), P0 acts trivially on Kerp̄1 and
Γ1 acts trivially on Ker∂.

We have some useful identities:

(a) β(pα)h(β, p) = h(β, p) p(βα);
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(b) β1(p1h(β2, p2))h(β1, p1) = h(β1, p1) p1(β1h(β2, p2));

(c) h(p̄1h(β, p1), p2) = h(β, p1) p2h(β, p1)−1;

(d) h(β2, ∂h(β1, p)) = β2h(β1, p)h(β1, p)
−1;

(e) h(p̄1(α1), ∂(α2)) = α1α2α
−1
1 α−1

2 ;

(f) h(β1
p1β−1

1 ,β2 p2p
−1
2 ) = h(β1, p1)h(β2, p2)h(β1, p1)−1h(β2, p2)−1;

(g) βh(β−1, p) = h(β, p)−1 = ph(β, p−1);

(h) β(ph(β, p)) = h(β, p);

(i) h(p̄1(α1)β1, ∂(α2)p2)α2
p2α1 = α1

β1α2h(β1, p2);

for all α, α1, α2 ∈ P1 and p, p1, p2 ∈ P0.

Example 3.8. Given a pair of normal subpolygroups N1, N2 of a poly-
group P , we can form the following square:

N1 ∩N2
//

��

N1

��

N2 p̄0

// P

in which each morphism is an inclusion crossed polymodule and there is
a commutator map

h : N1 ×N2
// P∗(N1 ∩N2)

(n1, n2) // [n1, n2]

;

where [x, y] is {z | z ∈ xyx−1y−1}. This forms a crossed polysquare of
polygroups.

Example 3.9. If

P1
p̄1

//

∂
��

Γ1

∂′

��

P0 p̄0

// Γ0
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be a crossed polysquare with function h : Γ1 × P0 −→ P∗(P1), then
〈p̄1, p̄0〉 is a morphism of crossed polymodules, and ∂′ : Γ1 −→ Γ0 acts
on ∂ : P1 −→ P0.

Example 3.10. Let

P1
p̄1

//

∂
��

Γ1

∂′

��

P0 p̄0

// Γ0

be a crossed polysquare with a function h : Γ1×P0 −→ P∗(P1). Then we
can construct the semi-direct crossed polymodule and other one, given
by:

〈p̄1, p̄0〉 : P1 o P0 −→ Γ1 o Γ0.

The polyactions of P0 on P1 and of Γ0 on Γ1 are the natural polyactions
and the polyaction of Γ1 o Γ0 on P1 o P0 is defined by:

(β,σ)(α, p) = {(x, y) | x ∈∂′(β)σ αh(β,σ p), y ∈σ p}.

Theorem 3.11. Every crossed square is a crossed polysquare.

Proof. By using Lemma 3.3, the proof is straightforward. �

Definition 3.12. A morphism of crossed polysquares

P1
p̄1

//

∂
��

Γ1

∂′

��

P0 p̄0

// Γ0

Φ
//

P ′1
p̄′1

//

∂̄
��

Γ′1

∂̄′

��

P ′0 p̄′0

// Γ′0

consists of four strong homomorphisms Φ = 〈ΦP1 ,ΦP0 ,ΦΓ1 ,ΦΓ0〉,

ΦP1 : P1 −→ P ′1, ΦP0 : P0 −→ P ′0, ΦΓ1 : Γ1 −→ Γ′1, ΦΓ0 : Γ0 −→ Γ′0

such that the resulting cube of polygroup strong homomorphisms is
commutative; ΦP1(h(β, p)) = h(ΦΓ1(β),ΦP0(p)) for every β ∈ Γ1, p ∈
P0; each of the strong homomorphisms ΦP1, ΦP0, ΦΓ1 is ΦΓ0-equivariant.
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P1
Γ1

P0
Γ0

P ′
1

Γ′
1

P ′
0 Γ′

0

∂̄ ∂ ∂′
∂̄′

p̄1
′

p̄1

p̄0

p̄0
′

ΦΓ1

ΦΓ0

ΦP1

ΦP0

We say that Φ is an isomorphism if ΦP1 , ΦP0 , ΦΓ1 and ΦΓ0 are
isomorphisms. Similarly, we can defined monomorphism, epimorphism
and automorphism of crossed polysquares.

Crossed polysquares and their morphisms form a category that will
be denoted by CPS.

4 Crossed squares derived from crossed
polysquares

In this section, we consider a crossed polysquare and by using the con-
cept of fundamental relation, we obtain a crossed square.

Let 〈P, ◦, e,−1 〉 be a polygroup. We define the relation β∗P as the
smallest equivalence relation on P such that the quotient P

β∗P
, the set of

all equivalence classes, is a group. In this case β∗P is called the funda-
mental equivalence on P and P

β∗P
is called the fundamental group. The

product � in P
β∗P

is defined as follows:

β∗P (x)� β∗P (y) = β∗P (z), for all z ∈ β∗P (x) ◦ β∗P (y).

This relation is introduced by Koskas [29] and studied mainly by Corsin
[19], Leoreanu-Fotea [30] and Freni [26] concerning hypergroups, Vou-
giouklis [34] concerning Hν-groups, Davvaz concerning polygroups [23],
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and many others. We consider the relation βP as follows:

xβP y ⇐⇒ there exist z1, . . . , zn such that {x, y} ⊆ ◦
n∏
i=1

zi.

Freni in [26] proved that for hypergroups β = β∗. Since polygroups are
certain subclass of hypergroups, we have β∗P = βP . The kernel of the
canonical map φP : P −→ P

β∗P
is called the core of P and is denoted by

wP . Here we also denote by wP the unite of P
β∗P

. It is easy to prove that

the following statements: wP = β∗P (e) and β∗P (x)−1 = β∗P (x−1), for all
x ∈ P .

Lemma 4.1. [4] wP is a subpolygroup of P .

Lemma 4.2. [4] For every p ∈ P , p ◦ p−1 ⊆ wP .

Proposition 4.3. [4] Let 〈C, ∗, e,−1 〉 and 〈P, ◦, e,−1 〉 be two polygroups
and let ∂ : C −→ P be a strong homomorphism. Then, ∂ induces a
group homomorphisms D : C

β∗c
−→ P

β∗P
be setting

D(β∗C(c)) = β∗P (∂(c)), for all c ∈ C.

Definition 4.4. [4] We say the action of P on C is productive, if for all
c ∈ C and p ∈ P there exist c1, . . . , cn in C such that cp = c1 ∗ · · · ∗ cn.

Example 4.5. Suppose that 〈P, ◦, e,−1 〉 is a polygroup. Then, P acts
on itself if we define gx := x ◦ g−1 or gx := g ◦x, for all x, g ∈ P and the
action is productive.

Example 4.6. Suppose that 〈P, ◦, e,−1 〉 is a polygroup. Then, P acts
on itself by conjugation and the action is productive.

According [4], let 〈C, ∗, e,−1 〉 and 〈P, ◦, e,−1 〉 be two polygroups and
let α : P × C −→ P∗(C) be a productive action on C. We define the
map Ψ : P

β∗P
× P

β∗C
−→ P∗( Pβ∗C ) as usual manner:

Ψ(β∗P (p), β∗C(c)) = {β∗C(x) | x ∈
⋃

y ∈ β∗
C(c)

x ∈ β∗
P (p)

zy}.
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By definition of β∗C , since the action of P on C is productive, we conclude
that Ψ(β∗P (p), β∗C(c)) is singleton, i.e., we have

Ψ :
P

β∗P
× P

β∗C
−→ P

β∗C
, Ψ(β∗P (p), β∗C(c)) = β∗C(x), for all x ∈

⋃
y ∈ β∗

C(c)
x ∈ β∗

P (p)

zy

We denote Ψ(β∗P (p), β∗C(c)) =[β∗P (p)] [β∗C(c)].

Proposition 4.7. [4] Let 〈C, ∗, e,−1 〉 and 〈P, ◦, e,−1 〉 be two polygroups
and let α : P × C −→ P∗(C) be a productive action on C. Then, Ψ is
an action of the group P

β∗P
on the group P

β∗C
.

Example 4.8. Suppose that 〈P, ◦, e,−1 〉 is any polygroup. Then P
β∗P

is

a group. Suppose that Aut( P
β∗P

) its a group of automorphisms. There is

an obvious action α of Aut( P
β∗P

) on P
β∗P

, and a group homomorphism ∂ :
P
β∗P
−→ Aut( P

β∗P
) sending each β∗P (p) to the inner automorphism of con-

jugation by β∗P (p). These together a crossed module ( Pβ∗P
,Aut( P

β∗P
), ∂, α).

Theorem 4.9. [25] Let

P1
p̄1

//

∂
��

Γ1

∂′

��

P0 p̄0

// Γ0

Diagram (1)

be a crossed polysquare, such that the actions are productive. Then,

P1
β∗P1

Ψ
//

D
��

Γ1
β∗Γ1

D′

��
P0
β∗P0 Ψ′

// Γ0
β∗Γ0

is a crossed square with actions and function h̄ : Γ1
β∗Γ1

× P0
β∗P0

−→ P1
β∗P1

defined as following;
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(a) the action of Γ0
β∗Γ0

on P1
β∗P1

is induced by the polyaction of Γ0 on P1.

(b) the action of Γ0
β∗Γ0

on Γ1
β∗Γ1

is induced by the polyaction of Γ0 on Γ1.

(c) the action of Γ0
β∗Γ0

on P0
β∗P0

is induced by the polyaction of Γ0 on P0.

(d) the map h̄ : Γ1
β∗Γ1

× P0
β∗P0

−→ P1
β∗P1

is h̄(β∗Γ1
(γ1), β∗P0

(p0)) = β∗P1
(h(γ1, p0))

where the function h is given by the crossed polysquare structure
up.

Theorem 4.10. [25] Let

P1
p̄1

//

∂
��

Γ1

∂′

��

P0 p̄0

// Γ0

be a crossed polysquare, ΦP1, ΦP0, ΦΓ1 and ΦΓ0 be canonical maps. Then
Φ = 〈ΦP1 ,ΦP0 ,ΦΓ1 ,ΦΓ0) is a crossed polysquares morphism.

5 Crossed polysquare version of homotopy
kernels

There are two versions of the kernel of a morphisms of crossed polymod-
ule,

P1
φ

//

∂

��

P ′1

∂′

��

P0
Ψ

// P ′0

The strict version is introduced by Davvaz and Alp[4]. In this approach,
they considers crossed polymodule as the objects of a category CPM
and the kernel of the morphism 〈φ,Ψ〉 is ∂|Ker φ : Ker φ −→ Ker Ψ.

The homotopical version is analyzed, where the crossed polymodules
as the objects of a 2-category. The kernel is given by the homotopy fibre
over the unit object of morphism of categorical polygroups P (∂) −→
P (∂′).
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Definition 5.1. (Fiber hyperproduct) Let P1, P2 and Q be polygroups,
and let φ : P1 −→ Q and ψ : P2 −→ Q be homomorphisms. The fiber
hyperproduct of P1 and P2 over Q, also known as a pullback, is the
following subpolygroup of P1 × P2:

P1 ×Q P2 = {(p1, p2) | (p1, p2) ∈ P1 × P2, φ(p1) = ψ(p2)}.

If φ : P1 −→ Q and ψ : P2 −→ Q are epimorphisms, then this is a
subdirect product.

Example 5.2. Suppose that P1 = {e, a, b, c, d, f, g, h}, P2 = {e, x, y, z}
and Q = {e, t} are three polygroups with the following hyperoperations:

• e a b c d f g h

e e a b c d f g h
a a e c b f d h g
b b c b c {e, b, d, g} {a, c, f, h} g h
c c b c b {a, c, f, h} {e, b, d, g} h g
d d f {e, h, d} {a, c, f} d f {d, g} {f, h}
f f d {a, c, f} {e, b, d} f d {f, h} {d, g}
g g h {b, g} {c, h} g h {e, b, d, g} {a, c, f, h}
h h g {c, h} {b, g} h g {a, c, f, h} {e, b, d, g}

◦ e x y z

e e x y z
x x {e, y} {x, y} z
y y {x, y} {e, x} z
z z z z {e, x, y}

∗ e t

e e t
t t {e, t}

Suppose that

Φ : P1 −→ Q

Φ(e) = Φ(b) = Φ(d) = Φ(g) = e

Φ(a) = Φ(c) = Φ(f) = Φ(h) = t

and

φ : P2 −→ Q

φ(e) = φ(y) = e

φ(x) = φ(z) = t
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Then the fiber hyperproduct of P1 and P2 over Q, is the following sub-
polygroup of P1 × P2:

P1 ×Q P2 = {(e, e), (b, e), (b, y), (d, e), (d, y), (g, e), (g, y), (a, x), (a, z),

(c, x), (c, z), (f, x), (f, z), (h, x), (h, z)}

Definition 5.3. A braided crossed polymodule of polygroups ∂ : P1 −→
P0 is a crossed polymodule with a braiding polyfunction {−,−} : P0 ×
P0 −→ P∗(P1) satisfying the following axioms:

(i) {p1, p2p3} = {p1, p2} p2{p1, p3};

(ii) {p1p2, p3} =p1 {p2, p3}{p1, p3};

(iii) ∂{p1, p2} = p1p2p
−1
1 p−1

2 ;

(iv) {∂(α), p} = αpα−1;

(v) {p, ∂(α)} =p αα−1; for all α ∈ P1 and p, p1, p2, p3 ∈ P0.
If the braiding is symmetric, we also have:

(vi) {p1, p2}{p2, p} = 1,

Then the crossed polymodule ∂ : P1 −→ P0 is called symmetric crossed
polymodule.

We denote such a braided crossed polymodule by (P1, P0, ∂).

Example 5.4. Any identity map of polygroups ∂ : P −→ P is a braided
crossed polymodule with {a, b} = ab.

Example 5.5. Suppose P be a polygroup and P 2 be generated by
{ab| a, b ∈ P}. ∂ : P 2 −→ P is a braided crossed polymodule with
{a, b} = ab; for a, b ∈ P .

Example 5.6. Let (P1, P0, ∂1) and (P ′1, P
′
0, ∂2) be two braided crossed

polymodules, then (P1×P ′1, P2×P ′2, ∂) is a braided crossed polymodule.

Example 5.7. Zero morphism 0 : P1 −→ P2 is a braided crossed poly-
module with {a, b} = e.
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Proposition 5.8. If ∂ : P1 −→ P0 be a braided crossed polymodule,
then

(i) p1{p−1
1 , p2} = {p1, p2}−1 =p2 {p1, p

−1
2 };

(ii) p1p2{p−1
1 , p−1

2 } = {p1, p2};

(iii) p{p, p} = {p, p};

(iv) {p1p2, p3} = {p1, p2p3p
−1
2 }{p2, p3};

(v) {p1, p2p3} = {p1, p3}{p3p1p
−1
3 , p2};

(vi) p1{p2, p3} = {p1p2p
−1
1 , p1p3p

−1
1 };

(vii) {∂(α1)p1, ∂(α2)p2}αp2
2 α1 = αp1

1 α2{p1, p2};
for all α1, α2 ∈ P1 and p, p1, p2, p3 ∈ P0.

Proof. It is straightforward. �

Definition 5.9. A Γ equivariant braided crossed polymodule is a braided
crossed polymodule ∂ : P1 −→ P0 equipped with an polyaction by a poly-
group Γ and the braiding are assumed to be Γ equivariant in the sense
that σ{p1, p2} = {σp1,

σ p2}.

Example 5.10. According to Lemma 3.2, every group is a polygroup.
Let N be a normal subgroup of a group G so that the quotient group
G
N is abelian, On the other hand , let N be a normal subgroup in G
which contains the derived group of G. Then (N,G, i, µ, [, ]) is a braided
crossed module, where i : N −→ G is an inclusion, µ : G −→ Aut(N) is
defined by conjugation and η : G×G −→ N , η(a, b) = [a, b] = aba−1b−1.

Definition 5.11. A morphism between braided crossed polymodules is
a morphism between crossed polymodules which is compatible with the
braiding map {−,−}.

Example 5.12. We know that if (P1, P0, ∂1) and (P ′1, P
′
0, ∂2) are braided

crossed polymodules, then a morphism

(f1, f0) : (P1, P0, ∂1) −→ (P ′1, P
′
0, ∂2)
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Of braided crossed polymodules is given by a morphism of crossed poly-
modules such that

{−,−}(f0 × f0) = f1{−,−}.

Let f, g : (P1, P0, ∂1) −→ (P ′1, P
′
0, ∂2) be two morphisms of braided

crossed polymodules and D denotes the set D = {p1 ∈ P1| f(p1) =
g(p1)}, then {D, d} has the structure of a braided crossed polymodule,
and the inclusion h : {D, d} −→ (P1, P0, ∂1) is a morphism of braided
crossed polymodules.

Theorem 5.13. If

P1
p̄1

//

∂
��

Γ1

∂′

��

P0 p̄0

// Γ0

Diagram (2)

is a crossed polysquare, then Diagram (3)

P1

∂̄ ∂

P0
pP0

P1

P0 ×Γ0
Γ1

idp1

Diagram (3)

gives rise to a crossed polysquare (that is a crossed polymodule of crossed
polymodules) with actions, strong homorphism pP0 and function ĥ : P1×
(P0 ×Γ0 Γ1) −→ P∗(P1) defined as following:

(a) the polyaction of P0 on P1 is the polyaction of the crossed poly-
module ∂ : P1 −→ P0;



20 M. A. DEHGHANI, B. DAVVAZ AND M. ALP

(b) the polyaction of P0 on P0 ×Γ0 Γ1 is defined by
p(p2, β2) = {(x, y) |x ∈ pp2p

−1, y ∈ pβ2};

(c) pP0 : P0 ×Γ0 Γ1 −→ P0 is the canonical projection on P0.

(d) ĥ(α, (p2, β2)) := αp2α−1, where the function h is given by the
crossed polysquare in definition 3.7, and ĥ(α, (p2, p2)) = h(p̄1(α), p2).

Proof. The polyaction of P0 on P0 ×Γ0 Γ1 is well defined. So we want
to check the five properties making diagram a crossed polysquare.

1. The map idP1 : P1 −→ P1 is the action of P0. The map ∂̄ preserves
the action of P0:

∂̄(pα) = (∂(pα), p̄1(pα)) = {(x, y) | x ∈ p∂(α)p−1, y ∈ p̄1(p̄0(p)α)}
= {(x, y) | x ∈ p∂(α)p−1, y ∈ p̄0(p)p̄1(α)}
= {(x, y) | x ∈ p∂(α)p−1, y ∈ pp̄1(α)}
=p (∂(α), p̄1(α)) =p ∂̄(α).

But ∂ is a crossed polymodule, because diagram (2) is a crossed
polysquare and so pP0 is a crossed polymodule, because

pP0(p(p2, β2)) = pP0{(x, y) | x ∈ pp2p
−1, y ∈p β2}

= {x| x ∈ pp2p
−1}

= ppP0(p2, β2)p−1;

pP0(p2,β2)(p′2, β
′
2) =p2 (p2, β2) = {(x, y) | x ∈ p2p

′
2p
−1
2 , y ∈ p2β′2}

= {(x, y) | x ∈ p2p
′
2p
−1
2 , y ∈ p̄0(p2)β′2}

= {(x, y) | x ∈ p2p
′
2p
−1
2 , y ∈ ∂′(β2)β′2}

= {(x, y) | x ∈ p2p
′
2p
−1
2 , y ∈ β2β

′
2β
−1
2 }

= (p2, β2)(p′2, β
′
2)(p2, β2)−1.

But ∂ : P1 −→ P0 is a crossed polymodule, so pP0∂̄ = ∂idP1 is a
crossed polymodule.

2. We have idP1

(
ĥ(α, (p2, β2))

)
= α p2α−1 = α(p2,β)α−1.
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Moreover, we have ∂̄ĥ(α, (g2, β2)) = α(g2, β2)(g2, β2)−1, because

∂̄ĥ(α, (p2, β2))
= {(x, y) | x ∈ ∂(α p2α−1), y ∈ p̄1(α p2α−1)}
= {(x, y) | x ∈ ∂(α)p2∂(α)−1p−1

2 , y ∈ p̄1(α) p2 p̄1(α)−1}
= {(x, y) | x ∈ ∂(α)p2∂(α)−1p−1

2 , y ∈ p̄1(α) p̄0(p2)p̄1(α)−1}
= {(x, y) | x ∈ ∂(α)p2∂(α)−1p−1

2 , y ∈ p̄1(α) ∂
′(β2)p̄1(α)−1}

{(x, y) | x ∈ ∂(α)p2∂(α)−1p−1
2 , y ∈ p̄1(α)β2p̄1(α)−1β−1

2 };
and

α(p2, β2)(p2, β2)−1

=∂(α) (p2, β2)(p2, β2)−1

= {(x, y) | x ∈ ∂(α)p2∂(α)−1, y ∈ ∂(α)β2}(p−1
2 , β−1

2 )

= {(x, y) | x ∈ ∂(α)p2∂(α)−1p−1
2 , y ∈ p̄0(∂(α))β2β

−1
2 }

= {(x, y) | x ∈ ∂(α)p2∂(α)−1p−1
2 , y ∈ ∂′(p̄1(α))β2β

−1
2 }

= {(x, y) | x ∈ ∂(α)p2∂(α)−1p−1
2 , y ∈ p̄1(α)β2p̄1(α)−1β−1

2 }.

3. We have

ĥ(idP1(α), (p2, β2)) = ĥ(α, (p2, β2)) = α p2α−1 = α (p2,β2)α−1

and

ĥ(α, ∂̄(α′)) = ĥ(α, (∂(α′), p̄1(α′))) = α ∂(α′)α−1

= αα′α−1α′−1 =∂(α) α′α′−1 =α α′α′−1

4. We have

ĥ(αα′, (p2, β2)) = αα′ p2(αα′)−1

= αα′ p2α′−1 p2α−1

= αα′ p2α′−1α−1αp2α−1

= αĥ(α′, (p2, β2))α−1ĥ(α, (p2, β2))

=α ĥ(α′, (p2, β2))ĥ(α, (p2, β2));

and

ĥ(α, (p2, β2)(p′2, β
′
2)) = αp2p′2α−1 = α p2α−1 p2α p2p′2α−1

= α p2α−1 p2(α p′2α−1)

= ĥ(α, (p2, β2)) p2 ĥ(α, (p′2, β
′
2))

= ĥ(α, (p2, β2)) (p2,β2)ĥ(α, (p′2, β
′
2)).
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5.
ĥ(pα,p (p2, β2)) = pα pp2p−1

(pα−1) = pα pp2α−1

= p(αp2α−1) = pĥ(α, (p2, β2)).

�

Example 5.14. If P is a polygroup and P1, P2 , normal subpolygroups,
and L = P1 ∩ P2;

L
λ

//

∂
��

P1

∂′

��

P2
λ

// P

with all maps the evident inclusions, all polycation by conjugation, and
h : P1 × P2 −→ P ∗(L) given by h(p1, p2) = [p1, p2], then the diagram is
a crossed polysquare and

L
idL1

//

∂̄
��

L

∂
��

P2 ×P P1 pP2

// P2

gives rise to a crossed polysquare of crossed polymodules.

If 〈p̄1, p̄0〉 is just a morphism of crossed polymodules, then Diagram
(3) is still a crossed polysquare. This is a generalization of the well-
known fact in the category of polygroups that if ∂ : P1 −→ P0 is a
morphism of polygroups then Ker ∂ −→ P1 is a crossed polymodule of
polygroups.

Theorem 5.15. If Diagram (2) is a crossed polysquare, then the outer
diagram gives rise to a crossed polysquare with polyactions and function
h̄ : Γ1 × (P0 ×Γ0 Γ1) −→ P∗(P1) defined as following:

(i) The polyaction of Γ0 on P1 is induced by the polyaction of ∂′ :
Γ1 −→ Γ0 on ∂ : P1 −→ P0;

(ii) The polyaction of Γ0 on Γ1 is the polyaction of the crossed poly-
module ∂′ : Γ1 −→ Γ0;



On Crossed Polysquare Version of Homotopy Kernels 23

P1 Γ1

Γ0

∂̄ ∂ ∂′

p̄1

P0

¯̄p0

pP0

P1

P0 ×Γ0
Γ1

p̄1

idp1

p̄0

(iii) The polyaction of Γ0 on P0×Γ0Γ1 is defined by σ(p2, β2) = (σp2,
σ β2);

(iv) h̄(β, (p2, β2)) := h(β, p2) where the function h is given by the
crossed polysquare structure of Diagram (2).

Proof. The polyaction of Γ0 on P0 ×Γ0 Γ1 is well defined. ¯̄p0 is a poly-
group strong homomorphism because p̄0 is and Diagram (2) commutes.
Now we want to check the five properties making this diagram a crossed
polysquare.

(i) The map p̄1 preserves the polyaction of Γ0 because Diagram (2)
is a crossed polysquare.

The map ∂̄ preserves the polyactions of Γ0:

∂̄(σα) = (∂(σα), p̄1(σα)) = (σ∂(α), σp̄1(α)) = σ (∂(α), p̄1(α)) = σ∂̄(α).

∂′ is a crossed polymodule because Diagram (2) is a crossed polysquare
and we want to prove that ¯̄p0 is a crossed polymodule. The pre-crossed
polymodule property holds because p̄0 satisfies the pre-crossed polymod-
ule property. It also holds the Peitfer condition:

¯̄p0(p2,β2)(p′2, β
′
2) = p̄0(p2)(p′2, β

′
2) =

(
p̄0(p2)p′2,

p̄0(p2)β′2

)
= {(x, y) | x ∈ p̄0(p2)p′2, y ∈ p̄0(p2)β′2}
= {(x, y) | x ∈ p2p

′
2p
−1
2 , y ∈ β2β

′
2β
−1
2 };

also

(p2, β2)(p′2, β
′
2)(p2, β2)−1 = (p2, β2)(p′2, β

′
2)(p−1

2 , β−1
2 )

= {(x, y) | x ∈ p2p
′
2p
−1
2 , y ∈ β2β

′
2β
−1
2 }
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¯̄p0∂̄ = ∂′p̄1 is a crossed polymodule because Diagram (2) is a crossed
polysquare.

(ii)

p̄1

(
ĥ(β, (p2, β2))

)
= p̄1(h(β, p2)) = β p2β−1

= β p̄0(p2)β−1 = β
¯̄p0(p2,β2)β−1 = β (p2,β2)β−1.

Now we want to show that ∂̄ĥ(β, (p2, β2)) = β(p2, β2)(p2, β2)−1. We
develop the two members separately:

∂̄ĥ(β, (p2, β)) =
(
∂ĥ(β, (p2, β2)), p̄1ĥ(β, (p2, β2))

)
= (∂h(β, p2), p̄1h(β, p2))

=
{

(x, y) | x ∈ βp2p
−1
2 , y ∈ β p2β−1

}
;

β(p2, β2)(p2, β2)−1 = ∂′(β)(p2, β2)(p2, β2)−1

=
(
∂′(β)p2,

∂′(β)β
)

(p−1
2 , β−1

2 )

=
{

(x, y) | x ∈ ∂′(β)p2p
−1
2 , y ∈ ∂′(β)β2β

−1
2

}
=

{
(x, y) | x ∈ βp2p

−1
2 , y ∈ β∂′(β2)β−1

}
=

{
(x, y) | x ∈ βp2p

−1
2 , y ∈ βp̄0(p2)β−1

}
=

{
(x, y) | x ∈ βp2p

−1
2 , y ∈ βp2β−1

}
.

(iii)

ĥ(p̄1(α), (p2, β2)) = h(p̄1(α), p2) = αp2α−1

= α (p2,β2)α−1;

ĥ(β, ∂̄(α)) = ĥ(β, (∂(α), p̄1(α))) = h(β, ∂(α))

= βαα−1.

(iv)

ĥ(ββ′, (p2, β2)) = h(ββ′, p2) = βh(β′, p2)h(β, p2)

= βĥ(β′, (p2, β2))ĥ(β, (p2, β2));

ĥ(β, (p2, β2)(p′2, β
′
2)) = h(β, p2p

′
2) = h(β, p2) p2h(β, p′2)

= ĥ(β, (p2, β2)) (p2,β2)ĥ(β, (p′2, β
′
2)).
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(v)

ĥ( σβ, σ(p2, β2)) = ĥ( σβ, ( σp2,
σβ2))

= h( σβ, σp2) = σh(β, p2) = σĥ(β, (p2, β2)).

�

Theorem 5.16. If

P1
p̄1

//

∂
��

Γ1

∂′

��

P0 p̄0

// Γ0

is a crossed polysquare, then the outer diagram is a crossed square with

P1

P0

P1

β∗
P1

D ∂∂̄ D′

id P1
β∗
P1

ψ′

pP0

ΦΓ0

ΦP1

ΦP0×Γ0
Γ1

P0×Γ0
Γ1

β∗
P0×Γ0

Γ1

Γ0

β∗
Γ0

idP1

P1

β∗
P1

P1

P0 ×Γ0
Γ1

ΦP1

actions and function, h̄ : P1
β∗P1

× P0×Γ0
Γ1

β∗P0×Γ0
Γ1

−→ P1
β∗P1

defined as following:

(a) the action of P0
β∗P0

on P1
β∗P1

is induced by the polyaction of P0 on P1;

(b) the action of P0
β∗P0

on
P0×Γ0

Γ1

β∗P0×Γ0
Γ1

is induced by the polyaction of P0 on

P0 ×Γ0 Γ1;
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(c) the map h̄ : P1
β∗P1

× P0×Γ0
Γ1

β∗P0×Γ0
Γ1

−→ P1
β∗P1

is

h̄
(
β∗P1

(p1), β∗P0×Γ0
Γ1

(p0, γ1)
)

= β∗P1
(h(p1, (p0, γ1))).

Proof. The action P0
β∗P0

on P1
β∗P1

and
P0×Γ0

Γ1

β∗P0×Γ0
Γ1

is well defined. We now

want to check the five properties making this diagram a crossed square.
(i) The map D preserves the action of P0

β∗P0

; i.e., we have

D(
β∗P0

(p0)
β∗P1

(p1)) =
β∗P0

(p0) D(β∗P1
(p1)).

Because

D(
β∗P0

(p0)
β∗P1

(p1)) = D(β∗P1
(x)), for all x ∈

⋃
y ∈ β∗P1

(p1)

z ∈ β∗P0
(p0)

zy

= β∗P0×Γ0
Γ1

(∂(x))

and
β∗P0

(p0)D(β∗P1
(p1)) =

β∗P0
(p0)

(β∗P0×Γ0
Γ1

(∂(p1)) = β∗P0×Γ0
Γ1

(x) for all

x ∈
⋃

y ∈ β∗P1
(∂(p1))

z ∈ β∗P0
(p0)

zy. Also, the map ψ preserves the action of P0
β∗P0

. D′ is

a crossed module, because Diagram (2) is a crossed polysquare, and we
want prove that ψ′ is a crossed module. In fact, suppose that p0 ∈ P0

and (p0, γ1) ∈ P0 ×Γ0 Γ1 are arbitrary. We have

ψ′(
β∗P0

(p′0)
β∗P0×Γ0

Γ1
(p0, γ1)

= ψ′(β∗P0×Γ0
Γ1

(z)) for all z ∈ p′0(p0, γ1)

= ψ′(β∗P0×Γ0
Γ1

(p′0p0p
′−1
0 , p

′
0γ1))

= β∗P0
(p′0)ψ′(β∗P0×Γ0

Γ1
(p0, γ1))(β∗P0

(p′0))−1

and
ψ′(β∗P0×Γ0

Γ1
(p0,γ1))

β∗P0×Γ0
Γ1

(p′0, γ
′
1)

=
β∗P0

(pP0(p0))
β∗P0×Γ0

Γ1
(p′0, γ

′
1)

= β∗P0×Γ0
Γ1

(z), for all z ∈ pP0(p0)(p′0,Γ
′
1)

= β∗P0×Γ0
Γ1

(p0, γ1)β∗P0×Γ0
Γ1

(p′0, γ
′
1)β∗P0×Γ0

Γ1
(p0, γ1)−1.
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ψ′D = D′ id P1
β∗
P1

is a crossed module because ∂ : P1 −→ P0 is a crossed

polymodule.
(ii)

id P1
β∗
P1

(ĥ(β∗P1
(p1), (β∗P0

(p0), β∗Γ1
(γ1))) = β∗P1

(p1)
β∗P0

(p0)
β∗P1

(p1)

= β∗P1
(p1)

(,β∗Γ1
(γ1))

β∗P1
(p1)−1

Now we want to prove that

D(ĥ(β∗P1
(p1), (β∗P0

(p0), β∗Γ1
(γ1))

=
β∗P1

(p1)
(β∗P0

(p0), β∗Γ1
(γ1))(β∗P0

(p0), β∗Γ1
(γ1))−1

and we develop the two members separately:

D(ĥ(β∗P1
(p1), (β∗P0

(p0), β∗Γ1
(γ1)))

= (D′(β∗P1
(p1)

β∗P0
(p0)

β∗P1
(p1), p̄1(β∗P1

(p1)
β∗P0

(p0)
β∗P1

(p1)−1))

= (D′(β∗P1
(p1)β∗P0

(p0)D′(β∗P1
(p1))−1β∗P0

(p0)−1,

p̄1(β∗P1
(p1)

p̄0(β∗P0
(p0))

p̄1(β∗P1
(p1))−1)

= (D′(β∗P1
(p1)β∗P0

(p0)D′(β∗P1
(p1))−1β∗P0

(p0)−1,

p̄1(β∗P1
(p1))

∂′(β∗Γ1
(γ1))

p̄1(β∗P1
(p1))−1)

= (D′(β∗P1
(p1)β∗P0

(p0)D′(β∗P0
(p0))−1β∗P0

(p0)−1,

p̄1(β∗P1
(p1))β∗Γ1

(γ1)p̄1(β∗P0
(p0))−1β∗Γ1

(γ1)−1);

also,

β∗P1
(p1)

(β∗P0
(p0), β∗Γ1

(γ1))(β∗P0
(p0), β∗Γ1

(γ1))−1

=
D′(β∗P1

(p1))
(β∗P0

(p0), β∗Γ1
(γ1))(β∗P0

(p0), β∗Γ1
(γ1))−1

= (D′(β∗P1
(p1))β∗P0

(p0)D′(β∗P1
(p1)−1,

D′(β∗P1
(p1))

β∗Γ1
(γ1))(β∗P0

(p0)−1, β∗Γ1
(γ1)−1)

= (D′(β∗P1
(p1))β∗P0

(p0)D′(β∗P1
(p1))−1β∗P0

(p0)−1,
p̄0(D′(β∗P1

(p1)))
β∗Γ1

(Γ1)β∗Γ1
(Γ1)−1)

= (D′(β∗P1
(p1))β∗P0

(p0)D′(β∗P1
(p1))−1β∗P0

(p0)−1,
∂′(p̄1(β∗P1

(p1)))
β∗Γ1

(γ1)β∗Γ1
(γ1)−1)

= (D′(β∗P1
(p1))β∗P0

(p0)D′(β∗P1
(p1))−1β∗P0

(p0)−1,

p̄1(β∗P1
(p1))β∗Γ1

(γ1)p̄1(β∗P0
(p0))−1β∗Γ1

(γ1)−1).
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(iii)

ĥ(id p1
β∗
P1

(β∗P1
(p1)), (β∗P0

(p0), β∗Γ1
(γ1)))

= ĥ(β∗P1
(p1), (β∗P0

(p0), β∗Γ1
(γ1)))

= β∗P1
(p1)

β∗P0
(p0)

β∗P1
(p1)−1

= β∗P1
(p1)

(β∗P0
(p0),β∗Γ1

(γ1))
β∗P1

(p1)−1;

also

ĥ(β∗P1
(p1), ∂̄(β∗

′
P1

(p1))) = ĥ(β∗P1
(p1), (D′(β∗′P1

(p1)), p̄1(β∗
′
P1

(p1)))

= β∗P1
(p1)

D′(β∗′P1
(p1))

β∗P1
(p1)−1

= β∗P1
(p1)

D′(β∗′P1
(p1))

β∗P1
(p1)−1

= β∗P1
(p1)β∗

′
P1

(p1)β∗P1
(p1)−1β∗

′
P1

(p1)−1

=
D′(β∗P1

(p1))
β∗
′
P1

(p1)β∗P1
(p1)−1

=
β∗P1

(p1)
β∗
′
P1

(p1)β∗
′
P1

(p1)−1.

(iv)

ĥ(β∗P1
(p1)β∗

′
P1

(p1), (β∗P0
(p0), β∗Γ1

(γ1)))

= β∗P1
(p1)β∗

′
P1

(p1)
β∗P0

(p0)
(β∗P1

(p1)β∗
′
P1

(p1))−1

= β∗P1
(p1)β∗

′
P1

(p1)
β∗P0

(p0)
β∗
′
P1

(p1)−1 β
∗
P0

(p0)
β∗
′
P1

(p1)−1

= β∗P1
(p1)β∗

′
P1

(p1)
β∗P0

(p0)
β∗
′
P1

(p1)−1β∗P1
(p1)−1β∗P1

(p1)
β∗P0

(p0)
β∗P1

(p1)−1

= β∗P1
(p1)ĥ(β∗

′
P1

(p1), (β∗P0
(p0), β∗Γ1

(γ1)))β∗P1
(p1)−1ĥ(β∗P1

(p1), (β∗P0
(p0), β∗Γ1

(γ1)))

=
β∗P1

(p1)
ĥ(β∗

′
P1

(p1), (β∗P0
(p0), β∗Γ1

(γ1)))ĥ(β∗P1
(p1), (β∗P0

(p0), β∗Γ1
(γ1)));

also

ĥ(β∗P1
(p1), (β∗P0

(p0), β∗Γ1
(γ1))(β∗

′
P0

(p0), β∗
′

Γ1
(γ1)))

= ĥ(β∗P1
(p1), (β∗P0

(p0)β∗
′
P0

(p0), β∗Γ1
(γ1)β∗

′
Γ1

(γ1)))

= β∗P1
(p1)

β∗P0
(p0)β∗

′
P0

(p0)
β∗
′
P1

(p1)

= β∗P1
(p1)

β∗P0
(p0)

β∗P1
(p1)−1 β

∗
P0

(p0)
β∗P1

(p1)
β∗P0

(p0)β∗
′
P0

(p0)
β∗P1

(p1)−1

= β∗P1
(p1)

β∗P0
(p0)

β∗P1
(p1)−1 β

∗
P0

(p0)
(β∗P1

(p1)
β∗
′
P0

(p0)
β∗P1

(p1)−1)

= ĥ(β∗P1
(p1), (β∗P0

(p0), β∗Γ1
(γ1)))

β∗P0
(p0)

ĥ(β∗P1
(p1), (β∗

′
P0

(p0), β∗
′

Γ1
(γ1)))

= ĥ(β∗P1
(p1), (β∗P0

(p0), β∗Γ1
(γ1)))

(β∗P0
(p0),β∗Γ1

(γ1))
ĥ(β∗P1

(p1), (β∗
′
P0

(p0).β∗
′

Γ1
(γ1))).
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(v)

ĥ(
β∗
′
P0

(p0)
β∗P1

(p1),
β∗
′
P0

(p0)
(β∗P0

(p0), β∗Γ1
(γ1)))

= ĥ(
β∗
′
P0

(p0)
β∗P1

(p1), (β∗
′
P0

(p0)β∗P0
(p0)β∗

′
P0

(p0)−1,
β∗
′
P0

(p0)
β∗Γ1

(γ1)))

=
β∗
′
P0

(p0)
β∗P1

(p1)
β∗
′
P0

(p0)β∗P0
(p0)β∗

′
P0

(p0)−1

(
β∗
′
P0

(p0)
β∗P1

(p1)−1)

=
β∗
′
P0

(p0)
β∗P0

(p0)
β∗
′
P0

(p0)β∗P0
(p0)

β∗P1
(p1)−1

=
β∗
′
P0

(p0)
(β∗P1

(p1)
β∗P0

(p0)
β∗P1

(p1)−1)

=
β∗
′
P0

(p0)
ĥ(β∗P1

(p1), (β∗P0
(p0), β∗Γ1

(γ1))).

�

Theorem 5.17. If

P1
p̄1

//

∂
��

Γ1

∂′

��

P0 p̄0

// Γ0

is a crossed polysquare, then the outer diagram is a crossed square with

P1 Γ1

Γ0

∂̄ ∂ ∂′ D′

p̄1

P0

¯̄p0

ΦΓ1

ΦΓ0

ΦP1

pP0

P1

P0×Γ0
Γ1

β∗
P0×Γ0

Γ1

P1

β∗
P1

P0 ×Γ0 Γ1

Γ0

β∗
Γ0

ΦP0×Γ0
Γ1

Γ1

β∗
Γ1

ψ

ψ′

p̄1

idp1

p̄0

D
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actions and function,

ĥ :
Γ1

β∗Γ1

× P0 ×Γ0 Γ1

β∗P0×Γ0
Γ1

−→ P1

β∗P1

defined as following:

(a) the action of Γ0
β∗Γ0

on P1
β∗P1

is induced by the polyaction of Γ0 on P1;

(b) the action of Γ0
β∗Γ0

on Γ1
β∗Γ1

is induced by the polyaction of Γ0 on Γ1;

(c) the action of Γ0
β∗Γ0

on
P0×Γ0

Γ1

β∗P0×Γ0
Γ1

is induced by the polyaction of Γ0 on

P0 ×Γ0 Γ1;

(d) the map ĥ : Γ1
β∗Γ1

× P0×Γ0
Γ1

β∗P0×Γ0
Γ1

−→ P1
β∗P1

is

ĥ
(
β∗Γ1

(γ1), β∗P0×Γ0
γ1

(p0, γ1)
)

= β∗P1
(h(γ1, (p0, γ1))).

Proof. The action of Γ0
β∗Γ0

on
P0×Γ0

(γ1)

β∗P0
×Γ0

(Γ1) and Γ1
β∗Γ1

and P1
β∗P1

is well defined.

ψ′ is a group homomorphism because p̄0 is and Diagram (1) commutes.
Now we want to check the five properties making this diagram a crossed
square.

(i) The map ψ preserves the action of Γ0
β∗Γ0

because Diagram (1) is a

crossed polysquare. The map D preserves the actions of Γ0
β∗Γ0

:

D( σβ∗P1
(p1)) = (∂( σβ∗P1

(p1)), ψ( σ(β∗P1
(p1)))

= ( σ∂(β∗P1
(p1)), σψ(β∗P1

(p1)))

= σ(∂(β∗P1
(p1)), ψ(β∗P1

(p1)))

= σD(β∗P1
(p1)).

D′ is a crossed module. We want to prove that ψ′ is a crossed mod-
ule. The pre-crossed module property holds because p̄0 satisfies the
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pre-crossed polymodule property. It also holds the Peiffer condition:

ψ′(β∗P0
(p0),β∗Γ1

(γ1)
(β∗

′
P0

(p0), β∗
′

Γ1
(γ1))

=
p̄0(β∗P0

(p0))
(β∗

′
P0

(p0), β∗
′

Γ1
(γ1))

=
(
p̄0(β∗P0

(p0))
β∗
′
P0

(p0),
p̄0(β∗P0

(p0))
β∗
′

Γ1
(γ1)

)
=
(
β∗P0

(p0)β∗
′
P0

(p0)β∗P0
(p0)−1,

D′(β∗Γ1
(γ1)

β∗
′

Γ1
(γ1)

)
=
(
β∗P0

(p0)β∗
′
P0

(p0)β∗P0
(p0)−1, β∗Γ1

(γ1)β∗
′

Γ1
(γ1)β∗Γ1

(γ1)−1
)

;

also

(β∗P0
(p0), β∗Γ1

(γ1))(β∗
′
P0

(p0), β∗
′

Γ1
(γ1))(β∗P0

(p0), β∗Γ1
(γ1))−1

= (β∗P0
(p0), β∗Γ1

(γ1))(β∗
′
P0

(p0), β∗
′

Γ1
(γ1))(β∗P0

(p0)−1, β∗Γ1
(γ1)−1)

= (β∗P0
(p0)β∗

′
P0

(p0)β∗P0
(p0),−1 , β∗Γ1

(γ1)β∗
′

Γ1
(γ1)β∗Γ1

(γ1)−1).

ψ′D = D′ψ is a crossed module.
(ii)

ψ
(
ĥ(β∗

′
Γ1

(γ1), (β∗P0
(p0), β∗Γ1

(γ1)))
)

= ψ
(
h(β∗

′
Γ1

(γ1), β∗P0
(p0))

)
= β∗

′
Γ1

(γ1)
β∗P0

(p0)
β∗Γ1

(γ1)−1

= β∗
′

Γ1
(γ1)

p̄0(β∗P0
(p0))

β∗Γ1
(γ1)−1

= β∗
′

Γ1
(γ1)

ψ′(β∗P0
(p0),β∗Γ1

(γ1))
β∗Γ1

(γ1)−1

= β∗
′

Γ1
(γ1)

(β∗P0
(p0),β∗Γ1

(γ1))
β∗Γ1

(γ1)−1

Now we want to show that

Dĥ
(
β∗
′

Γ1
(γ1), (β∗P0

(p0), β∗Γ1
(γ1))

)
=

β∗
′

Γ1
(γ1)

(β∗P0
(p0), β∗Γ1

(γ1))(β∗P0
(p0), β∗Γ1

(γ1))−1.

We develop the we members separately:

Dĥ
(
β∗
′

Γ1
(γ1), (β∗P0

(p0), β∗Γ1
(γ1))

)
=
(
∂ĥ
(
β∗
′

Γ1
(γ1), (β∗P0

(p0), β∗Γ1
(γ1))

)
, ψĥ

(
β∗
′

Γ1
(γ1), (β∗P0

(p0), β∗Γ1
(γ1))

))
=
(
∂h(β∗

′
Γ1

(γ1), β∗P0
(p0)), ψh(β∗

′
Γ1

(γ1), β∗P0
(p0))

)
=

(
β∗
′

Γ1
(γ1)

β∗P0
(p0)β∗P0

(p0)−1, β∗
′

Γ1
(γ1)

β∗P0
(p0)

β∗Γ1
(γ1)−1

)
.
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But

β∗
′

Γ1
(γ1) (

β∗P0
(p0), β∗Γ1

(γ1)
)−1

=
D′(β∗′Γ1

(γ1))
(β∗P0

(p0), β∗Γ1
(γ1))(β∗P0

(p0), β∗Γ1
(γ1))−1

=

(
D′(β∗′Γ1

(γ1))
β∗
′
P0

(p0),
β∗
′

Γ1
(γ1)

β∗Γ1
(γ1)

)(
β∗P0

(p0)−1, β∗Γ1
(γ1)−1

)
=

(
D′(β∗′Γ1

(γ1))
β∗P0

(p0)β∗P0
(p0)−1,

D′(β∗′Γ1
(γ1))

β∗Γ1
(γ1)β∗Γ1

(γ1)−1

)
=

(
β∗
′

Γ1
(γ1)

β∗P0
(p0)β∗P0

(p0)−1, β∗
′

Γ1
(γ1)

D′(β∗Γ1
(γ1))

β∗
′

Γ1
(γ1)−1

)
=

(
β∗
′

Γ1
(γ1)

β∗P0
(p0)β∗P0

(p0)−1, β∗
′

Γ1
(γ1)

p̄0(β∗P0
(p0))

β∗
′

Γ1
(γ1)−1

)
=

(
β∗
′

Γ1
(γ1)

β∗P0
(p0)β∗P0

(p0)−1, β∗
′

Γ1
(γ1)

β∗P0
(p0)

β∗
′

Γ1
(γ1)−1

)
.

(iii)

ĥ
(
ψ(β∗P1

(p1), (β∗P0
(p0), β∗Γ1

(γ1)))
)

= h
(
ψ(β∗P1

(p1)), β∗P0
(p0)

)
= β∗P1

(p1)
β∗P0

(p0)
β∗P1

(p1)−1

= β∗P1
(p1)

(β∗P0
(p0),β∗Γ1

(γ1))
β∗P1

(p1)−1;

ĥ
(
β∗
′

Γ1
(γ1),D(β∗P1

(p1))
)

= ĥ
(
β∗
′

Γ1
(γ1), ∂(β∗P1

(p1), ψ(β∗P1
(p1)))

)
= h

(
β∗
′

Γ1
(γ1), ∂(β∗P1

(p1))
)

=
β∗
′

Γ1
(γ1)

β∗P1
(p1)β∗P1

(p1)−1.

(iv)

ĥ
(
β∗
′

Γ1
(γ1)β∗

′′
Γ1

(γ1), (β∗P0
(p0), β∗Γ1

(γ1))
)

= h
(
β∗
′

Γ1
(γ1)β∗

′′
Γ1

(γ1), β∗P0
(p0)

)
=

β∗
′

Γ1
(γ1)

h
(
β∗
′′

Γ1
(γ1), β∗P0

(p0)
)
h
(
β∗
′

Γ1
(γ1), β∗P0

(p0)
)

=
β∗
′

Γ1
(γ1)

ĥ
(
β∗
′′

Γ1
(γ1), (β∗P0

(p0), β∗Γ1
(γ1))

)
ĥ
(
β∗
′

Γ1
(γ1), (β∗P0

(p0), β∗Γ1
(γ1))

)
;
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ĥ
(
β∗
′

Γ1
(γ1), (β∗P0

(p0), β∗Γ1
(γ1))(β∗

′
P0

(p0), β∗
′′′

Γ1
(γ1))

)
= ĥ

(
β∗
′

Γ1
(γ1), (β∗P0

(p0)β∗
′
P0

(p0), β∗Γ1
(γ1)β∗

′′′
Γ1

(γ1))
)

= h
(
β∗
′

Γ1
(γ1), β∗P0

(p0)β∗
′
P0

(p0)
)

= h
(
β∗
′

Γ1
(γ1), β∗P0

(p0)
)
β∗P0

(p0)
h
(
β∗
′

Γ1
(γ1), β∗

′′′
Γ1

(γ1)
)

= ĥ
(
β∗
′

Γ1
(γ1), (β∗P0

(p0), β∗Γ1
(γ1))

)
(β∗P0

(p0),β∗Γ1
(γ1))

ĥ
(
β∗
′

Γ1
(γ1), (β∗

′
P0

(p0), β∗
′′′

Γ1
(γ1))

)
.

(v)

ĥ
(
σβ∗

′
Γ1

(γ1), σ(β∗P0
(p0), β∗Γ1

(γ1))
)

= ĥ
(
σβ∗

′
Γ1

(γ1), ( σβ∗P0
(p0), σβ∗Γ1

(γ1))
)

= h
(
σβ∗

′
Γ1

(γ1) σβ∗P0
(p0)

)
= σh

(
β∗
′

Γ1
(γ1), β∗P0

(p0)
)

= σĥ
(
β∗
′

Γ1
(γ1), (β∗P0

(p0), β∗Γ1
(γ1))

)
,

and the proof is completed. �

6 Conclusion

Polygroups are certain subclass of hypergroups. Already, Davvaz and
Alp applied the notion of crossed modules to polygroups and introduced
crossed polymodules. On the other hand, the fundamental relations
make a connection between polygroups and groups. We investigated
crossed polysquares and using the notion of fundamental relations we
obtained a crossed square from a crossed polysquare. Finally, crossed
polysquare version of homotopy kernels is studied. The foundations that
we made through this paper can be used to get an insight into other types
of algebraic hyperstructures.
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