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Abstract. In this paper, we present the notion of weakly compact topo-
logical fuzzes and give some characterizations of them. In particular, a
characterization of weakly compactness are given by the closedness of
the projection fuzz maps. Also, we study some properties of proper fuzz
maps as an important class of closed fuzz maps.
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1 Introduction and Preliminaries

A completely distributive complete lattice is called a molecular lattice.
In 1992, Wang introduced the concept of topological molecular lattices
in terms of closed elements as a generalization of ordinary topological
spaces, fuzzy topological spaces and L-fuzzy topological spaces in tools of
molecules, remote neighborhoods and generalized order homomorphisms
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[9]. A fuzz is a pair (F, ′) consisting of a molecular lattice F and an
order reversing involution ′ : F → F , that is, x ≤ y if and only if y′ ≤ x′
and x′′ = x for all x, y ∈ F . A topological fuzz is a triple (F, ′, τ)
such that (F, ′) is a fuzz and τ ⊆ F is a topology, i.e., it is closed
under finite meets, arbitrary joins and 0, 1 ∈ τ , where 0 and 1 are the
smallest and the greatest elements of F , respectively. Every element of a
topology τ is called open and every element of τ ′ is called closed, where
τ ′ = {a′ | a ∈ τ}.

For two molecular lattices F and G, and a mapping f : F → G which
preserves arbitrary joins, suppose f̂ denote the right adjoint of f , then
f̂ : G→ F is defined by f̂(y) =

∨
{x ∈ F | f(x) ≤ y} for every y ∈ G. A

map f : (F, ′)→ (G, ′) between fuzzes is called an order homomorphism
or a fuzz-map in this paper if f preserves arbitrary joins and f̂ preserves
′ [10]. A fuzz-map f : (F, ′, τ)→ (G, ′, µ) between topological fuzzes is
said to be continuous if b ∈ µ implies f̂(b) ∈ τ .

The category of all fuzzes with fuzz-maps is denoted by Fuzz, and
the category of all topological fuzzes with continuous fuzz-maps is de-
noted by TopFuzz. It is well known that these categories are both
complete and cocomplete, and some categorical structures of them were
introduced by many authors [5, 6, 8, 10, 11]. Topological fuzzes are more
general frames for studding fuzzy topological spaces. Since the category
Top of all topological spaces, as a full subcategory of TopFuzz, is reflec-
tive and coreflective [8], this points out the essential difference between
the general topological spaces and topological fuzzes on the categorical
level. For some categorical notions, readers are suggested to refer to [1].

The notion of compact topological fuzzes and some properties of
them was introduced by B. Hutton [5]. In this paper, we present the
notion of weakly compact topological fuzzes and give some characteri-
zations of them.

In the following, we recall some definitions and properties of molec-
ular lattices. We first recall the definition of extra order introduced by
Li [7]. Extra-orders are useful tools to construct molecular lattices and
function spaces in topological molecular lattices.

Definition 1.1. Let P be a poset and ≺ be a binary relation on P .
a) ≺ is called an extra order, if it satisfies the following conditions:

1. x ≺ y ⇒ x ≤ y,
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2. u ≤ x ≺ y ≤ v ⇒ u ≺ v.

b) ≺ satisfies the interpolation property (short by INT), if x ≺ y
implies that there exists z ∈ P such that x ≺ z ≺ y.

Remark 1.2. [7] For a complete lattice L, an extra order C is defined
by aC b if for every subset S ⊆ L, b ≤ ∨S implies a ≤ s for some s ∈ S.
If L is a molecular lattice, then C satisfies the condition (INT).

Definition 1.3. [2] An extra order � on a topological fuzz (F, ′, τ) is
defined by a � b if for every subset A ⊆ τ , b ≤ ∨A implies that there
exists a finite subset D of A such that a ≤ ∨D.

Definition 1.4. [9] An element a of a lattice L is called coprime, if
a ≤ b ∨ c implies a ≤ b or a ≤ c, for every b, c ∈ L.

We denote by CP (L) the set of all nonzero coprime elements L.
Nonzero coprime elements are also called molecules.

Theorem 1.5. [9] A complete lattice L is a molecular lattice if and only
if b =

∨
C(b) =

∨
(C(b) ∩ CP (L)) for every b ∈ L, where C(b) = {a ∈

L | aC b}.

Remark 1.6. [11] The binary product of two topological fuzzes (F, ′, τ)
and (G, ′, µ) is (F ⊗ G, ′, λ), where F ⊗ G := {D ⊆ F × G | D =⋃

(x,y)∈D C(x)×C(y)}, D′ =
⋂

(x,y)∈D{(C(x′)×C(1))∪ (C(1)×C(y′))}
for each D ∈ F ⊗ G and λ is generated by subbase {π̂1(x) | x ∈ τ} ∪
{π̂2(y) | y ∈ µ}, such that the projection fuzz-maps π1 and π2 are
defined by π1(D) =

∨
{x ∈ F | ∃y ∈ G, (x, y) ∈ D} and π2(D) =∨

{y ∈ G | ∃x ∈ F, (x, y) ∈ D}. The coprime elements of F ⊗G are just
{C(x)×C(y) | x ∈ CP (F ), y ∈ CP (G)}.

2 Compactness and Closed Maps

In this section, we present the notion of weakly compact topological
fuzzes and give some characterizations of them. In particular, a char-
acterization of weakly compactness are given by the closedness of the
projection fuzz maps.
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Definition 2.1. Let (F, ′, τ) be a topological fuzz. A subset A ⊆ τ is
called directed if for any finite set D of A there exists a ∈ A such that
∨D ≤ a.

Definition 2.2. [5] An element a of a topological fuzz F is called com-
pact if a � a, and L is called compact if every its closed element is
compact.

Definition 2.3. A topological fuzz F is called weakly compact, if the
greatest element 1 is compact.

It is clear that each compact topological fuzz is weakly compact.

Definition 2.4. A fuzz-map f : (F, ′, τ)→ (G, ′, µ) between topologi-
cal fuzzes is said to be closed, if f(a) is closed for every closed element
a ∈ F .

Lemma 2.5. Let f : (F, ′, τ)→ (G, ′, µ) be a fuzz-map. The following
statements are equivalent:

1. f is closed

2. (f(a
′
))
′
is open for every a ∈ τ .

3. The element
∨
{m ∈ CP (G)|f̂(m) ≤ a} is open for every a ∈ τ .

Proof. The equivalent of the parts 1 and 2 is clear. Let m ∈ CP (G).
Then we have m ≤ (f(a

′
))
′ ⇔ f(a

′
) ≤ m′ ⇔ a

′ ≤ f̂(f(a
′
)) ≤ (f̂(m))

′ ⇔
f̂(m) ≤ a. Thus (f(a

′
))
′

=
∨
{m ∈ CP (G)|f̂(m) ≤ a}. �

Remark 2.6. If L is a molecular lattice, then we have CP (L)∩C(a) ⊆
CP (L)∩ ↓ a for every a ∈ L, where ↓ a = {b ∈ L|b ≤ a}.

Definition 2.7. Let L be a molecular lattice. Then we say that L is
admissible, if CP (L) ∩C(a) = CP (L)∩ ↓ a, for every a ∈ L.

Example 2.8. Let L = ρ(X) be the lattice of the power set of an
arbitrary set X. Then L is a fuzz, CP (L) = {{x}|x ∈ X} and C(A) =
{{a}|a ∈ A} for each A ∈ L. It is clear that L is admissible.

Example 2.9. If L is a finite molecular lattice (or a finite fuzz), then
it is easy to show that L is admissible.
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Example 2.10. Consider the lattice L = [0, 1] with usual order. Define
the involution ′ on L by a′ = 1 − a for every a ∈ L. Then L is a
fuzz and CP (L) = (0, 1], C(a) = [0, a) for every nonzero element a.
Thus CP (L) ∩C(a) = (0, a) and CP (L)∩ ↓ a = (0, a] for every nonzero
element a, which shows that L is not admissible.

Theorem 2.11. Let G be an admissible topological fuzz. Then the fol-
lowing statements are equivalent:

1. The projection fuzz-map π1 : F
⊗
G → F is closed for every

topological fuzz F .

2. The element W :=
∨
{m ∈ CP (F )|π̂1(m) ≤ W} is open for every

topological fuzz F and every open element W of F
⊗
G.

3. G is weakly compact.

Proof. 1⇔ 2: This follows directly from Lemma 2.5.
2 ⇒ 3: Let C = {ai|i ∈ I} be a directed open cover of 1G, i.e.,

1G =
∨

i∈I ai. We first construct a topological fuzz F := ρ(τG) the
power set of τG, from G and C such that O is an open set in F if and
only if the following conditions hold:

(1) If a ∈ O and a ≤ b ∈ τG, then b ∈ O.

(2) If
∨

i∈I ai ∈ O, then there exists i ∈ I such that ai ∈ O.

Using the fact that C is directed, such open sets are readily seen to form
a topology and if a 6 c for some c ∈ C, then ↑ a = {b ∈ τG|a ≤ b} is
clearly open in F . Now, let

W =
⋃
{C({a})×C(p)|p ∈ CP (G), a ∈ τF , p ≤ a}.

We show that W is an open set in F
⊗
G. Let a ∈ τG and p ∈ CP (G),

such that p ≤ a. We consider two cases. (1) : p ≤ ai0 for some i0 ∈
I, then ↑ (a ∧ ai0) is an open set in F and C({a}) × C(p) ≤ π̂1(↑
(a ∧ ai0)) ∧ π̂2(a ∧ ai0) ≤ W . (2) : p � ai for all i ∈ I. Since p ∈
C(a), it follows that

∨
i∈I ai /∈↑ a. Thus ↑ a is an open set in F and

C({a}) × C(p) ≤ π̂1(↑ a) ∧ π̂2(a) ≤ W . Finally, by the hypothesis, the
set W =

⋃
{{a} ∈ CP (F )| C ({a}) × C(1G) ≤ W} is open and clearly
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{a} ∈ W if and only if a ≥ 1G. Hence {
∨

i∈I ai} ∈ W and so there
is i0 ∈ I such that {ai0} ∈ W . Thus 1G ≤ ai, which shows that G is
weakly compact.

3 ⇒ 2: Let W be an open element in F
⊗
G and m ∈ CP (F ) such

that C(m) × C(1G) ≤ W . Then there exist open elements ai ∈ τF and
bi ∈ τG for an index set I, such that W =

⋃
i∈I C(ai)×C(bi). For every

p ∈ CP (G)∩C(1G), (m, p) ∈W , so there exists ip ∈ I such that mCaip
and pC bip . Hence 1G =

∨
p∈C(1G) bip , and by hypothesis 1G =

∨
p∈D bip

for a finite set D of C(1G). Now, if a =
∧

p∈D aip , then a ∈ τF and
C(a)×C(1G) = C(

∧
p∈D aip)×C(

∨
p∈D bip) ≤

⋃
p∈D C(aip)×C(bip) ≤

W . Thus m ≤ a ≤W , which shows that W is open. �

Definition 2.12. Let G be a subfuzz of topological fuzz F , then the
collection τG = {a ∧ 1G|a ∈ τF } is a topology on G which is called
subfuzz topology.

Theorem 2.13. The following conditions are equivalent:

1. G is a weakly compact subfuzz of a topological fuzz H.

2. For every topological fuzz F and every open set W of F
⊗
G, the

element W =
∨
{a ∈ CP (F )|C (a)×C(1G) ≤W} is open.

Proof. The proof is similar to Theorem 2.11. �

3 Relative Compactness

In this section, we give the notion of relative compactness, which is a
generalization of compactness and present some characterizations of it.

Definition 3.1. Let (G, τ) be a topological fuzz and a, b ∈ G. We say
that a is relatively compact in b, if a� b.

Definition 3.2. Let (G, τ) be a topological fuzz and a, b ∈ G. We define
the relation b on G by a b b if and only if a ≤ b◦, where b◦ =

∨
{c ∈

τ |c ≤ b} is the interior of b.

The following lemma is an immediate consequence of the definition
of �.
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Lemma 3.3. Let (G, τ) be a topological fuzz and a, b, c, d ∈ G. Then
the following statements hold.

1. If a� b, then a ≤ b.

2. If a ≤ b� c ≤ d, then a� d.

3. 0� a and if a� c and b� c, then a ∨ b� c.

Theorem 3.4. Let G be an admissible topological fuzz and a, b ∈ G.
Then the following statements are equivalent:

1. a is relatively compact in b.

2. For each admissible topological fuzz F and every open element W
of F

⊗
G,∨

{c ∈ CP (F )|C(c)×C(b) ≤W )} b
∨
{c ∈ CP (F )|C(c)×C(a) ≤

W}.

3. For every admissible topological fuzz F , every c ∈ CP (F ) and
every open element W of F

⊗
G, C(c) × C(b) ≤ W ⇒ C(v) ×

C(a) ≤W for some open element v of F such that c ≤ v.

4. For every admissible topological fuzz F and all A,B ∈ F
⊗
G,

A b B ⇒
{c ∈ CP (F )|C (c)×C(b) ≤ A} b {c ∈ CP (F )|C (c)×C(a) ≤ B}.

Proof. 2⇔ 3: Follows directly from definition of interior.
2 ⇔ 4: Consider W = B◦ in one direction and A = B = W in the

other direction.
1 ⇒ 3: Let W be an open element of F

⊗
G and c ∈ CP (F ) such

that C(c) × C(b) ≤ W . Then there exist open elements ai ∈ τF and
bi ∈ τG for an index set I such that W =

⋃
i∈I C(ai)×C(bi). For every

p ∈ CP (G) ∩ C(b), (c, p) ∈ W . So there exists ip ∈ I such that c C aip
and pC bip . Hence b =

∨
pCb bip and by the hypothesis a =

∨
p∈D bip for

a finite set D of C(b). Now, if v =
∧

p∈D aip , then v ∈ τF , c ≤ v and
C(v)×C(a) = C(

∧
p∈D aip)×C(

∨
p∈D bip) ≤

⋃
p∈D C(aip)×C(bip) ≤W .

3 ⇒ 1: Let K = {bi|i ∈ I} be a directed open cover of b, i.e,
b =

∨
i∈I bi. We first construct a topological fuzz F = ρ(τG) from G and
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K and also open set W =
⋃
{C(m)×C(p)|p ∈ CP (G),m ∈ τG, p ≤ m}

as in the proof of Theorem 2.11. It is clear that C(
∨

i∈I bi)×C(b) ≤W .
Finally, by the hypothesis, there exists open element v of F such that∨

i∈I ai ≤ v. Thus ai0 ≤ v for some i0 ∈ I and also C(ai0) × C(a) ≤
C(v)×C(a) ≤W . Hence a ≤ ai0 , which shows that a� b. �

Corollary 3.5. Let G be an admissible topological fuzz and a ∈ G. Then
the following statements are equivalent:

1. a is compact, i.e, a� a.

2. For every admissible topological fuzz F and every open element W
of F

⊗
G, the element W =

∨
{c ∈ CP (F ) | C(c)×C(a) ≤W} is

open.

Proof. By Theorem 3.4, we have a � a if and only if
∨
{c ∈ CP (F ) |

C(c)×C(a) ≤W} ⊆ (
∨
{c ∈ CP (F ) | C(c)×C(a) ≤W})◦. Thus a� a

if and only if W is open. �

4 Proper Fuzz-Maps

Recall that a continuous map f : X → Y in Top is called proper if
the product map idZ × f : Z × X → Z × Y is closed, for every space
Z, where idZ : Z → Z is the identity map. This is equivalent to f
being universally closed, in the sense that every pullback of f is a closed
map. There are many characterizations of proper maps in Top [3, 4].
A useful characterization of them is in terms of compactness, that is, a
continuous map f : X → Y is proper if and only if f is a closed map
and the set f−1{y} is compact for every point y ∈ Y . In this section, we
present some characterizations of proper maps in the full subcategory of
admissible topological fuzzes of TopFuzz.

Definition 4.1. A fuzz-map f : G→ H is called admissible proper, if
the product map id⊗ f : F ⊗G→ F ⊗H is closed for every admissible
topological fuzz F , where id : F → F is the identity fuzz-map.

Theorem 4.2. Let f : G → H be a continuous fuzz-map between ad-
missible topological fuzzes. Then the following statements are equivalent:
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1. f is admissible proper.

2. For every admissible topological fuzz F and every open element W
of F

⊗
G, the following set is open:

W =
∨
{C(c) × C(p) | c ∈ CP (F ), p ∈ CP (H),C(c) × C(f̂(p)) ≤

W}.

3. f is closed and f̂(a) is compact for every compact element a of H.

4. f is closed and f̂(p) is compact for every coprime element p of H.

Proof. (1) ⇔ (2): Since îd⊗ f(C(c) × C(p)) = îd ⊗ f̂(C(c) × C(p)) =
C(c)×C(f̂(p)), by Lemma 2.5, the result holds.

(1), (2)⇒ (3): Consider F = {0, 1}, then F is an admissible topolog-
ical fuzz and F

⊗
L ∼= L for every topological fuzz L. Thus every proper

fuzz-map is closed. Now, let F be an arbitrary admissible topological
fuzz and W be an open element of F

⊗
G. By the hypothesis, the ele-

ment W =
∨
{C(c) × C(p) | c ∈ CP (F ), p ∈ CP (H),C(c) × C(f̂(p)) ≤

W} is open. Hence by Corollary 3.5, the element u =
∨
{m ∈ CP (F )|C

(m) × C(a) ≤ W} is open, where a is a compact element of H. But
m ≤ u⇔ C(m)×C(a) ≤ W ⇔ C(m)×C(f̂(a)) ≤ W . Since F and W
are arbitrary, by Corollary 3.5, it follows that f̂(a) is compact.

(3)⇒ (4): Since H is an admissible topological fuzz, it follows that
every coprime element of H is compact.

(4) ⇒ (2): Let F be an arbitrary admissible topological fuzz and
W be an open element of F

⊗
G, c ∈ CP (F ) and p ∈ CP (H) such

that C(c) × C(f̂(p)) ≤ W . Then there exist open elements ai ∈ τF
and bi ∈ τG for an index set I such that W =

⋃
i∈I C(ai) × C(bi). For

every x ∈ CP (G) ∩ C(f̂(p)), (c, x) ∈ W , so there exists ix ∈ I such
that c C aix and x C bix . Hence f̂(p) =

∨
xCf̂(p) bix and by hypothesis,

f̂(p) =
∨

x∈D bix for a finite set D of C(f̂(p)). Now, if a =
∧

x∈D aix ,
then a ∈ τF and c ≤ a. On the other hand, since f is closed, by
Lemma 2.5, the element k =

∨
{m ∈ CP (H)|f̂(m) ≤ u} is open for

every open element u of G. Let u =
∨

x∈D bix . Then p ≤ k and also
there exists an open element v of H such that p ≤ v ≤ k. Thus,
C(a)×C(f̂(v)) = C(

∧
x∈D aix)×C(

∨
x∈D bix) ≤

∨
x∈D C(aix)×C(bix) ≤

W . Hence C(c) × C(p) ≤ C(a) × C(v) ≤ W , which shows that W is
open. �
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