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Abstract. The power version of the modified Lindley distribution is
introduced in this paper, offering a new two-parameter lifetime distri-
bution. As a main interest, it provides a motivated alternative to the
Weibull and power Lindley distributions. We discuss its main charac-
teristics and properties, including shapes of the probability density and
hazard rate functions, incomplete moments, crude moments, variance,
skewness, kurtosis and order statistics. Then, a statistical study of the
model is developed. The parameters are estimated by the maximum
likelihood method. A simulation study examines the numerical com-
portment of the bias and mean square error of the maximum likelihood
estimates of the parameters. Application of the new model to three
data sets is presented, showing that the model has a better fit behavior
in comparison to some other well-known lifetime models, including the
Weibull and power Lindley models.
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1 Introduction

The Lindley distribution pioneered by [24] has received a lot of attention
during the last decades. Its primary characterization is the cumulative
density function (cdf), which is defined as

G(x; θ) = 1−
[
1 +

θx

1 + θ

]
e−θx, x > 0, (1)

where θ > 0, and G(x; θ) = 0 for x ≤ 0. The Lindley distribution is con-
sidered as a mixture of exponential distribution (with parameter θ) and
gamma distribution (with shape parameter 2 and rate parameter θ). [17]
have conducted a detailed study of various properties and applications
of the Lindley distribution in reliability analysis. It was discovered that
it may provide a better fit than the exponential distribution, among the
most important facts.

Because of having only one parameter, there are some situations
where the Lindley distribution does not provide enough flexibility for an-
alyzing different types of lifetime data. Many researchers have proposed
modified or generalized forms of the one-parameter Lindley distribution
to address this issue. Some of these modifications or generalizations are
the discrete Poisson-Lindley distribution by [28], zero-truncated Poisson-
Lindley distribution by [18], size-biased Poisson-Lindley distribution
by [16], negative binomial Lindley distribution by [36], two-parameter
weighted Lindley distribution by [19], two-parameter Lindley distribu-
tion by [31], quasi Lindley distribution by [32], inverse Lindley distri-
bution by [34], gamma Lindley distribution by [37], transmuted Lindley
distribution by [26], extended Lindley distribution by [8], Akash distri-
bution by [29], quasi Akash distribution by [30], weighted Akash distri-
bution by [33], three-parameter generalized Lindley distribution by [15],
new weighted Lindley distribution by [7], wrapped modified Lindley dis-
tribution by [14], Weibull Marshall-Olkin Lindley distribution by [2],
inverted modified Lindley distribution by [12], and sum and difference
of two Lindley distributions by [13]. In addition, [35] provided a review
study on the Lindley distribution and its generalizations.

In particular, a generalization of the Lindley distribution, called
power Lindley (PL) distribution, introduced by [20] aims to apply the
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power function xα in the cdf given as (1) in order to increase its overall
flexibility. Thus, the considered cdf is defined by

G(x;α, θ) = G(xα; θ) = 1−
[
1 +

θxα

1 + θ

]
e−θx

α
, x > 0, (2)

with α > 0, and G(x;α, θ) = 0 for x ≤ 0. This cdf is such that, if X
denotes a random variable following the Lindley distribution, then X1/α

follows the PL distribution. The probability density function (pdf) of
the PL distribution is a two-component mixture of a Weibull distribu-
tion (with shape parameter α and rate parameter θ), and a generalized
gamma distribution (with shape parameter 2α and rate parameter θ).
Then, it is shown in [20] that the parameter α can have an important
role in the pliant properties of some crucial functions, such as the cor-
responding pdf and hazard rate function (hrf). The PL distribution has
been studied and generalized by many authors in recent years. The de-
velopments include the generalized power Lindley distribution by [25],
exponentiated power Lindley distribution by [6], extended power Lindley
distribution by [3], alpha power transformed power Lindley distribution
by [21] and exponentiated generalized power Lindley distribution by [27].

On the other hand, a weighted modification of the former Lindley
distribution, called the modified Lindley (ML) distribution, has been
proposed by [11]. It is defined by the following cdf:

F (x; θ) = 1−
[
1 +

θx

1 + θ
e−θx

]
e−θx, x > 0,

with θ > 0, and F (x; θ) = 0 for x ≤ 0. In some sense, in compari-
son to the former Lindley distribution, the polynomial function x in the
bracket is weighted by the one-parameter exponential function e−θx in
such a way that (i) the definition of the cdf remains manageable and
(ii) the following stochastic ordering holds: G(x; θ) ≤ F (x; θ) ≤ H(x; θ),
where G(x; θ) and H(x; θ) are the cdfs of the Lindley and exponential
distributions with parameter θ, respectively. Thus, it provides a moti-
vated alternative to the Lindley and exponential distributions, keeping
only one parameter and an overall simplicity. In [11], the fitting behav-
ior of the ML model is illustrated by the consideration of three popular
real data sets, outperforming the Lindley and exponential models in this
regard.
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In this study, as the PL distribution is for the Lindley distribu-
tion, we propose a new generalization of the ML distribution by the
use of the one-parameter power function xα; we consider the cdf given
as F (x;α, θ) = F (xα; θ). The corresponding distribution is called the
power modified Lindley (PML) distribution. That is, if X denotes a
random variable following the ML distribution, then X1/α follows the
PML distribution. We thus defined a new two-parameter lifetime dis-
tribution satisfying the following desirable stochastic ordering property:
G(x;α, θ) ≤ F (x;α, θ) ≤ H(x;α, θ), where G(x;α, θ) and H(x;α, θ) are
the cdfs of the PL and Weibull distributions with parameters α and θ,
respectively. In this way, we develop an intermediate model between
the Weibull and PL models, both well known for their relevance in data
fitting. As a first objective, we describe the main properties of the PML
distribution, with an emphasis on the moments. Then, the inferential
properties of the related model are examined by the use of the maxi-
mum likelihood method. Application is provided to three real data sets,
showing that it can be more suitable to fit data in comparison to the
former Weibull, PL, exponentiated power Lindley and three-parameter
generalized Lindley models.

We organize the rest of the paper as follows. Sect. 2 completes the
presentation of the PML distribution by expressing some functions of
interest. Sect. 3 is devoted to some of its important properties. The
inferential aspect of the PML distribution is discussed in Sect. 4, with
a simulation study and application of the associated model to three real
data sets. Some conclusions are drawn in Sect. 5.

2 Power Modified Lindley Distribution

The fundamentals of the PML distribution are now presented, beginning
with the main related functions of interest.
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2.1 Functions of interest

First, we recall that the PML distribution is specified by the following
cdf:

F (x;α, θ) = 1−
[
1 +

θxα

1 + θ
e−θx

α

]
e−θx

α
, x > 0, (3)

with α > 0 and θ > 0, and F (x;α, θ) = 0 for x ≤ 0. It is constructed
by the composition of the cdf of the former ML distribution and the
power function xα. The expression of the survival function immediately
follows:

S(x;α, θ) = 1− F (x;α, θ) =

[
1 +

θxα

1 + θ
e−θx

α

]
e−θx

α
, x > 0, (4)

and S(x;α, θ) = 1 for x ≤ 0. Also, upon differentiation of F (x;α, θ)
with respect to the variable x, the corresponding pdf is given by

f(x;α, θ) =
θα

1 + θ
xα−1e−2θx

α
[
(1 + θ)eθx

α
+ 2θxα − 1

]
, x > 0, (5)

and f(x;α, θ) = 0 for x ≤ 0. The corresponding hrf is given as

h(x;α, θ) =
f(x;α, θ)

S(x;α, θ)
= αθxα−1

[
θxα − 1

(1 + θ)eθxα + θxα
+ 1

]
, x > 0,

(6)

and h(x;α, θ) = 0 for x ≤ 0. The functions F (x;α, θ) and S(x;α, θ)
fully characterize the PML distribution. The functions f(x;α, θ) and
h(x;α, θ) play complementary roles; they are useful for identifying some
crucial statistical features of the lifetime PML model. Further charac-
teristics on these functions are given below.

2.2 Analysis of the pdf

This part is devoted to the pdf of the PML distribution, f(x;α, θ), as
described in (5). A remark on the structure of f(x;α, θ) is given below.
It can be expressed as a linear combination of listed pdfs of the literature.
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Indeed, for x > 0, we can write

f(x;α, θ) = θαxα−1e−θx
α

+
1

2(1 + θ)

[
(2θ)2αx2α−1e−2θx

α − 2θαxα−1e−2θx
α
]
, (7)

and, more explicitly,

f(x;α, θ) = f1(x;α, θ) +
1

2(1 + θ)
[f2(x;α, θ)− f3(x;α, θ)] ,

where f1(x;α, θ) = θαxα−1e−θx
α
, x > 0, is the pdf of the Weibull dis-

tribution with parameters α and θ, f2(x;α, θ) = (2θ)2αxα−1xαe−2θx
α
,

x > 0 is the pdf of the generalized gamma distribution with parameters
2, 2θ and α, and f3(x;α, θ) = 2θαxα−1e−2θx

α
, x > 0, is the pdf of the

Weibull distribution with parameters 2θ and α, with standard zero val-
ues for these pdfs for x < 0. Thus, we can use this linear representation
to provide some properties of the PML distribution, an approach that
we will consider in Section 3.

An asymptotic study gives

lim
x→0

f(x;α, θ) =


+∞ if α < 1
θ2

1 + θ
if α = 1

0 if α > 1

, lim
x→+∞

f(x;α, θ) = 0.

We see that α plays a determinant role in these limits, mainly when x
tends to 0. Also, the critical point(s) for f(x;α, θ) is(are) given as the
solution(s) of the following equation: {log[f(x;α, θ)}′ = 0, which can be
reduced to

(α− 1)
1

x
+ αθxα−1

[
(1 + θ)eθx

α
+ 2

(1 + θ)eθxα + 2θxα − 1
− 2

]
= 0.

The maximum point(s) represent(s) the mode(s) of the PML distribu-
tion. These critical points or mode(s) can be approximated numerically
by the use of any mathematical software.

We conclude this part by showing some plots for f(x;α, θ) for se-
lected values of the parameters in Figure 1.
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Figure 1: Curves of the pdf of the PML distribution for various values
of α and θ

.

Figure 1 shows a variety of non-monotonic shapes, including reverse
J-shaped, symmetric, skewed to the left or the right, and unimodal
shapes.

2.3 Analysis of the hrf

Here, we focus on the hrf of the PML distribution, h(x;α, θ), as described
in (6). First, the following limits are obtained:

lim
x→0

h(x;α, θ) =


+∞ if α < 1
θ2

1 + θ
if α = 1

0 if α > 1

,

lim
x→+∞

h(x;α, θ) =


0 if α < 1
θ if α = 1
+∞ if α > 1

.

The influence of α on these limits is therefore unequivocal.
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Also, the critical point(s) for h(x;α, θ) is(are) given as the solution(s)
of the following equation: {log[h(x;α, θ)}′ = 0, which can be reduced to

(α− 1)
1

x
+ αθxα−1

[
(1 + θ)eθx

α
+ 2

(1 + θ)eθxα + 2θxα − 1
+

θxα − 1

(1 + θ)eθxα + θxα

]
− αθxα−1 = 0.

Since this equation is complicated to solve analytically, mathematical
software is needed to approximate these critical points.

Figure 2 depicts some plots for h(x;α, θ) for selected values of the
parameters.
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Figure 2: Curves of the hrf of the PML distribution for various values
of α and θ

.

Figure 2 shows a variety of monotonic shapes, such as decreasing,
increasing, and reverse bathtub shapes. Thus, the hrf of the PML distri-
bution is much more flexible than the hrf of the former ML distribution,
only showing unimodal curves (see [11]).
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3 Properties

This section is devoted to some important properties of the PML distri-
bution.

3.1 Incomplete moments with application

Here, let us consider a random variable X following the PML distribu-
tion, i.e., with the cdf given by (3) or equivalently, with the pdf given
as (5). First, we investigate the incomplete moment of X, which are the
main ingredients to define important measures and functions that will
be discussed later.

Proposition 3.1. For any positive integer r and positive t, the rth

incomplete moment of X taking at t is obtained as

µ′r(t) = θ−r/α

{
γ
( r
α

+ 1, θtα
)

+
r2−r/α−1

α(1 + θ)
γ
( r
α

+ 1, 2θtα
)}

− θ

1 + θ
tr+αe−2θt

α
,

where γ(a, x) denotes the lower incomplete gamma function (i.e., γ(a, x) =∫ x
0 t

a−1e−tdt, a, x > 0).

Proof. First of all, let us recall that µ′r(t) = E(XrI{{X ≤ t}}) =∫ t
0 x

rf(x;α, θ)dx, where I(A) denotes the indicator function over a cer-
tain event denoted by A and f(x;α, θ) is the pdf given as (5). Now,
owing to (7) and the changes of variable y = θxα, i.e., x = (y/θ)1/α,
or y = 2θxα, i.e., x = [y/(2θ)]1/α, depending on the definition of the
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integral, we get

µ′r(t) =

∫ t

0
xrθαxα−1e−θx

α
dx

+
1

2(1 + θ)

[∫ t

0
xr(2θ)2αx2α−1e−2θx

α
dx−

∫ t

0
xr2θαxα−1e−2θx

α
dx

]
= θ−r/α

∫ θtα

0
yr/αe−ydy +

1

2(1 + θ)

[
(2θ)−r/α

∫ 2θtα

0
yr/α+1e−ydy

]
− (2θ)−r/α

2(1 + θ)

∫ 2θtα

0
yr/αe−ydy

= θ−r/α

{
γ
( r
α

+ 1, θtα
)

+
2−r/α−1

1 + θ

[
γ
( r
α

+ 2, 2θtα
)]}

− θ−r/α2−r/α−1

1 + θ

[
γ
( r
α

+ 1, 2θtα
)]
. (8)

Now, as a known result, the lower incomplete gamma function satisfies
the relation: γ(a + 1, x) = aγ(a, x) − xae−x. Therefore, the term in
brackets in (8) can be expressed as

γ
( r
α

+ 2, 2θtα
)
− γ

( r
α

+ 1, 2θtα
)

=
( r
α

+ 1
)
γ
( r
α

+ 1, 2θtα
)
− (2θtα)r/α+1e−2θt

α − γ
( r
α

+ 1, 2θtα
)

=
r

α
γ
( r
α

+ 1, 2θtα
)
− (2θtα)r/α+1e−2θt

α
. (9)

We end the proof of Proposition 3.1 by putting (9) into (8). �
Several results follow from Proposition 3.1, including the expression

of the first incomplete moment given as

µ′1(t) = θ−1/α

{
γ

(
1

α
+ 1, θtα

)
+

2−1/α−1

α(1 + θ)
γ

(
1

α
+ 1, 2θtα

)}

− θ

1 + θ
t1+αe−2θt

α
.

This function with respect to t is involved in the definitions of various
important measures and functions in probability and statistics, including
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various types of mean deviation, mean residual life functions and income
curves, among others.

Also, by applying t → +∞ in Proposition 3.1, we can derive the
crude moments of X. Indeed, the rth crude moment of X is obtained as

µ′r = E(Xr) = lim
t→+∞

µ′r(t) = θ−r/α

[
1 +

r2−r/α−1

α(1 + θ)

]
Γ
( r
α

+ 1
)
,

where Γ(a) denotes the (standard) gamma function
(i.e., Γ(a) =

∫ +∞
0 ta−1e−tdt, a > 0). By taking α = 1, using Γ(r +

1) = r!, we rediscover the rth crude moments related to the former
ML distribution (see [11]). One can also remark that µ′r is a decreasing
function with respect to θ, which tends to 0 when θ tends to +∞. When
µ′r is viewed as a function of α, its behavior becomes more complicated,
depending on θ ∈ (0, 1) or θ > 1. In all cases, if θ is fixed, µ′r tends to 1
when α tends to +∞.

The first four crude moments of X can be easily deduced as follows:

µ = µ′1 = θ−1/α

[
1 +

2−1/α−1

α(1 + θ)

]
Γ

(
1

α
+ 1

)
,

µ′2 = θ−2/α

[
1 +

2−2/α

α(1 + θ)

]
Γ

(
2

α
+ 1

)
,

µ′3 = θ−3/α

[
1 +

32−3/α−1

α(1 + θ)

]
Γ

(
3

α
+ 1

)
and

µ′4 = θ−4/α

[
1 +

2−4/α+1

α(1 + θ)

]
Γ

(
4

α
+ 1

)
.

Based on µ and µ′2, the variance of X is given by

σ2 = θ−2/α


[

1 +
2−2/α

α(1 + θ)

]
Γ

(
2

α
+ 1

)
−

[
1 +

2−1/α−1

α(1 + θ)

]2
Γ

(
1

α
+ 1

)2
 .
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Owing to the standard binomial theorem, the rth central moment of X
is given by the following finite linear representation:

µr = E[(X − µ)r]

=

r∑
k=0

(
r

k

)
(−1)r−kµr−kθ−k/α

[
1 +

k2−k/α−1

α(1 + θ)

]
Γ

(
k

α
+ 1

)
.

The general coefficient of X is deduced as Cr = µr/σ
r, covering the

skewness and kurtosis coefficients of X given by
√
β1 = C3 and β2 = C4.

Table 1 indicates numerical values for the first four crude moments of
X,
√
β1 and β2, for selected values for α and θ. In particular, in Table

1, one can see that the PML distribution can be left and right skewed,
and symmetric. This last aspect is illustrated in the table with the
special values α = 3.49005 and θ = 10 for which the skewness is near
equal to zero, i.e.,

√
β1 ≈ 9.1800 × 10−7. Also, the PML distribution

has a versatile kurtosis; it can be platykurtic (corresponding to β2 < 3),
mesokurtic (corresponding to β2 = 3, near attained in the table with
the values α = 3.65 and θ = 0.01) and leptokurtic (corresponding to
β2 > 3).

3.2 Order statistics

From the modeling of various real-life phenomena involving the mix-
ing of minimum and maximum random variables, the concept of order
statistics is born. We may refer the reader to [9] and [5]. Here, we
discuss some properties of the order statistics of the PML distribution.
Firstly, the pdf of the mth order statistic the PML distribution, denoted
by X(m), is defined as

fX(m)
(x;α, θ) = n

(
n− 1

m− 1

)
f(x;α, θ)F (x;α, θ)m−1S(x;α, θ)n−m, x ∈ R.
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Table 1: Numerical values for the first four crude moments of X,
√
β1

and β2 for various choices of parameters

Parameters µ µ′2 µ′3 µ′4
√
β1 β2

α = 0.5 0.2361 0.3055 0.9992 6.1694 6.48045 85.2287

θ = 3

α = 1.6 0.6206 0.5181 0.5289 0.6308 0.8743 3.9639

θ = 2

α = 5.8 2.2036 4.9504 11.3199 26.3129 -0.1936 3.1293

θ = 0.01

α = 30 0.9106 0.8306 0.7589 0.6944 -0.9853 4.7209

θ = 10

α = 3.5 0.47099 0.2431 0.1345 0.0787 -0.0025 2.7445

θ = 10

α = 10 0.8162 0.6751 0.5650 0.4778 -0.6910 3.7484

θ = 5

α = 3.49005 0.4700 0.2422 0.1338 0.0783 9.18×10−7 2.7440

θ = 10

α = 5 0.9581 0.9545 0.9819 1.0384 -0.3614 3.2298

θ = 1

α = 3.65 3.5417 13.1392 50.7832 203.6499 0.0663 3.0008

θ = 0.01



14 C. CHESNEAU, L. TOMY AND M. JOSE

That is, owing to (3), (4) and (5), for x > 0, we have

fX(m)
(x;α, θ) = n

(
n− 1

m− 1

)
θα

1 + θ
xα−1

[
(1 + θ)eθx

α
+ 2θxα − 1

]
×{

1−
[
1 +

θxα

1 + θ
e−θx

α

]
e−θx

α

}m−1 [
1 +

θxα

1 + θ
e−θx

α

]n−m
×

e−θ(n−m+2)xα , x > 0,

and fX(m)
(x;α, θ) = 0 for x < 0.

In particular, for x > 0, the pdf of X(1) = inf(X1, . . . , Xn) is given
as

fX(1)
(x;α, θ) = n

θα

1 + θ
xα−1

[
(1 + θ)eθx

α
+ 2θxα − 1

]
×[

1 +
θxα

1 + θ
e−θx

α

]n−1
e−θ(n+1)xα ,

and the pdf of X(n) = sup(X1, . . . , Xn) can be set as

fX(n)
(x;α, θ) = n

θα

1 + θ
xα−1e−2θx

α
[
(1 + θ)eθx

α
+ 2θxα − 1

]
×{

1−
[
1 +

θxα

1 + θ
e−θx

α

]
e−θx

α

}n−1
.

Furthermore, X(1) enjoys a singular asymptotic distribution result as
described below. First, note that, for x > 0,

lim
ε→0

F (εx;α, θ)

F (ε;α, θ)
= lim

ε→0

xf(εx;α, θ)

f(ε;α, θ)

= xα lim
ε→0

e−2θε
αxα

[
(1 + θ)eθε

αxα + 2θεαxα − 1
]

e−2θεα [(1 + θ)eθεα + 2θεα − 1]
= xα.

It follows from [5, Theorem 8.3.6(ii)] that the minimal domain of attrac-
tion of the PML distribution is the standard Weibull distribution with
parameters 1 and α, i.e., with cdf K(x;α) = 1 − e−xα for x > 0, and
K(x;α) = 0 for x < 0.
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4 Parametric Estimation and Application

This section is devoted to the practical features of the PML model.
First, we investigate the estimation of the parameters θ and α, along
with a simulation study, then applications are given for three different
data sets.

4.1 Parametric estimation

Here, the parameters α and θ are assumed to be unkown. For estimat-
ing them, we propose the method of maximum likelihood. Thus, let
x1, . . . , xn be a n independent observations from the PML distribution
with unknown parameters α and θ, corresponding to data. Then, the
likelihood function is given by

L(α, θ) =

n∏
i=1

f(xi;α, θ)

=
θnαn

(1 + θ)n
e−2θ

∑n
i=1 x

α
i

(
n∏
i=1

xi

)α−1 n∏
i=1

[
(1 + θ)eθx

α
i + 2θxαi − 1

]
.

The log-likelihood function follows immediately as

`(α, θ) = log [L(α, θ)] = n log(θ) + n log(α)− n log(1 + θ)

− 2θ
n∑
i=1

xαi + (α− 1)
n∑
i=1

log(xi) +
n∑
i=1

log
[
(1 + θ)eθx

α
i + 2θxαi − 1

]
.

The maximum likelihood estimates (MLEs) for α and θ, say α̂ and θ̂ are
defined as (α̂, θ̂) = arg max(α,θ)∈(0,+∞)2 L(α, θ) or, equivalently, (α̂, θ̂) =
arg max(α,θ)∈(0,+∞)2 `(α, θ). One can obtained these estimates by solving
∂`(α, θ)/∂α = 0 and ∂`(α, θ)/∂θ = 0 (simultaneously) according to α
and θ, equations which can be expressed analytically as

n

α
− 2θ

n∑
i=1

xαi log(xi) +

n∑
i=1

log(xi) + θ

n∑
i=1

xαi log(xi)
[
(1 + θ)eθx

α
i + 2

]
(1 + θ)eθx

α
i + 2θxαi − 1

= 0

and

n

θ
− n

1 + θ
− 2

n∑
i=1

xαi +

n∑
i=1

eθx
α
i [(1 + θ)xαi + 1] + 2xαi

(1 + θ)eθx
α
i + 2θxαi − 1

= 0.
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These equations are complicated to solve analytically. One can use
mathematical software to get numerical solutions. Under regularity con-
ditions, the bi-dimensional normal distribution N2((α, θ), J

−1(α̂, θ̂)) can
approximate the underlying distribution of (α̂, θ̂), where J(α, θ) denote
the following 2× 2 matrix:

J(α, θ) = −

∂
2`(α, θ)

∂α2

∂2`(α, θ)

∂α∂θ
∂2`(α, θ)

∂θ∂α

∂2`(α, θ)

∂θ2

 ,

whose components can be expressed analytically with mathematical de-
velopments. This asymptotic result can be used to generate asymptotic
confidence intervals, statistical tests, and so on.

4.2 Simulation study

Here, we perform a simulation study evaluating the performance of the
MLEs presented above for the PML model for selected values of the
parameters α and θ. The simulation experiment was repeated 1000
times each with sample sizes of 20, 50, 100, 200, and the parameter
combinations are as follows:
I) α = 1.95 and θ = 0.85, II) α = 0.2 and θ = 0.1, III) α = 1.5 and
θ = 0.5, IV) α = 2 and θ = 1.
The algorithm for the simulation study is formalized as follows:

Step 1: Set the number of replications denoted by N .

Step 2: Set the sample size denoted by n and the values of the param-
eters α and θ.

Step 3: Set the initial value for the random start, denoted by x0.

Step 4: For j = 1, . . . , n, generate uj from a random variable Uj fol-
lowing the unit uniform distribution.

Step 5: Update x0 by x∗ by using the Newton’s formula as follows:

x∗ = x0 −
{
F (x0;α, θ)− uj
f(x0;α, θ)

}
,
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where F (x0;α, θ) and f(x0;α, θ) are the cdf and pdf of the PML
distribution at x = x0 as given by (3) and (5), respectively.

Step 6: If |x0−x∗| ≤ ε for small ε > 0, ε being considered as a tolerance
limit, then x = x∗ is considered as a generated value from the PML
distribution with parameter α and θ, else set x0 = x∗ and go to
Step 5.

Step 7: Repeat Steps 4 to 6 for j = 1, . . . , n to obtain n values
x1, . . . , xn.

Step 8: Compute the MLEs of α and θ from x1, . . . , xn.

Step 9: Repeat Steps 2 to 8, N times.

Step 10: Compute the average estimate (AE), Bias and mean square
error (MSE) for each parameter, defined as

AE(α) =
1

N

N∑
i=1

α̂i, Bias(α) =
1

N

N∑
i=1

(α̂i − α),

MSE(α) =
1

N

N∑
i=1

(α̂i − α)2,

AE(θ) =
1

N

N∑
i=1

θ̂i,

Bias(θ) =
1

N

N∑
i=1

(θ̂i − θ), MSE(θ) =
1

N

N∑
i=1

(θ̂i − θ)2,

where α̂i and θ̂i are the MLEs of α and θ, respectively, obtained
at the ith replication.

Table 2 presents the AEs, Bias and MSEs values of parameters for dif-
ferent sample sizes. Figures 3 and 4 give the graphical representations
of the Bias and MSE related to the two parameters.
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Table 2: Numerical values for the AEs, Bias and MSE of the parameters
based on 1000 simulations in the setting of the PML model

n Parameters AEs Bias MSE

I 20 α 2.038336 0.08833574 0.2176643
θ 0.8708443 0.02084432 0.03701037

50 α 1.996429 0.04642946 0.08285901
θ 0.8572819 0.00728185 0.01355176

100 α 1.96219 0.01219701 0.06173568
θ 0.8453169 -0.004683061 0.00622736

200 α 1.951196 0.001195866 0.04729822
θ 0.8455547 -0.004445285 0.003326896

II 20 α 0.2138739 0.01387395 0.001786709
θ 0.09174396 -0.008256044 0.003104728

50 α 0.2049212 0.00492118 0.0005953382
θ 0.09577495 -0.00422505 0.001230094

100 α 0.2017429 0.001742857 0.0001910657
θ 0.09837379 -0.001626206 0.0007620415

200 α 0.200525 0.0005250294 8.89×10−6

θ 0.09927519 -0.0007248077 1.50×10−5

III 20 α 1.592697 0.09269666 0.100596
θ 0.4914032 -0.008596789 0.01619796

50 α 1.526672 0.0266715 0.04286805
θ 0.4986687 -0.00133133 0.00605377

100 α 1.50961 0.009610091 0.03863887
θ 0.49886 -0.001139978 0.003621219

200 α 1.493986 -0.006014323 0.03088576
θ 0.5006133 0.0006133199 0.001788008

IV 20 α 2.112133 0.1121327 0.2631284
θ 1.021017 0.02101712 0.05205832

50 α 2.049721 0.04972109 0.08723618
θ 1.005752 0.005751939 0.01899681

100 α 2.012916 0.01291555 0.06636949
θ 0.9978486 -0.002151383 0.008961524

200 α 2.003441 0.003441277 0.0336673
θ 1.000845 0.0008452682 0.004373854
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(a) (b)

Figure 3: Curves of the Bias for the estimates of (a) α and (b) θ for
various sample sizes

(a) (b)

Figure 4: Curves of the MSE for the estimates of (a) α and (b) θ for
various sample sizes
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From Table 2, and Figures 3 and 4, it can be noted that, as sample
size increases, the Bias decays towards zero and MSE decreases. That
is, this illustrates the fact that the parent estimators are asymptotically
unbiased and consistent. Hence, the maximum likelihood method works
quite well to estimate the parameters of the PML model.

4.3 Application

Now, we use the previous parametric estimation for data fitting pur-
poses. We fit the PML distribution to three data sets and compare the
results with those of the fitted Weibull (W), PL, exponentiated power
Lindley (EPL) and three-parameter generalized Lindley (TGL) distribu-
tions. The corresponding pdfs of these competitors are recalled below.

� For the W distribution:

f(x;α, θ) =
α

θ

(x
θ

)α−1
e−(x/θ)

α
, x > 0,

with α > 0 and θ > 0, and f(x;α, θ) = 0 for x < 0.

� For the PL distribution:

f(x;α, θ) =
αθ2

θ + 1
(1 + xα)xα−1e−θx

α
, x > 0,

with α > 0 and θ > 0, and f(x;α, θ) = 0 for x < 0.

� For the EPL distribution:

f(x;α, β, θ) =
αθ2βxβ−1

θ + 1
(1 + xβ)e−θx

β

[
1−

(
1 +

θxβ

θ + 1

)
e−θx

β

]α−1
,

x > 0 with α > 0, β > 0 and θ > 0, , and f(x;α, β, θ) = 0 for
x < 0.

� For the TGL distribution

f(x;α, β, θ) =
αθ2(β + xα)xα−1e−θx

α

1 + θβ
, x > 0,

with α > 0, β > 0 and θ > 0, and f(x;α, β, θ) = 0 for x < 0.
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We estimate the unknown parameters of each model by the maximum
likelihood method of estimation. In order to compare the five models,
we consider criteria like the statistic log-likelihood (ˆ̀), Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), corrected
Akaike information criterion (AICc), Hannan-Quinn information crite-
rion (HQIC) and the values of the Kolmogorov-Smirnov (K-S) statistic,
and the corresponding p-values (p-V) for the three different data sets.

The model with the lowest AIC, BIC, AICc, HQIC and K-S and the
largest p-V is considered the best.

Bladder cancer patients data

According to [23], the data represent the remission times (in months)
of a random sample of 128 bladder cancer patients. The data are as
follows.
{0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.2, 2.23, 0.26, 0.31,
0.73, 0.52, 4.98, 6.97, 9.02, 13.29, 0.4, 2.26, 3.57, 5.06, 7.09, 11.98, 4.51,
2.07, 0.22, 13.8, 25.74, 0.5, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 19.13, 6.54,
3.36, 0.82, 0.51, 2.54, 3.7, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 1.76,8.53,
6.93, 0.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 3.25,
12.03, 8.65, 0.39, 10.34, 14.83, 34.26, 0.9, 2.69, 4.18, 5.34, 7.59, 10.66,
4.5, 20.28, 12.63, 0.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62,
43.01, 6.25, 2.02, 22.69, 0.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26,
2.83, 4.33, 8.37, 3.36, 5.49, 0.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62,
7.87, 11.64, 17.36, 12.02, 6.76, 0.4, 3.02, 4.34, 5.71, 7.93, 11.79, 18.1,
1.46, 4.4, 5.85, 2.02, 12.07}

Tables 3 and 4 give the relevant numerical values for all the fitted
models based on the bladder cancer patients data set. Figure 5 gives
the graphs of the estimated pdfs and cdfs of the fitted models for the
bladder cancer patients data set.
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Table 3: Estimated values, ˆ̀, AIC and BIC for the bladder cancer
patients data set

Distributions Estimates −ˆ̀ AIC BIC

PML α̂ = 0.7290 401.2802 806.5603 812.2644

θ̂ = 0.2775

W α̂ = 0.9229 402.1907 808.3814 814.0854

θ̂ = 8.2290

PL α̂ = 0.7442 402.2373 808.4745 814.1786

θ̂ = 0.3855

EPL α̂ = 1.8412 401.0833 808.1666 816.7227

β̂ = 0.5785

θ̂ = 0.7252

TGL α̂ = 0.9196 402.2331 810.4661 819.0222

β̂ = 102.6147

θ̂ = 0.1528

Table 4: AICc, HQIC and K-S with p-V for the bladder cancer patients
data set

Distributions AICc HQIC K-S p-V

PML 806.6563 808.878 0.0428 0.9732

W 808.4774 810.699 0.0518 0.8817

PL 808.5705 810.7922 0.0458 0.9512

EPL 808.3601 811.643 0.0480 0.93

TGL 810.6596 813.9426 0.0524 0.8736
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Figure 5: Curves of the estimated (a) pdfs and (b) cdfs of the fitted
models for the bladder cancer patients data set

Fatigue fracture data set

This data represents the life of fatigue fracture of Kevlar 373/epoxy
subjected to constant pressure at 90% stress level until all had failed.
The data was extracted from [1] and was previously used by [4] and [10].
The data are as follows.
{0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671,
0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645,
0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570,
1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733,
1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808,
1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330,
2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911,
3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005,
5.4435, 5.5295, 6.5541, 9.0960}

Tables 5 and 6 give the relevant numerical summaries for all the
fitted models based on fatigue fracture data sets. Figure 6 gives the
graphs of the estimated pdfs and cdfs of the fitted models for the fatigue



24 C. CHESNEAU, L. TOMY AND M. JOSE

Table 5: Estimated values, ˆ̀, AIC and BIC for the fatigue fracture
data set

Distributions Estimates −ˆ̀ AIC BIC

PML α̂ = 1.1182 121.2194 246.4389 251.1004

θ̂ = 0.5324

W α̂ = 1.3257 122.5264 249.0529 253.7144

θ̂ = 2.1328

PL α̂ = 0.7047 122.4018 248.8037 253.4652

θ̂ = 1.1423

EPL α̂ = 1.5375 121.8682 249.7364 256.7286

β̂ = 0.9495

θ̂ = 1.0215

TGL α̂ = 0.9931 121.6506 249.3011 256.2933

β̂ = 0.1478

θ̂ = 0.9635

Table 6: AICc, HQIC and K-S with p-V for the fatigue fracture data
set

Distributions AICc HQIC K-S p-V

PML 246.6033 248.3017 0.0964 0.4516

W 249.2173 250.9157 0.1099 0.2954

PL 248.9681 250.6665 0.1123 0.2722

EPL 250.0697 252.5308 0.0992 0.4156

TGL 249.6344 252.0956 0.1020 0.3822



POWER MODIFIED LINDLEY DISTRIBUTION 25

fracture data set.
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Figure 6: Curves of the estimated (a) pdfs and (b) cdfs of the fitted
models for the fatigue fracture data set

March precipitation data set

This real data set represents 30 successive values of march precipitation
(in inches) in Minneapolis/St Paul given by [22] and the data are as
given below.
{0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1,
0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.9, 2.05}.

Tables 7 and 8 provide the relevant numerical summaries for all the
fitted models based on the march precipitation data set.

Figure 7 gives the graphs of the estimated pdfs and cdfs of the fitted
models for the march precipitation data set.
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Table 7: Estimated values, ˆ̀, AIC and BIC for the march precipitation
data set

Distributions Estimates −ˆ̀ AIC BIC

PML α̂ = 1.4739 38.5278 81.0556 83.8579

θ̂ = 0.4923

W α̂ = 1.8087 38.64328 81.28657 84.08896

θ̂ = 1.8924

PL α̂ = 1.5263 38.8729 81.74579 84.54819

θ̂ = 0.6460

EPL α̂ = 3.4070 38.10625 82.2125 86.41609

β̂ = 0.9235

θ̂ = 1.6304

TGL α̂ = 1.8103 38.6435 83.287 87.49059

β̂ = 358.0827

θ̂ = 0.3179

Table 8: AICc, HQIC and K-S with p-V for the march precipitation
data set

Distributions AICc HQIC K-S p-V

PML 81.5000 81.9521 0.0526 1

W 81.73101 82.18307 0.0689 0.9988

PL 82.19023 82.64231 0.0682 0.999

EPL 83.13558 83.55727 0.0624 0.9998

TGL 84.2100 84.6318 0.0688 0.9989
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Figure 7: Curves of the estimated (a) pdfs and (b) cdfs of the fitted
models for the march precipitation data set

Thus, in Tables 3, 4, 5, 6, 7 and 8, the parameter estimates for
the PML, W, PL, EPL and TGL models are calculated by using the
maximum likelihood method. Also, −ˆ̀, AIC, BIC, AICc, HQIC and
K-S with p-V are presented for the three different data sets. For all of
them, based on the lowest values of the AIC, BIC, AICc, HQIC and K-S
with p-V, the PML model turns out to be a better model than the W,
PL, EPL and TGL models. Figures 5, 6 and 7 show the closeness of the
fitted pdfs with the empirical histogram and fitted cdfs with empirical
cdfs for different data sets. Based on the observations of these plots, the
proposed model provides a closer fit to these data sets.

5 Conclusions

In this paper, a new two-parameter distribution, namely, PML distri-
bution, is proposed based on power transformation over the modified
Lindley distribution. We have exhibited its moments, incomplete mo-
ments, skewness, kurtosis, and order statistics. In the setting of the
PML model, the unknown parameters were estimated by the maximum
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likelihood method of estimation. A simulation study was carried out
to evaluate the bias and mean square error of the maximum likelihood
estimates of the parameters. We have shown by means of three appli-
cations to real data that the proposed model can yield better fits than
the famous W, PL, EPL and TGL models.
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