A Note on LS-Category and Topological Complexity of Real Grassmannian Manifolds

F. Akhtarifar
Urmia University
M. A. Asadi-Golmankhaneh*
Urmia University

Abstract

Let $G_{k, n}$ be the Grassmann manifold of k-planes in \mathbb{R}^{n+k}. The Lusternik-Schnirelmann category and topological complexity are important invariants of topological spaces. In this note we calculate the Lusternik-Schnirelmann category and topological complexity of certain products of Grassmannian manifolds by using cup and zero-cup length. Also we will find the lower and upper bounds of the topological complexity of some Grassmannian manifolds by the same method.

AMS Subject Classification: 55M30; 57N60
Keywords and Phrases: Lusternik-Schnirelmann category, Topological complexity, cup-length, zero divisor cup-length

1 Introduction

In 1934, L. Lusternik and L. Schnirelmann described a new invariant of a manifold called category. Their purpose in creating this concept was to obtain a lower bound on the number of critical points for each

[^0]smooth function on the manifold. This category examines the important concepts of geometry and dynamical systems. The topological complexity is a numerical homotopy invariant, introduced by M. Farber in 2001, and in [5], [6], [7] he examined the topological complexity of the robotics. Topological complexity has close relationship to classical invariant, Lusternik-Schnirelmann category. In [1] we have studied the product of projective spaces by here we are going to study real grassmannian manifolds.

In Section 2 we calculate by known results the category of products of $G_{2}\left(\mathbb{R}^{2^{p}+1}\right)$ and $G_{2}\left(\mathbb{R}^{2^{p}+2}\right)$. In Section 3 first we calculate the topological complexity of $G_{2}\left(\mathbb{R}^{3}\right)$ and $G_{2}\left(\mathbb{R}^{4}\right)$ by different method in [11] following the products of them. In Section 4 we give upper and lower bounds for topological complexity of certain Grasmanian manifolds. Specially we show that $10 \leq T C\left(G_{2}\left(\mathbb{R}^{5}\right)\right) \leq 11$ and $12 \leq T C\left(G_{2}\left(\mathbb{R}^{6}\right)\right) \leq 13$.

Definition 1.1. The Lusternik-Schnirelmann category of a space X is the least integer n such that there exists an open covering U_{1}, \cdots, U_{n+1} of X with each U_{i} contractible to a point in the space X. We denote this by $\operatorname{cat}(X)=n$ and we call such a covering U_{i} categorical. If no such integer exists, we write $\operatorname{cat}(X)=\infty$.

In [5], Michael Farber, defined a numerical invariant $T C(X)$. We may out lined as follows: Let $P X$ denote the space of all continuous paths $\gamma:[0,1] \longrightarrow X$ in X and $\pi: P X \longrightarrow X \times X$ denotes the map associating to any path $\gamma \in P X$ the pair of its initial and end points $\pi(\gamma)=(\gamma(0), \gamma(1))$. Equip the path space $P X$ with the compact-open topology.

Definition 1.2. The topological complexity of a path-connected space X, denoted by $T C(X)$, is the least integer n such that the Cartesian product $X \times X$ can be covered with n open subsets $U_{i}, X \times X=U_{1} \cup$ $U_{2} \cup \cdots \cup U_{n}$ such that for any $i=1,2, \cdots, n$ there exists a continuous local section $s_{i}: U_{i} \longrightarrow P X$ of π, that is, $\pi \circ s_{i}=i d$ over U_{i}. If no such m exists we will set $T C(X)=\infty$.

Theorem 1.3. Let $G_{k, n}$ denote the Grassmann manifold of k-planes in \mathbb{R}^{n+k}. Then $H^{*}\left(G_{k, n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}, \ldots, w_{k}\right] / I_{k, n}$ where $I_{k, n}$ is the ideal generated by the dual Stiefel-Whitney classes $\bar{w}_{n+1}, \ldots, \bar{w}_{n+k}$.

Proof. See [3] for a proof.
Remark 1.4. The set $\left\{w_{1}^{a} w_{2}^{b}: a+b \leq n\right\}$ is vector space basis for the cohomology ring $H^{*}\left(G_{2, n} ; \mathbb{Z}_{2}\right)$.

2 LS-category of the products of $G_{2}\left(\mathbb{R}^{2^{p}+1}\right)$, $G_{2}\left(\mathbb{R}^{2^{p}+2}\right)$

This section is devoted to calculate $L S$-category of certain products of real Grassmannian manifolds by using cup-length.

Definition 2.1. Let R be a commutative ring and X be a space. The cup-length of X with coefficients in R is the least integer k (or ∞) such that all $(k+1)$-fold cup products vanish in the reduced cohomology $\widetilde{H}^{*}(X ; R)$; we denote this integer by $\operatorname{cup}_{R}(X)$.

Proposition 2.2. The R-cuplength of a space is less than or equal to the category of the space for all coefficients R. In notation, we write $\operatorname{cup}_{R}(X) \leq \operatorname{cat}(X)$.

Proof. See Proposition 1.5 in [4].
Theorem 2.3. For a path-connected locally contractible paracompact space, $\operatorname{cat}(X) \leq \operatorname{dim}(X)$.

Proof. See Theorem 1.7 in [4].
Example 2.4. Since $H^{*}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}[a] /\left\langle a^{n+1}\right\rangle$ with $\operatorname{deg}(a)=1$. Since $a^{n} \neq 0$, then $\operatorname{cup}\left(\mathbb{R} P^{n}\right)=n \leq \operatorname{cat}\left(\mathbb{R} P^{n}\right) \leq \operatorname{dim}\left(\mathbb{R} P^{n}\right)=n$. Thus, $\operatorname{cat}\left(\mathbb{R} P^{n}\right)=n$.

Theorem 2.5. Suppose X and Y are path-connected spaces such that $X \times Y$ is completely normal. Then $\operatorname{cat}(X \times Y) \leq \operatorname{cat}(X)+\operatorname{cat}(Y)$.

Proof. See Theorem 1.37 in [4].
Theorem 2.6. If X is a closed, connected n-manifold with $\pi_{1}(X) \approx \mathbb{Z}_{2}$, then $\operatorname{cat}(X)=\operatorname{dim}(X)$ iff $w^{\operatorname{dim}(X)} \neq 0$, where w is the nonzero element of $H^{1}\left(X ; \mathbb{Z}_{2}\right)$.

Proof. See a proof $[2,10] . \quad \square$ From Theorem 2.6 we have the following corollary.

Corollary 2.7. $w^{\operatorname{dim}(X)}=0$ if and only if $\operatorname{cat}(X)<\operatorname{dim}(X)$.
Theorem 2.8. For any positive integers $p \geq 1$, we have:

$$
\operatorname{cat}\left(G_{2}\left(\mathbb{R}^{2^{p}+1}\right)\right)=2^{p+1}-2 .
$$

Proof. See [2] for a proof.
Theorem 2.9. For any positive integer $p_{i} \geq 1, m \geq 1$, we have:

$$
\begin{aligned}
& \operatorname{cat}\left(G_{2}\left(\mathbb{R}^{2^{p_{1}+1}}\right) \times G_{2}\left(\mathbb{R}^{2^{p_{2}}+1}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{2^{p_{m}}+1}\right)\right)= \\
& 2^{p_{1}+1}+2^{p_{2}+1}+\cdots+2^{p_{m}+1}-2 m
\end{aligned}
$$

Proof. Since $H^{*}\left(G_{k, n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}, \ldots, w_{k}\right] / I_{k, n}$, by Künneth formulas

$$
\begin{aligned}
H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p_{1}}+1}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{2^{p_{m}}+1}\right)\right) & = \\
H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p_{1}}+1}\right)\right) \otimes \ldots \otimes H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p_{m}}+1}\right)\right) & =\mathbb{Z}_{2}\left[w_{1}, w_{2}\right] /\left\langle\bar{w}_{2^{p_{1}}}, \bar{w}_{2^{p_{1}+1}}\right\rangle \otimes \\
\cdots \otimes \mathbb{Z}_{2}\left[w_{1}, w_{2}\right] /\left\langle\bar{w}_{2^{p_{m}}}, \bar{w}_{2^{p_{m}}+1}\right\rangle &
\end{aligned}
$$

Since $\operatorname{cat}\left(G_{2}\left(\mathbb{R}^{2^{p}+1}\right)\right)=\operatorname{dim}\left(G_{2}\left(\mathbb{R}^{2^{p}+1}\right)\right)$, then by Theorem 2.6; $w_{1}^{\text {dim }} \neq$ 0 and $w_{1}^{\operatorname{dim}+1}=0$. Set,

$$
\begin{aligned}
\alpha_{1} & =w_{1} \otimes 1 \otimes 1 \otimes \cdots \otimes 1 \\
\alpha_{2} & =1 \otimes w_{1} \otimes 1 \otimes \cdots \otimes 1 \\
\vdots & \\
\alpha_{m} & =1 \otimes 1 \otimes \cdots \otimes 1 \otimes w_{1} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\alpha_{1}^{2^{p_{1}+1}-2} & =w_{1}^{2^{p_{1}+1}-2} \otimes \cdots \otimes 1 \\
\alpha_{2}^{2^{p_{2}+1}-2} & =1 \otimes w_{1}^{2^{p_{2}+1}-2} \otimes \cdots \otimes 1 \\
\vdots & \\
\alpha_{m}^{2^{p_{m}+1}-2} & =1 \otimes 1 \otimes \cdots \otimes w_{1}^{2_{m+1}-2} .
\end{aligned}
$$

Therefore
$\alpha_{1}^{2^{p_{1}+1}-2} \alpha_{2}^{2^{p_{2}+1}-2} \cdots \alpha_{m}^{2^{p_{m+1}}-2}=w_{1}^{2^{p_{1}+1}-2} \otimes w_{1}^{2^{p_{2}+1}-2} \otimes \cdots \otimes w_{1}^{2^{p_{m}+1}-2} \neq 0$.

From which,
$\operatorname{cup}_{\mathbb{Z}_{2}}\left(G_{2}\left(\mathbb{R}^{2^{p_{1}}+1}\right) \times G_{2}\left(\mathbb{R}^{2^{p_{2}}+1}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{2^{p_{m}}+1}\right)\right) \geq\left(2^{p_{1}+1}-2\right)+$
$\left.\left(2^{p_{2}+1}-2\right)+\cdots+\left(2^{p_{m}+1}-2\right)\right)=2^{p_{1}+1}+2^{p_{2}+1}+\cdots+2^{p_{m}+1}-2 m$.
On the other hand, By Theorem 2.5,
$\operatorname{cat}\left(G_{2}\left(\mathbb{R}^{2^{p_{1}}+1}\right) \times G_{2}\left(\mathbb{R}^{2^{p_{2}}+1}\right) \times \cdots \times G_{2}\left(R^{2^{p_{m}}+1}\right)\right) \leq 2^{p_{1}+1}+2^{p_{2}+1}+\cdots+$ $2^{p_{m}+1}-2 m$.

Now by Proposition 2.2,
$\operatorname{cat}\left(G_{2}\left(\mathbb{R}^{2^{p_{1}}+1}\right) \times G_{2}\left(\mathbb{R}^{2^{p_{2}}+1}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{2^{p_{m}}+1}\right)\right)=2^{p_{1}+1}+2^{p_{2}+1}+$ $\cdots+2^{p_{m}+1}-2 m$.

Corollary 2.10. For any positive integer p, we have;

$$
\operatorname{cat} \underbrace{\left(G_{2}\left(\mathbb{R}^{2^{p}+1}\right) \times G_{2}\left(\mathbb{R}^{2^{p}+1}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{2^{p}+1}\right)\right)}_{m \text {-times }}=m\left(2^{p+1}-2\right) .
$$

Theorem 2.11. For any positive integer p, $\operatorname{cat}\left(G_{2}\left(\mathbb{R}^{2^{p}+2}\right)\right)=2^{p+1}-1$.
Proof. See [10] for a proof.
Theorem 2.12. For any positive integer $p_{i} \geq 1, m \geq 1$, we have:

$$
\operatorname{cat} \underbrace{\left(G_{2}\left(\mathbb{R}^{2^{p_{1}}+2}\right) \times G_{2}\left(\mathbb{R}^{2^{p_{2}}+2}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{2^{p_{m}}+2}\right)\right)}_{m-\text { times }}=
$$

Proof. Since $H^{*}\left(G_{k, n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}, \ldots, w_{k}\right] / I_{k, n}$, by Künneth formulas

$$
\begin{aligned}
H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p_{1}+2}}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{2^{p_{m}}+2}\right)\right) & = \\
H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p_{1}}+2}\right)\right) \otimes \cdots \otimes H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p_{m}}+2}\right)\right) & =\mathbb{Z}_{2}\left[w_{1}, w_{2}\right] /\left\langle\bar{w}_{2^{p_{1}+1}}, \bar{w}_{2^{p_{1}+2}}\right\rangle \otimes \\
\cdots \otimes \mathbb{Z}_{2}\left[w_{1}, w_{2}\right] /\left\langle\bar{w}_{2^{p_{m}}+1}, \bar{w}_{2^{p_{m}}+2}\right\rangle . &
\end{aligned}
$$

Where

$$
\begin{gathered}
\bar{w}_{2^{p_{i}}+1}=w_{1}^{2^{p_{i}}+1}+\cdots+w_{1} w_{2}^{2^{p_{i}-1}} \\
\bar{w}_{2^{p_{i}}+2}=w_{1}^{2^{p_{i}}+2}+w_{1}^{2^{p_{i}}} w_{2}+\cdots+w_{2}^{2^{p_{i}-1}+1}
\end{gathered}
$$

Since $\operatorname{cat}\left(G_{2}\left(\mathbb{R}^{2^{p_{i}}+2}\right)<\operatorname{dim}\left(G_{2}\left(\mathbb{R}^{2^{p_{i}}+2}\right)\right.\right.$, then by Corollary $2.7, w_{1}^{2^{p_{i}+1}-1}=$ 0 but $w_{1}^{2^{p_{i}+1}-2} \neq 0$. Set:

$$
\begin{aligned}
\alpha_{1} & =w_{1} \otimes 1 \otimes 1 \otimes \cdots \otimes 1 \\
\alpha_{2} & =1 \otimes w_{1} \otimes 1 \otimes \cdots \otimes 1 \\
\vdots & \\
\alpha_{m} & =1 \otimes 1 \otimes \cdots \otimes 1 \otimes w_{1}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\alpha_{1}^{2^{p_{i}+1}-2} & =w_{1}^{2^{p_{i}+1}-2} \otimes \cdots \otimes 1 \\
\alpha_{2}^{2^{p_{i}+1}-2} & =1 \otimes w_{1}^{2^{p_{i}+1}-2} \otimes \cdots \otimes 1 \\
\vdots & \\
\alpha_{m}^{2^{p_{i}+1}-2} & =1 \otimes 1 \otimes \cdots \otimes w_{1}^{2^{p_{i}+1}-2} .
\end{aligned}
$$

Also let,

$$
\begin{aligned}
\beta_{1} & =w_{2} \otimes 1 \otimes 1 \otimes \cdots \otimes 1 \\
\beta_{2} & =1 \otimes w_{2} \otimes 1 \otimes \cdots \otimes 1 \\
\vdots & \\
\beta_{m} & =1 \otimes 1 \otimes \cdots \otimes 1 \otimes w_{2} .
\end{aligned}
$$

Therefore for $i=1, \cdots, m$

$$
\alpha_{1}^{2^{p_{i}+1}-2} \cdots \alpha_{m}^{2^{p_{i}+1}-2} \beta_{1} \cdots \beta_{m}=w_{1}^{2^{p_{i}+1}-2} w_{2} \otimes w_{1}^{2^{p_{i}+1}-2} w_{2} \otimes \cdots \otimes w_{1}^{2^{p_{i}+1}-2} w_{2} \neq 0
$$

From which,

$$
\begin{aligned}
& \operatorname{cup}_{\mathbb{Z}_{2}}\left(G_{2}\left(\mathbb{R}^{2^{p_{1}}+2}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{2^{p_{m}}+2}\right)\right) \geq\left(2^{p_{1}+1}-1\right)+\cdots+\left(2^{p_{m}+1}-1\right)= \\
& 2^{p_{1}+1}+2^{p_{2}+1}+\cdots+2^{p_{m}+1}-m
\end{aligned}
$$

Now by Theorem 2.5 and Proposition 2.2 we have

$$
\operatorname{cat}\left(G_{2}\left(\mathbb{R}^{2^{p_{1}}+2}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{2^{p_{m}}+2}\right)\right)=2^{p_{1}+1}+2^{p_{2}+1}+\cdots+2^{p_{m}+1}-m .
$$

Corollary 2.13. For any positive integer p, we have;

$$
\operatorname{cat} \underbrace{\left(G_{2}\left(\mathbb{R}^{2^{p}+2}\right) \times G_{2}\left(\mathbb{R}^{2^{p}+2}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{2^{p}+2}\right)\right)}_{m \text {-times }}=m\left(2^{p+1}-1\right) .
$$

3 Topological complexity of products of $G_{2}\left(\mathbb{R}^{3}\right)$, $G_{2}\left(\mathbb{R}^{4}\right)$

In this section we will calculate the topological complexity of $G_{2}\left(\mathbb{R}^{3}\right)$, $G_{2}\left(\mathbb{R}^{4}\right)$ following the product of them. We briefly recall a result from [3] giving a lower bound on $T C(X)$. It is quite useful since it allows us an effective computation of $T C(X)$ in many examples. A lower bound for topological complexity is obtained by using the zero-divisor-cup-length of X.

Definition 3.1. Let k be a field. The kernel of homomorphism

$$
\cup: H^{*}(X ; k) \otimes H^{*}(X ; k) \longrightarrow H^{*}(X ; k)
$$

is called the ideal of the zero-divisors of $H^{*}(X ; k)$. The zero-divisors-cup-length of $H^{*}(X ; k)$ is the length of the longest nontrivial product in the ideal of the zero-divisors of $H^{*}(X ; k)$. This number will be denoted by $z c l(X)$.

Theorem 3.2. The number $T C(X)$ is greater than the zero-divisors-cup-length of $H^{*}(X ; K)$.

Proof. See Theorem 7 in [6].
Theorem 3.3. If X is path-connected and paracompact then

$$
\operatorname{cat}(X) \leq T C(X) \leq 2 \cdot \operatorname{cat}(X)-1 .
$$

Proof. See Theorem 5 in [6].
Theorem 3.4. For any path-connected metric spaces X and Y,

$$
T C(X \times Y) \leq T C(X)+T C(Y)-1
$$

Proof. See Theorem 11 in [6].
Lemma 3.5. $T C\left(G_{2}\left(\mathbb{R}^{3}\right)\right)=4$.
Proof. Since $G_{2}\left(\mathbb{R}^{3}\right)$ is infact $\mathbb{R} P^{2}$, so by [5], $T C\left(\mathbb{R} P^{2}\right)=4=T C\left(G_{2}\left(\mathbb{R}^{3}\right)\right)$.
We may give another proof with the method of zero divisior cup length. Since $H^{*}\left(\left(G_{2}\left(\mathbb{R}^{3}\right)\right) ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}, w_{2}\right] /\left\langle\bar{w}_{2}, \bar{w}_{3}\right\rangle$ and $\bar{w}_{2}=w_{1}^{2}+w_{2}, \bar{w}_{3}=$ w_{1}^{3}, we have $H^{*}\left(\left(G_{2}\left(\mathbb{R}^{3}\right)\right) ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}, w_{2}\right] /\left\langle w_{1}^{2}+w_{2}, w_{1}^{3}\right\rangle$. Now define $\alpha, \beta \in H^{*}\left(G_{2}\left(\mathbb{R}^{3}\right) \otimes H^{*}\left(G_{2}\left(\mathbb{R}^{3}\right)\right.\right.$, by: $\alpha=\left(w_{1} \otimes 1\right)+\left(1 \otimes w_{1}\right)$, $\beta=\left(w_{2} \otimes 1\right)+\left(1 \otimes w_{2}\right)$.
Since $\alpha^{2}=\left(w_{1}^{2} \otimes 1\right)+\left(1 \otimes w_{1}^{2}\right), \alpha^{3}=\left(w_{1}^{2} \otimes w_{1}\right)+\left(w_{1} \otimes w_{1}^{2}\right), \beta^{2}=$ $\left(w_{2}^{2} \otimes 1\right)+\left(1 \otimes w_{2}^{2}\right)=0$, but $\alpha^{3} \beta=0$ on the other hand $\alpha^{2} \beta=$ $\left(w_{1}^{2} \otimes w_{2}\right)+\left(w_{2} \otimes w_{1}^{2}\right) \neq 0$ consequently $z c l\left(G_{2}\left(\mathbb{R}^{3}\right)\right) \geq 3$, by Theorem 3.3, $3<T C\left(G_{2}\left(\mathbb{R}^{3}\right)\right) \leq 4$, as a result $T C\left(G_{2}\left(\mathbb{R}^{3}\right)\right)=4$.
Lemma 3.6. For any positive integer m, we have:

$$
z c l \underbrace{\left(G_{2}\left(\mathbb{R}^{3}\right) \times G_{2}\left(\mathbb{R}^{3}\right) \times \ldots \times G_{2}\left(\mathbb{R}^{3}\right)\right)}_{m \text {-times }} \geq 3 m .
$$

Proof. Remember by Theorem 2.6, $w_{1}^{2} \neq 0$. Let $\alpha_{i}, \beta_{i} \in H^{*}\left(G_{2}\left(\mathbb{R}^{3}\right) \times\right.$ $\left.G_{2}\left(\mathbb{R}^{3}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{3}\right)\right) \otimes H^{*}\left(G_{2}\left(\mathbb{R}^{3}\right) \times G_{2}\left(\mathbb{R}^{3}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{3}\right)\right)$, for $i=1,2, \cdots, m$, defined by:

$$
\begin{aligned}
\alpha_{1} & =\left(w_{1} \otimes 1 \otimes \cdots \otimes 1\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(w_{1} \otimes 1 \otimes \cdots \otimes 1\right), \\
\alpha_{2} & =\left(1 \otimes w_{1} \otimes \cdots \otimes 1\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(1 \otimes w_{1} \otimes \cdots \otimes 1\right), \\
\vdots & \\
\alpha_{m} & =\left(1 \otimes 1 \otimes \cdots \otimes w_{1}\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(1 \otimes 1 \otimes \cdots \otimes w_{1}\right) \\
\text { and } & \\
\beta_{1} & =\left(w_{2} \otimes 1 \otimes \cdots \otimes 1\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(w_{2} \otimes 1 \otimes \cdots \otimes 1\right), \\
\beta_{2} & =\left(1 \otimes w_{2} \otimes \cdots \otimes 1\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(1 \otimes w_{2} \otimes \cdots \otimes 1\right), \\
\vdots & \\
\beta_{m} & =\left(1 \otimes 1 \otimes \cdots \otimes w_{2}\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(1 \otimes 1 \otimes \cdots \otimes w_{2}\right) .
\end{aligned}
$$

We may show by easy calculation that $\alpha_{i} s$ and $\beta_{i} s$ are in the kernel of $\cup: H^{*}(X) \otimes H^{*}(X) \longrightarrow H^{*}(X)$. Clearly $\alpha_{i}^{2} \neq 0$ and calculation shows that

$$
\alpha_{1}^{2} \alpha_{2}^{2} \cdots \alpha_{m}^{2} \beta_{1} \cdots \beta_{m}=w_{1}^{2} w_{2} \otimes w_{1}^{2} w_{2} \otimes \cdots \otimes w_{1}^{2} w_{2} \neq 0 .
$$

Consequently,

$$
z c l\left(G_{2}\left(\mathbb{R}^{3}\right) \times G_{2}\left(\mathbb{R}^{3}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{3}\right)\right) \geq 2 m+m=3 m
$$

Theorem 3.7. For any positive integer $m \geq 1$, we have:

$$
T C \underbrace{\left(G_{2}\left(\mathbb{R}^{3}\right) \times G_{2}\left(\mathbb{R}^{3}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{3}\right)\right)}_{\text {m-times }}=3 m+1 .
$$

Proof. This proof follows by Theorems 3.4 and Lemmas 3.5, 3.6.
Lemma 3.8. $T C\left(G_{2}\left(\mathbb{R}^{4}\right)\right)=5$.
Proof. First, we calculate the zero divisior cup length of $G_{2}\left(\mathbb{R}^{4}\right)$.
Since $H^{*}\left(\left(G_{2}\left(\mathbb{R}^{4}\right)\right) ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}, w_{2}\right] /\left\langle\bar{w}_{3}, \bar{w}_{4}\right\rangle$ and $\bar{w}_{3}=w_{1}^{3}, \bar{w}_{4}=w_{1}^{4}+$ $w_{1}^{2} w_{2}+w_{2}^{2}$, we have $H^{*}\left(\left(G_{2}\left(\mathbb{R}^{4}\right)\right) ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}, w_{2}\right] /\left\langle w_{1}^{3}, w_{1}^{2} w_{2}+w_{2}^{2}\right\rangle$. Now let $\alpha, \beta \in H^{*}\left(G_{2}\left(\mathbb{R}^{4}\right) \otimes H^{*}\left(G_{2}\left(\mathbb{R}^{4}\right)\right.\right.$, defined by:

$$
\alpha=\left(w_{1} \otimes 1\right)+\left(1 \otimes w_{1}\right), \quad \beta=\left(w_{2} \otimes 1\right)+\left(1 \otimes w_{2}\right)
$$

By an easy calculation we see that

$$
\alpha^{3} \beta=\left(w_{1}^{2} w_{2} \otimes w_{1}\right)+\left(w_{1}^{2} \otimes w_{1} w_{2}\right)+\left(w_{1} w_{2} \otimes w_{1}^{2}\right)+\left(w_{1} \otimes w_{1}^{2} w_{2}\right) \neq 0 .
$$

Consequently $z \operatorname{cl}\left(G_{2}\left(\mathbb{R}^{4}\right)\right) \geq 4$, on the other hand by Theorem 3.3, $4<$ $T C\left(G_{2}\left(\mathbb{R}^{4}\right)\right) \leq 5$, as a result $T C\left(G_{2}\left(\mathbb{R}^{4}\right)\right)=5$.
K. J. Pearson and Tan Zhang in [11] used the equality $T C(X)=$ $\operatorname{cat}(X \times X)$, to compute the topological complexity of $G_{2}\left(\mathbb{R}^{4}\right)$, which is not true in general. In fact we have $T C(X) \leq \operatorname{cat}(X \times X)$. See the following example.
Example 3.9. Let $X=G_{2}\left(\mathbb{R}^{4}\right)$ by Lemma $3.11 T C(X)=5$ and by Corollary $2.13 \operatorname{cat}(X \times X)=6$. This shows that the equality $T C(X)=$ $\operatorname{cat}(X \times X)$ is not true in general.

Lemma 3.10. For any positive integer m, we have:

$$
z c l \underbrace{\left(G_{2}\left(\mathbb{R}^{4}\right) \times G_{2}\left(\mathbb{R}^{4}\right) \times \ldots \times G_{2}\left(\mathbb{R}^{4}\right)\right)}_{m-\text { times }} \geq 4 m .
$$

Proof. Let $\alpha_{i}, \beta_{i} \in H^{*}\left(G_{2}\left(\mathbb{R}^{4}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{4}\right)\right) \otimes H^{*}\left(G_{2}\left(\mathbb{R}^{4}\right) \times \cdots \times\right.$ $G_{2}\left(\mathbb{R}^{4}\right)$), for $i=1,2, \cdots, m$, defined by:

$$
\begin{aligned}
\alpha_{1} & =\left(w_{1} \otimes 1 \otimes \cdots \otimes 1\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(w_{1} \otimes 1 \otimes \cdots \otimes 1\right) \\
\alpha_{2} & =\left(1 \otimes w_{1} \otimes \cdots \otimes 1\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(1 \otimes w_{1} \otimes \cdots \otimes 1\right) \\
\vdots & \\
\alpha_{m} & =\left(1 \otimes 1 \otimes \cdots \otimes w_{1}\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(1 \otimes 1 \otimes \cdots \otimes w_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{1} & =\left(w_{2} \otimes 1 \otimes \cdots \otimes 1\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(w_{2} \otimes 1 \otimes \cdots \otimes 1\right) \\
\beta_{2} & =\left(1 \otimes w_{2} \otimes \cdots \otimes 1\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(1 \otimes w_{2} \otimes \cdots \otimes 1\right) \\
\vdots & \\
\beta_{m} & =\left(1 \otimes 1 \otimes \cdots \otimes w_{2}\right) \otimes(1 \otimes \cdots \otimes 1)+(1 \otimes \cdots \otimes 1) \otimes\left(1 \otimes 1 \otimes \cdots \otimes w_{2}\right)
\end{aligned}
$$

We may show by an easy calculation that $\alpha_{i} s$ and $\beta_{i} s$ are in the kernel of $\cup: H^{*}(X) \otimes H^{*}(X) \longrightarrow H^{*}(X)$. Since $w_{1}^{2} \neq 0$ and $w_{2} \neq 0$, then calculation shows that

$$
\alpha_{1}^{3} \alpha_{2}^{3} \cdots \alpha_{m}^{3} \beta_{1} \cdots \beta_{m}=w_{1}^{3} w_{2} \otimes w_{1}^{3} w_{2} \otimes \cdots \otimes w_{1}^{3} w_{2} \neq 0 .
$$

Consequently,

$$
z c l\left(G_{2}\left(\mathbb{R}^{4}\right) \times G_{2}\left(\mathbb{R}^{4}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{4}\right)\right) \geq 3 m+m=4 m
$$

Corollary 3.11. For any positive integer $m \geq 1$, we have:

$$
T C \underbrace{\left(G_{2}\left(\mathbb{R}^{4}\right) \times G_{2}\left(\mathbb{R}^{4}\right) \times \cdots \times G_{2}\left(\mathbb{R}^{4}\right)\right)}_{m \text {-times }}=4 m+1 .
$$

Proof. The proof follows by Theorems 3.4 and Lemmas 3.8 and 3.10.

4 Lower and upper bounds on Topological complexity of certain real Grassmannian manifolds

In this section we calculate lower and upper bounds of Topological complexity of $G_{2}\left(\mathbb{R}^{2^{p}+1}\right)$ and $G_{2}\left(\mathbb{R}^{2^{p}+2}\right)$.

Theorem 4.1. For any positive integer $p \geq 2$ we have:

$$
z \operatorname{cl}\left(G_{2}\left(\mathbb{R}^{2^{p}+1}\right)\right) \geq 3\left(2^{p}-1\right)
$$

Proof. Let $w_{1}, w_{2} \in H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p}+1}\right) ; \mathbb{Z}_{2}\right)$ be generators.Then $w_{1}^{2^{p+1}-2} \neq$ 0 , but $w_{1}^{2^{p+1}-1}=0$ and $w_{2}^{2^{p}-1} \neq 0$ but $w_{2}^{2^{p}}=0$. Let $\alpha, \beta \in H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p}+1}\right) \otimes\right.$ $H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p}+1}\right)\right.$ defined by:

$$
\alpha=\left(w_{1} \otimes 1\right)+\left(1 \otimes w_{1}\right), \quad \beta=\left(w_{2} \otimes 1\right)+\left(1 \otimes w_{2}\right) .
$$

By an easy calculation,

$$
\begin{gathered}
\alpha^{2^{p+1}-1}=\left(w_{1}^{2^{p+1}-2} \otimes w_{1}\right)+\left(w_{1} \otimes w_{1}^{2^{p+1}-2}\right)+\cdots \neq 0, \\
\beta^{2^{p}-2}=\left(w_{2}^{2^{p}-2} \otimes 1\right)+\left(1 \otimes w_{2}^{2^{p}-2}\right)+\left(w_{2}^{2^{p}-4} \otimes w_{2}^{2}\right)+\left(w_{2}^{2} \otimes w_{2}^{2^{p}-4}\right)+\cdots \neq 0, \\
\beta^{2^{p}-1}=\left(w_{2}^{2^{p}-1} \otimes 1\right)+\left(1 \otimes w_{2}^{p^{p}-1}\right)+\left(w_{2}^{2^{p}-2} \otimes w_{2}\right)+\left(w_{2} \otimes w_{2}^{p^{p}-2}\right)+\cdots \neq 0 .
\end{gathered}
$$

Clearly α, β are in the kernel of $\cup: H^{*}(X) \otimes H^{*}(X) \longrightarrow H^{*}(X)$. And the calculation shows that $\alpha^{2^{p+1}-1} \beta^{2^{p}-1}=0$ but $\alpha^{2^{p+1}-1} \beta^{2^{p}-2} \neq 0$. Consequently,

$$
z c l\left(G_{2}\left(\mathbb{R}^{2^{p}+1}\right)\right) \geq\left(2^{p+1}-1\right)+\left(2^{p}-2\right)=3\left(2^{p}-1\right) .
$$

Corollary 4.2. For any positive integer $p \geq 2$, we have:

$$
3\left(2^{p}\right)-2 \leq T C\left(G_{2}\left(\mathbb{R}^{2^{p}+1}\right)\right) \leq 2^{p+2}-5 .
$$

Proof. It follows from Theorem 3.2, Theorem 3.3.

Remark 4.3. If $p=1$ then $T C\left(G_{2}\left(\mathbb{R}^{3}\right)\right)=4$. Note that $G_{2}\left(\mathbb{R}^{3}\right)$ is infact $\mathbb{R} P^{2}$ wich is consistent with previous calculations. For $p=2$, $10 \leq T C\left(G_{2}\left(\mathbb{R}^{5}\right)\right) \leq 11$. We see there is a gape between lower and upper bounds. For $p \geq 3$ we find a gape between lower and upper bounds by $2^{p}-7$.

At the end we calculate topological complexity of $G_{2}\left(\mathbb{R}^{2^{p}+2}\right)$ for $p \geq$ 2 using the same method of Theorem 3.8, but we see there is a gape between lower and upper bounds.

Theorem 4.4. For any positive integer, $p \geq 2$, we have:

$$
z c l\left(G_{2}\left(\mathbb{R}^{2^{p}+2}\right)\right) \geq\left(2^{p+1}-2\right)+\left(2^{p}+1\right)=2^{p+1}+2^{p}-1=3\left(2^{p}\right)-1 .
$$

Proof. Let $w_{1}, w_{2} \in H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p}+2}\right) ; \mathbb{Z}_{2}\right)$ be generators. Clearly $w_{1}^{2^{p+1}-2} \neq$ $0, w_{1}^{2^{p+1}-1}=0$ and $w_{2}^{2^{p}} \neq 0, w_{2}^{2^{p+1}}=0$. Let $\alpha, \beta \in H^{*}\left(G_{2}\left(R^{2^{p}+2}\right) \otimes\right.$ $H^{*}\left(G_{2}\left(\mathbb{R}^{2^{p}+2}\right)\right.$, defined by:

$$
\alpha=\left(w_{1} \otimes 1\right)+\left(1 \otimes w_{1}\right), \quad \beta=\left(w_{2} \otimes 1\right)+\left(1 \otimes w_{2}\right) .
$$

By an easy calculation,

$$
\begin{aligned}
& \alpha^{2^{p+1}-2}=\left(w_{1}^{2^{p+1}-2} \otimes 1\right)+\left(w_{1}^{2^{p+1}-4} \otimes w_{1}^{2}\right)+\cdots+\left(w_{1}^{2} \otimes w_{1}^{2^{p+1}-4}\right)+\left(1 \otimes w_{1}^{2^{p+1}-2}\right) \\
& \alpha^{2^{p+1}-1}=\left(w_{1}^{2^{p+1}-1} \otimes 1\right)+\left(w_{1}^{2^{p+1}-2} \otimes w_{1}\right)+\cdots+\left(w_{1} \otimes w_{1}^{2^{p+1}-2}\right)+\left(1 \otimes w_{1}^{2^{p+1}-1}\right)
\end{aligned}
$$

and also

$$
\begin{aligned}
\beta^{2^{p}+1} & =\left(w_{2}^{2^{p}} \otimes w_{2}\right)+\left(w_{2} \otimes w_{2}^{2^{p}}\right) \\
\beta^{2^{p}+2} & =\left(w_{2}^{2^{p}} \otimes w_{2}^{2}\right)+\left(w_{2}^{2} \otimes w_{2}^{2^{p}}\right) \\
\vdots & \\
\beta^{2^{p+1}-1} & =\left(w_{2}^{2^{p}} \otimes w_{2}^{2^{p}-1}\right)+\left(w_{2}^{2^{p}-1} \otimes w_{2}^{2^{p}}\right) .
\end{aligned}
$$

Not that α, β are in the kernel of $\cup: H^{*}(X) \otimes H^{*}(X) \longrightarrow H^{*}(X)$. And best possbility for zero cup-length comes from the element $\alpha^{2^{p+1}-2} \beta^{2^{p}+1} \neq$ 0. Consequently,

$$
z \operatorname{cl}\left(G_{2}\left(\mathbb{R}^{2^{p}+2}\right)\right) \geq\left(2^{p+1}-2\right)+\left(2^{p}+1\right)=3\left(2^{p}\right)-1
$$

Corollary 4.5. For any positive integer, $p \geq 2$, we have:

$$
3\left(2^{p}\right) \leq T C\left(G_{2}\left(\mathbb{R}^{2^{p}+2}\right)\right) \leq 2^{p+2}-3 .
$$

Proof. It follows from Theorems 3.2, 3.3, 4.4.
Remark 4.6. For $p=2,12 \leq T C\left(G_{2}\left(\mathbb{R}^{6}\right)\right) \leq 13$, We see there is a gape between lower and upper bounds. For $p \geq 3$ we find a gape between lower and upper bound by $2^{p}-3$.

Acknowledgements

The authors are grateful to the referees for their comments and advises.

References

[1] F. Akhtaifar, M. A. Asadi Golmankhaneh, Topological complexity and LS-category of certain manifolds, Submitted.
[2] I. Berstein, On the Lusternik-Schnirelmann category of grassmanians, Proc. Cambridge Philos. Soc. 79 (1976), 129-134.
[3] Borel, A,La cohomologie mod 2 de certains espaces homogenes, comm. Math. Helv. 27 (1953), 165-197.
[4] O.Cornea, G. Lupton, J. Oprea, and D. Tanreá $\frac{1}{2}$, LusternikSchnirelmann category, Mathematical Surveys and Monographsm vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857 (2004e:55001)
[5] M. Farber, S. Tabachnikov and S. Yuzvinsky, Topological robotics: Motion planning in projective spaces, Preprint arxiv: math. AT/0210018, (2 Oct. 2002).
[6] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211-221.
[7] M. Farber, Instabilities of robot motion Topology Appl. 140 (2004), no. 2-3, 245-266.
[8] M. Farber, Topology of robot motion planning Morse theoretic methods in nonlinear analysis and in symplectic topology, NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer,Dordrecht, 2006, pp. 185-230.
[9] A. Hatcher, Algebraic Topology Cambridge, 2002.
[10] H. Hiller, On the cohomology of real Grassmannians, Trans. Amer. Math. Soc. 257 (2), 521-533, (1980).
[11] K. J. Pearson and Tan Zhang, Topological Complexity and Motion Planning in Certain Grassmannian, Applied Mathematics Letters 17 (2004) 499-502.

Fezzeh Akhtarifar

Ph.D Student of Mathematics
Department of Mathematics
Urmia University,
Urmia, Iran
E-mail: f.akhtarifar@urmia.ac.ir

M. A. Asadi-Golmankhaneh

Associated Professor of Mathematics
Department of Mathematics
Urmia University,
Urmia, Iran
E-mail: m.asadi@urmia.ac.ir

[^0]: Received: September 2020; Accepted: December 2020
 *Corresponding Author

