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Abstract. Let G, be the Grassmann manifold of k-planes in R™HF,
The Lusternik-Schnirelmann category and topological complexity are
important invariants of topological spaces. In this note we calculate
the Lusternik-Schnirelmann category and topological complexity of cer-
tain products of Grassmannian manifolds by using cup and zero-cup
length. Also we will find the lower and upper bounds of the topological
complexity of some Grassmannian manifolds by the same method.
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1 Introduction

In 1934, L. Lusternik and L. Schnirelmann described a new invariant
of a manifold called category. Their purpose in creating this concept
was to obtain a lower bound on the number of critical points for each
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smooth function on the manifold. This category examines the impor-
tant concepts of geometry and dynamical systems. The topological com-
plexity is a numerical homotopy invariant, introduced by M. Farber in
2001, and in [5], [06], [7] he examined the topological complexity of the
robotics. Topological complexity has close relationship to classical in-
variant, Lusternik-Schnirelmann category. In [1] we have studied the
product of projective spaces by here we are going to study real grass-
mannian manifolds.

In Section 2 we calculate by known results the category of products of
G2(R?"+1) and Go(R?*2). In Section 3 first we calculate the topological
complexity of Go(R3) and G2(R*) by different method in [11] following
the products of them. In Section 4 we give upper and lower bounds for
topological complexity of certain Grasmanian manifolds. Specially we
show that 10 < TC(G2(R%)) < 11 and 12 < TC(G2(R%)) < 13.

Definition 1.1. The Lusternik-Schnirelmann category of a space X is
the least integer n such that there exists an open covering Uy, - -+ ,Up41
of X with each U; contractible to a point in the space X. We denote
this by cat(X) = n and we call such a covering U; categorical. If no such
integer exists, we write cat(X) = co.

In [5], Michael Farber, defined a numerical invariant 7C'(X). We
may out lined as follows: Let PX denote the space of all continuous
paths 7 : [0,1] — X in X and 7 : PX — X x X denotes the map
associating to any path v € PX the pair of its initial and end points
() = (7(0),7v(1)). Equip the path space PX with the compact-open
topology.

Definition 1.2. The topological complexity of a path-connected space
X, denoted by TC(X), is the least integer n such that the Cartesian
product X x X can be covered with n open subsets U;, X x X = U; U
Us U---UU, such that for any i = 1,2,--- ,n there exists a continuous
local section s; : U; — PX of w, that is, m o s; = id over U;. If no such
m exists we will set TC(X) = oo.

Theorem 1.3. Let Gy, denote the Grassmann manifold of k-planes in
R™"t% . Then H*(Grp; Lo) = Lo|w, . .., wg] /Ii n where I}, is the ideal
generated by the dual Stiefel-Whitney classes Wp+1, ..., Wntk-
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Proof. See [3] for a proof. [

Remark 1.4. The set {wfw : a +b < n} is vector space basis for the
cohomology ring H*(Ga r; Zs2).

2 LS-category of the products of G5(R* 1),
GQ(R2p+2)

This section is devoted to calculate LS-category of certain products of
real Grassmannian manifolds by using cup-length.

Definition 2.1. Let R be a commutative ring and X be a space. The
cup-length of X with coefficients in R is the least integer k (or oo) such
that all (k + 1) -fold cup products vanish in the reduced cohomology
H*(X; R); we denote this integer by cupr(X).

Proposition 2.2. The R-cuplength of a space is less than or equal to
the category of the space for all coefficients R. In notation, we write
cupr(X) < cat(X).

Proof. See Proposition 1.5 in [1]. O

Theorem 2.3. For a path-connected locally contractible paracompact
space, cat(X) < dim(X).

Proof. See Theorem 1.7 in [1]. O

Example 2.4. Since H*(RP™;Zy) = Zs[a]/(a™*!) with deg(a) = 1.
Since a™ # 0, then cup(RP") = n < cat(RP") < dim(RP™) = n. Thus,
cat(RP™) = n.

Theorem 2.5. Suppose X and Y are path-connected spaces such that
X xY is completely normal. Then cat(X xY) < cat(X) + cat(Y).

Proof. See Theorem 1.37 in [1]. O

Theorem 2.6. If X is a closed, connected n-manifold with m1(X) ~ Za,
then cat(X) = dim(X) iff w™X) £ 0, where w is the nonzero element
of H (X ;Zs).

3
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Proof. See a proof [2, 10]. O From Theorem 2.6 we have the following
corollary.

Corollary 2.7. w*™X) =0 if and only if cat(X) < dim(X).

Theorem 2.8. For any positive integers p > 1, we have:
cat(Go(R?' 1)) = 2P+l 9,

Proof. See [2] for a proof. [

Theorem 2.9. For any positive integer p; > 1, m > 1, we have:

cat(Go(R¥' 1) x Go(R¥?HY) x ... x Go (R 1))
2p1+1 + 2p2+1 4ot 2pm+1 —2m
Proof. Since H* (G rn; Z2) = Zowi, ..., wg],/ Ij n, by Kinneth formu-
las
H*(GQ(R2P1+1) Y. GQ(Rsz+1)) _
H*(GoRT'"H)) @ ... @ H*(Go(R?"™ 1))

e ® Zg[wl, wﬂ/(zﬁzpm , w2pm+1>,

Lo w1, wa]/(War1 , War1 41) @

Since cat(Gg(R2p+1)) = dim(Go(R?*"*1)), then by Theorem 2.6; w{™ #
0 and w{™* = 0. Set,

o = vRlIRI---®1

a = 1u®l®k---®1
ay = 101®---®1®w;.
Thus
oM = W e 01
a2 = 1w g1

2pm+1_9 2pm+1_9
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Therefore

op1+1l_9 9p2+l_9 2prm+1_9 op1+1_9 op2+1_9 9pm+1_9
aq Qo R 6 ey = wy ®w1 K- - '®U)1 ;é 0.
From which,

cupz, (Ga (R 1) 5 Go(RZ?H) x - x Go(R¥™H1)) > (20t — 2) +
(2p2+1 —2)+ -+ (2pm+1 —2)) = opitl L gp2+l oLy 9pmtl 9y

On the other hand, By Theorem 2.5,
cat(Go (R 1) x Go(R??H) x - .. x Go(R2™™+1)) < omtlpopetl oy
2PmFl _ om,

Now by Proposition 2.2,

cat(Go(R? 1) x Go(R¥?H1) x ... x Go(R¥™F1)) = ovm+l 4 gpetl 4
coeg2pmtl _om. [
Corollary 2.10. For any positive integer p, we have;

cat (Go(R¥H1) x Go(R?Y) x -+ x Go(R¥' 1)) = m(2PF! — 2).

m—times

Theorem 2.11. For any positive integer p, cat(Go(R?"+2)) = 2P+ — 1,
Proof. See [10] for a proof. O

Theorem 2.12. For any positive integer p; > 1, m > 1, we have:

cat (GQ(R2m+2) % GQ(R2P2+2) Yoo X GQ(RQPerQ)) —

Vv
m—times

2P1+1 + 2P2+1 et 2pm+1 - m.

Proof. Since H*(Gy n; Z2) = Zo|wi, ..., wg],/ Ik, by Kinneth formu-
las
H*(Go(R*F2) x - x Gy (R*2)) - =
H*(Go(R*'?)) @ ... @ H*(G2(R*™H?)) = Zolwi, wal/(Wae 41, Dam 42) ®

ce ® ZQ [w1, wz]/<’tf)2pm+1, 1D2pm+2>.
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Where
- 2Pi +1 2p; —1
Wopi 41 = w; LA+ wiws

_ P D5 ri—141
w2pi+2:w%z+2+w%zw2+...+w%z +1

Since cat(G(R?*+2) < dim(G(R?*+2), then by Corollary 2.7, w™ " ~! =
0 but w%pﬁlﬁ £ 0. Set:

ap = RIRKI®---®1
a = 1w ®l®---®1
ap = 101 1R w;.
Thus
o = w2 w1
2 = 1w e 01
ozf:ﬁl_Q = 1®1®...®w%pi+1*2.
Also let,
B = wmRIle- -1
B = 1Quw®1l®---®1
Bn = 1010 -®@1®w,.
Therefore for i =1,--- ,m
Q22 a2 2 g = T e Rwe@- - 0w 2wy # 0.

From which,

cupz, (G2 (R F2) x - .. x Go(R?™+2)) > (2P1H] — 1) ... (2Pt - 1) =
2p1+1 + 2P2+1 4t 2pm+l —m.
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Now by Theorem 2.5 and Proposition 2.2 we have
cat(Ga(R¥'2) x .. x Go(R¥F"H2)) = oprtl opatl o oy opmtl _
d

Corollary 2.13. For any positive integer p, we have;

cat (GQ(R2P+2) % GQ(R2P+2) XX GQ(R2p+2)) _ m(2p+1 B 1)

m—times

3 Topological complexity of products of G3(RR?),
Go(RY)

In this section we will calculate the topological complexity of Ga(R?),
G2(R*) following the product of them. We briefly recall a result from [3]
giving a lower bound on T'C(X). It is quite useful since it allows us an
effective computation of TC'(X) in many examples. A lower bound for
topological complexity is obtained by using the zero-divisor-cup-length
of X.

Definition 3.1. Let &k be a field. The kernel of homomorphism
U: H(X;k)® H(X; k) — H*(X; k)

is called the ideal of the zero-divisors of H*(X;k). The zero-divisors-
cup-length of H*(X; k) is the length of the longest nontrivial product in
the ideal of the zero-divisors of H*(X; k). This number will be denoted
by zcl(X).

Theorem 3.2. The number TC(X) is greater than the zero-divisors-
cup-length of H*(X; K).

Proof. See Theorem 7 in [6]. O

Theorem 3.3. If X is path-connected and paracompact then

cat(X) <TC(X) < 2.cat(X) — 1.
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Proof. See Theorem 5 in [6]. O

Theorem 3.4. For any path-connected metric spaces X andY,
TC(X xY)<TC(X)+TC(Y)—1.

Proof. See Theorem 11 in [6]. O

Lemma 3.5. TC(G2(R3)) = 4.

Proof. Since G2(R?) is infact RP2, so by [7], TC(RP?) = 4 = TC(G2(R?)).
We may give another proof with the method of zero divisior cup length.
Since H*((GQ(RS));ZQ) = Zg[wl,UJQ]/<1IJ2,’(Z}3> and wy = ’LU% + wo, Wy =
w3, we have H*((G2(R3));Z2) = Zawi, ws]/(w? + we,w}). Now de-
fine a, 3 € H*(G2(R?) @ H*(G2(R?), by: a = (w1 @ 1) + (1 ® wy),
B=(wr®1)+ (1 ®ws).

Since a? = (w? ® 1) + (1 ® w?), a® = (W? @ wy) + (w1 @ W?), B2 =
(w3 ® 1) + (1 ® w3) = 0, but a®3 = 0 on the other hand o?p =
(w? ® wy) + (wy ® w?) # 0 consequently zcl(G2(R3)) > 3, by Theo-
rem 3.3, 3 < TC(G2(R3)) < 4, as a result TC(G2(R3)) =4. O

Lemma 3.6. For any positive integer m, we have:

zel (G2(R?) x G2(R3) x ... x Go(R?)) > 3m.

Vv
m—times

Proof. Remember by Theorem 2.6, w? # 0. Let oy, 3; € H*(G2(R3) x

GQ(R?)) X -0 X GQ(R3)) & H*(GQ(R?)) X GQ(R3) X -0 X GQ(RB))7 for
1=1,2,---,m, defined by:

ap = Wl 1)1l )+l - 1) 1®---®1),
a = 1w ®-- )l )+(12 - )(1uw ®- 1),
am = (1010 uw)®(1l®--)+(1®---2)x(11®- - ®w)
and

i = (el --01)®(1® D+l 2])0 (w1l 1),
Bo = 1w®---@)@(10---01)+(1®-21)0(lew @ --®1),
Brn = (112 Quw)@(1® - )+(1® - 21)(1®1®-- ® ws)
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We may show by easy calculation that «;s and (;s are in the kernel of
U: H*(X)® H*(X) — H*(X). Clearly o # 0 and calculation shows
that

a%a%"'a%ﬁl'“ﬁm :w%w2®w%wg®---®w%wg #0.
Consequently,
2cl(Go(R?) x Go(R3) x - -+ x G2(R?)) > 2m + m = 3m.
O
Theorem 3.7. For any positive integer m > 1, we have:

TC (GQ(Rg) X GQ(RB) X o X GQ(RB)) =3m+1.
m—times

Proof. This proof follows by Theorems 3.4 and Lemmas 3.5, 3.6. 0
Lemma 3.8. TC(G2(R%)) = 5.

Proof. First, we calculate the zero divisior cup length of Go(R%).
Since H*((Go(R*)); Za) = Za|w1,ws]/ (w3, ws) and w3 = w}, wy = wi +
wiwy + w3, we have H*((Go(RY)); Za) = Za|wy, wa]/{(w?, wiwy + w3).
Now let a, 8 € H*(Go(R*) ® H*(G2(R?), defined by:

a=(w ®1)+ (1®@uw), B=(wy®1)+ (1®ws).
By an easy calculation we see that
a®B = (whwe ® wi) + (W @ wiws) + (wiws @ wi) + (w1 @ wiws) # 0.

Consequently zcl(G2(R*)) > 4, on the other hand by Theorem 3.3, 4 <
TC(G2(R*)) < 5, as a result TC(Go(R*)) =5. O

K. J. Pearson and Tan Zhang in [!1] used the equality TC(X) =
cat(X x X), to compute the topological complexity of G2(R?*), which
is not true in general. In fact we have TC(X) < cat(X x X). See the
following example.

Example 3.9. Let X = G5(R*) by Lemma 3.11 TC(X) = 5 and by
Corollary 2.13 cat(X x X) = 6. This shows that the equality TC(X) =
cat(X x X) is not true in general.
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Lemma 3.10. For any positive integer m, we have:

zel (G2 (RY) x Go(RY) x ... x Go(RY)) > 4m.

vV
m—times

Proof. Let oy, 8; € H*(G2(R*) x --- x G2(R*Y)) @ H*(G2(R*) x --- x
Gy (RY)), for i =1,2,--- ,m, defined by:

v = Wele2)ele - )+(1e- ) (wele- 1)
a = 1ow®--- )1l 2a)+(1---)(1lu®--®1)
ap = 110 u)®(le-- 3+l 1) (le®l®- - ®w)
and

i = (el )e(le---)+(1 1) (wel®- - ®1)
Bo = 1@w®-®1)(1® - 3)+(1® - 01)0 (10w & - ®1)
B = (I1®1®@---Quw)@(1®---1)+(1®---1)(1®1® @ ws)

We may show by an easy calculation that a;s and §;s are in the kernel
of U: H*(X) ® H*(X) — H*(X). Since w? # 0 and wy # 0, then
calculation shows that

afal - ad B By = wiws @ wiws @ - @ wiwg # 0.
Consequently,
zcl(Go(R*) x Go(RY) x - -+ x G2(RY)) > 3m + m = 4m.
O
Corollary 3.11. For any positive integer m > 1, we have:

TC (Go(RY) x Go(RY) x - x Go(RY)) = 4m + 1.

m—times

Proof. The proof follows by Theorems 3.4 and Lemmas 3.8 and 3.10.
O
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4 Lower and upper bounds on Topological com-
plexity of certain real Grassmannian mani-
folds

In this section we calculate lower and upper bounds of Topological com-
plexity of Go(R?"+1) and Go(R?"+2).

Theorem 4.1. For any positive integer p > 2 we have:
2el(Go(R¥ 1)) > 3(2° — 1).

Proof. Let wy, wy € H*(G2(R**1);Z3) be generators.Then wfp+1_2 #
op+1_1q

0, but wy =0and w3 ' #0but w3’ = 0. Let o, f € H*(G2(R* )@
H*(Go(R?*"+1) defined by:

a=(w ®1)+(1®w), B=(w®1)+ (1®ws).
By an easy calculation,

0= @ ) + el 4 A0,

B2 = (wy P+ (1@wy )+ (wy Tt @wd) +(wiewy )+ £0,

57 = @ T 9D+ (10w ™) +(f 2 owe) +(waoud )+ £ 0.

Clearly a, 8 are in the kernel of U : H*(X) ® H*(X) — H*(X). And
the calculation shows that a2 152~ = 0 but o2’ —12" 2 # 0.
Consequently,

zel(G(R¥H1)) > (2PTE — 1) + (2P — 2) = 3(2F — 1).
0

Corollary 4.2. For any positive integer p > 2, we have:
3(2P) — 2 < TCO(Go(R* 1)) < 2P F2 _ 5,

Proof. It follows from Theorem 3.2, Theorem 3.3. Il
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Remark 4.3. If p = 1 then TC(G2(R3)) = 4. Note that Go(R3) is
infact RP? wich is consistent with previous calculations. For p = 2,
10 < TC(Go(R?)) < 11. We see there is a gape between lower and

upper bounds. For p > 3 we find a gape between lower and upper
bounds by 2P — 7.

At the end we calculate topological complexity of G (R?"+2) for p >
2 using the same method of Theorem 3.8, but we see there is a gape
between lower and upper bounds.

Theorem 4.4. For any positive integer, p > 2, we have:
2el(Go(R¥H2)) > (2PFh —2) 4 (2P 4+ 1) = 2P 4 9P — 1 = 3(2P) — 1.

Proof. Let wi,ws € H*(G2(R**?); Zy) be generators. Clearly w%pH_Q #
0, w?"' " = 0 and wd’ # 0, wd" = 0. Let a,f € H(Go(R¥+?) &
H*(G9(R?**2), defined by:

a=(w 1)+ (1 ®w), B=(ws®1)+ (1®ws).

By an easy calculation,

o2 = (w2l + (Wi Hewd)+ - (wiew? T T+ (1ew T 72)
o = (T @)+ (¥ 2w )+ - A (w2 +(1ew? T )
and also
gEFL = (w%p ® we) + (we ® w%p)
BT = (w3 @wd)+ (wh @ws')
AL = (¥ @wd ) + (wi T @ wd).

Not that «, 8 are in the kernel of U : H*(X) ® H*(X) — H*(X). And
best posshility for zero cup-length comes from the element R pEHL £
0. Consequently,

zel(G(R¥F2)) > (2PTL —2) 4 (2P +1) = 3(2°) — 1



A NOTE ON LS-CATEGORY AND TOPOLOGICAL ...

Corollary 4.5. For any positive integer, p > 2, we have:

3(2P) < TC(Go(R*T2)) < 2P12 3,

Proof. It follows from Theorems 3.2, 3.3, 4.4. O

Remark 4.6. For p = 2, 12 < TC(G2(R%)) < 13, We see there is
a gape between lower and upper bounds. For p > 3 we find a gape
between lower and upper bound by 2P — 3.
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