Journal of Mathematical Extension

Vol. 16, No. 4, (2022) (2)1-14

URL: https://doi.org/10.30495/JME.2022.1803

ISSN: 1735-8299

Original Research Paper

A Note on LS-Category and Topological Complexity of Real Grassmannian Manifolds

F. Akhtarifar

Urmia University

M. A. Asadi-Golmankhaneh*

Urmia University

Abstract. Let $G_{k,n}$ be the Grassmann manifold of k-planes in \mathbb{R}^{n+k} . The Lusternik-Schnirelmann category and topological complexity are important invariants of topological spaces. In this note we calculate the Lusternik-Schnirelmann category and topological complexity of certain products of Grassmannian manifolds by using cup and zero-cup length. Also we will find the lower and upper bounds of the topological complexity of some Grassmannian manifolds by the same method.

AMS Subject Classification: 55M30; 57N60

Keywords and Phrases: Lusternik-Schnirelmann category, Topolog-

ical complexity, cup-length, zero divisor cup-length

1 Introduction

In 1934, L. Lusternik and L. Schnirelmann described a new invariant of a manifold called category. Their purpose in creating this concept was to obtain a lower bound on the number of critical points for each

Received: September 2020; Accepted: December 2020

*Corresponding Author

smooth function on the manifold. This category examines the important concepts of geometry and dynamical systems. The topological complexity is a numerical homotopy invariant, introduced by M. Farber in 2001, and in [5], [6], [7] he examined the topological complexity of the robotics. Topological complexity has close relationship to classical invariant, Lusternik-Schnirelmann category. In [1] we have studied the product of projective spaces by here we are going to study real grassmannian manifolds.

In Section 2 we calculate by known results the category of products of $G_2(\mathbb{R}^{2^p+1})$ and $G_2(\mathbb{R}^{2^p+2})$. In Section 3 first we calculate the topological complexity of $G_2(\mathbb{R}^3)$ and $G_2(\mathbb{R}^4)$ by different method in [11] following the products of them. In Section 4 we give upper and lower bounds for topological complexity of certain Grasmanian manifolds. Specially we show that $10 \leq TC(G_2(\mathbb{R}^5)) \leq 11$ and $12 \leq TC(G_2(\mathbb{R}^6)) \leq 13$.

Definition 1.1. The Lusternik-Schnirelmann category of a space X is the least integer n such that there exists an open covering U_1, \dots, U_{n+1} of X with each U_i contractible to a point in the space X. We denote this by cat(X) = n and we call such a covering U_i categorical. If no such integer exists, we write $cat(X) = \infty$.

In [5], Michael Farber, defined a numerical invariant TC(X). We may out lined as follows: Let PX denote the space of all continuous paths $\gamma:[0,1] \longrightarrow X$ in X and $\pi:PX \longrightarrow X \times X$ denotes the map associating to any path $\gamma \in PX$ the pair of its initial and end points $\pi(\gamma) = (\gamma(0), \gamma(1))$. Equip the path space PX with the compact-open topology.

Definition 1.2. The topological complexity of a path-connected space X, denoted by TC(X), is the least integer n such that the Cartesian product $X \times X$ can be covered with n open subsets U_i , $X \times X = U_1 \cup U_2 \cup \cdots \cup U_n$ such that for any $i = 1, 2, \cdots, n$ there exists a continuous local section $s_i : U_i \longrightarrow PX$ of π , that is, $\pi \circ s_i = id$ over U_i . If no such m exists we will set $TC(X) = \infty$.

Theorem 1.3. Let $G_{k,n}$ denote the Grassmann manifold of k-planes in \mathbb{R}^{n+k} . Then $H^*(G_{k,n}; \mathbb{Z}_2) = \mathbb{Z}_2[w_1, \ldots, w_k] / I_{k,n}$ where $I_{k,n}$ is the ideal generated by the dual Stiefel-Whitney classes $\overline{w}_{n+1}, \ldots, \overline{w}_{n+k}$.

Proof. See [3] for a proof. \square

Remark 1.4. The set $\{w_1^a w_2^b : a + b \le n\}$ is vector space basis for the cohomology ring $H^*(G_{2,n}; \mathbb{Z}_2)$.

2 LS-category of the products of $G_2(\mathbb{R}^{2^p+1})$, $G_2(\mathbb{R}^{2^p+2})$

This section is devoted to calculate LS-category of certain products of real Grassmannian manifolds by using cup-length.

Definition 2.1. Let R be a commutative ring and X be a space. The cup-length of X with coefficients in R is the least integer k (or ∞) such that all (k+1) -fold cup products vanish in the reduced cohomology $\widetilde{H}^*(X;R)$; we denote this integer by $cup_R(X)$.

Proposition 2.2. The R-cuplength of a space is less than or equal to the category of the space for all coefficients R. In notation, we write $cup_R(X) \leq cat(X)$.

Proof. See Proposition 1.5 in [4].

Theorem 2.3. For a path-connected locally contractible paracompact space, $cat(X) \leq dim(X)$.

Proof. See Theorem 1.7 in [4].

Example 2.4. Since $H^*(\mathbb{R}P^n; \mathbb{Z}_2) = \mathbb{Z}_2[a]/\langle a^{n+1} \rangle$ with deg(a) = 1. Since $a^n \neq 0$, then $cup(\mathbb{R}P^n) = n \leq cat(\mathbb{R}P^n) \leq dim(\mathbb{R}P^n) = n$. Thus, $cat(\mathbb{R}P^n) = n$.

Theorem 2.5. Suppose X and Y are path-connected spaces such that $X \times Y$ is completely normal. Then $cat(X \times Y) \leq cat(X) + cat(Y)$.

Proof. See Theorem 1.37 in [4].

Theorem 2.6. If X is a closed, connected n-manifold with $\pi_1(X) \approx \mathbb{Z}_2$, then cat(X) = dim(X) iff $w^{dim(X)} \neq 0$, where w is the nonzero element of $H^1(X; \mathbb{Z}_2)$.

Proof. See a proof [2, 10]. \square From Theorem 2.6 we have the following corollary.

Corollary 2.7. $w^{dim(X)} = 0$ if and only if cat(X) < dim(X).

Theorem 2.8. For any positive integers $p \ge 1$, we have:

$$cat(G_2(\mathbb{R}^{2^p+1})) = 2^{p+1} - 2.$$

Proof. See [2] for a proof.

Theorem 2.9. For any positive integer $p_i \geq 1, m \geq 1$, we have:

$$cat(G_2(\mathbb{R}^{2^{p_1}+1}) \times G_2(\mathbb{R}^{2^{p_2}+1}) \times \dots \times G_2(\mathbb{R}^{2^{p_m}+1})) = 2^{p_1+1} + 2^{p_2+1} + \dots + 2^{p_m+1} - 2m$$

Proof. Since $H^*(G_{k,n}; \mathbb{Z}_2) = \mathbb{Z}_2[w_1, \dots, w_k] / I_{k,n}$, by Künneth formulas

$$H^*(G_2(\mathbb{R}^{2^{p_1}+1}) \times \cdots \times G_2(\mathbb{R}^{2^{p_m}+1})) = H^*(G_2(\mathbb{R}^{2^{p_1}+1})) \otimes ... \otimes H^*(G_2(\mathbb{R}^{2^{p_m}+1})) = \mathbb{Z}_2[w_1, w_2]/\langle \bar{w}_{2^{p_1}}, \bar{w}_{2^{p_1}+1} \rangle \otimes \cdots \otimes \mathbb{Z}_2[w_1, w_2]/\langle \bar{w}_{2^{p_m}}, \bar{w}_{2^{p_m}+1} \rangle,$$

Since $cat(G_2(\mathbb{R}^{2^p+1})) = dim(G_2(\mathbb{R}^{2^p+1}))$, then by Theorem 2.6; $w_1^{dim} \neq 0$ and $w_1^{dim+1} = 0$. Set,

$$\alpha_1 = w_1 \otimes 1 \otimes 1 \otimes \cdots \otimes 1$$

$$\alpha_2 = 1 \otimes w_1 \otimes 1 \otimes \cdots \otimes 1$$

$$\vdots$$

$$\alpha_m = 1 \otimes 1 \otimes \cdots \otimes 1 \otimes w_1.$$

Thus

$$\begin{array}{rcl} \alpha_1^{2^{p_1+1}-2} & = & w_1^{2^{p_1+1}-2} \otimes \cdots \otimes 1 \\ \alpha_2^{2^{p_2+1}-2} & = & 1 \otimes w_1^{2^{p_2+1}-2} \otimes \cdots \otimes 1 \\ & \vdots & & \\ \alpha_m^{2^{p_m+1}-2} & = & 1 \otimes 1 \otimes \cdots \otimes w_1^{2^{p_m+1}-2}. \end{array}$$

Therefore

$$\alpha_1^{2^{p_1+1}-2}\alpha_2^{2^{p_2+1}-2}\cdots\alpha_m^{2^{p_m+1}-2} = w_1^{2^{p_1+1}-2}\otimes w_1^{2^{p_2+1}-2}\otimes \cdots\otimes w_1^{2^{p_m+1}-2} \neq 0.$$

From which,

$$cup_{\mathbb{Z}_2}(G_2(\mathbb{R}^{2^{p_1}+1}) \times G_2(\mathbb{R}^{2^{p_2}+1}) \times \cdots \times G_2(\mathbb{R}^{2^{p_m}+1})) \ge (2^{p_1+1}-2) + (2^{p_2+1}-2) + \cdots + (2^{p_m+1}-2)) = 2^{p_1+1} + 2^{p_2+1} + \cdots + 2^{p_m+1} - 2m.$$

On the other hand, By Theorem 2.5, $cat(G_2(\mathbb{R}^{2^{p_1}+1}) \times G_2(\mathbb{R}^{2^{p_2}+1}) \times \cdots \times G_2(\mathbb{R}^{2^{p_m}+1})) \leq 2^{p_1+1} + 2^{p_2+1} + \cdots + 2^{p_m+1} - 2m.$

Now by Proposition 2.2,

$$cat(G_2(\mathbb{R}^{2^{p_1}+1}) \times G_2(\mathbb{R}^{2^{p_2}+1}) \times \cdots \times G_2(\mathbb{R}^{2^{p_m}+1})) = 2^{p_1+1} + 2^{p_2+1} + \cdots + 2^{p_m+1} - 2m.$$

Corollary 2.10. For any positive integer p, we have;

$$\underbrace{(G_2(\mathbb{R}^{2^p+1}) \times G_2(\mathbb{R}^{2^p+1}) \times \cdots \times G_2(\mathbb{R}^{2^p+1}))}_{m-times} = m(2^{p+1}-2).$$

Theorem 2.11. For any positive integer p, $cat(G_2(\mathbb{R}^{2^p+2})) = 2^{p+1} - 1$.

Proof. See [10] for a proof. \Box

Theorem 2.12. For any positive integer $p_i \ge 1$, $m \ge 1$, we have:

$$cat\underbrace{(G_2(\mathbb{R}^{2^{p_1}+2}) \times G_2(\mathbb{R}^{2^{p_2}+2}) \times \cdots \times G_2(\mathbb{R}^{2^{p_m}+2}))}_{m-times} = 2^{p_1+1} + 2^{p_2+1} + \cdots + 2^{p_m+1} - m.$$

Proof. Since $H^*(G_{k,n}; \mathbb{Z}_2) = \mathbb{Z}_2[w_1, \dots, w_k] / I_{k,n}$, by Künneth formulas

$$H^*(G_2(\mathbb{R}^{2^{p_1}+2}) \times \cdots \times G_2(\mathbb{R}^{2^{p_m}+2})) = H^*(G_2(\mathbb{R}^{2^{p_1}+2})) \otimes \dots \otimes H^*(G_2(\mathbb{R}^{2^{p_m}+2})) = \mathbb{Z}_2[w_1, w_2]/\langle \bar{w}_{2^{p_1}+1}, \bar{w}_{2^{p_1}+2} \rangle \otimes \dots \otimes \mathbb{Z}_2[w_1, w_2]/\langle \bar{w}_{2^{p_m}+1}, \bar{w}_{2^{p_m}+2} \rangle.$$

Where

$$\bar{w}_{2^{p_i}+1} = w_1^{2^{p_i}+1} + \dots + w_1 w_2^{2^{p_i}-1};$$

$$\bar{w}_{2^{p_i}+2} = w_1^{2^{p_i}+2} + w_1^{2^{p_i}} w_2 + \dots + w_2^{2^{p_i-1}+1}.$$

Since $cat(G_2(\mathbb{R}^{2^{p_i}+2}) < dim(G_2(\mathbb{R}^{2^{p_i}+2})$, then by Corollary 2.7, $w_1^{2^{p_i+1}-1} = 0$ but $w_1^{2^{p_i+1}-2} \neq 0$. Set:

$$\begin{array}{rcl} \alpha_1 & = & w_1 \otimes 1 \otimes 1 \otimes \cdots \otimes 1 \\ \alpha_2 & = & 1 \otimes w_1 \otimes 1 \otimes \cdots \otimes 1 \\ & \vdots & & \\ \alpha_m & = & 1 \otimes 1 \otimes \cdots \otimes 1 \otimes w_1. \end{array}$$

Thus

$$\begin{array}{lcl} \alpha_1^{2^{p_i+1}-2} & = & w_1^{2^{p_i+1}-2} \otimes \cdots \otimes 1 \\ \alpha_2^{2^{p_i+1}-2} & = & 1 \otimes w_1^{2^{p_i+1}-2} \otimes \cdots \otimes 1 \\ & \vdots & & \\ \alpha_m^{2^{p_i+1}-2} & = & 1 \otimes 1 \otimes \cdots \otimes w_1^{2^{p_i+1}-2}. \end{array}$$

Also let,

$$\beta_1 = w_2 \otimes 1 \otimes 1 \otimes \cdots \otimes 1$$

$$\beta_2 = 1 \otimes w_2 \otimes 1 \otimes \cdots \otimes 1$$

$$\vdots$$

$$\beta_m = 1 \otimes 1 \otimes \cdots \otimes 1 \otimes w_2.$$

Therefore for $i = 1, \dots, m$

$$\alpha_1^{2^{p_i+1}-2}\cdots\alpha_m^{2^{p_i+1}-2}\beta_1\cdots\beta_m=w_1^{2^{p_i+1}-2}w_2\otimes w_1^{2^{p_i+1}-2}w_2\otimes\cdots\otimes w_1^{2^{p_i+1}-2}w_2\neq 0.$$

From which,

$$cup_{\mathbb{Z}_2}(G_2(\mathbb{R}^{2^{p_1}+2})\times\cdots\times G_2(\mathbb{R}^{2^{p_m}+2}))\geq (2^{p_1+1}-1)+\cdots+(2^{p_m+1}-1)=2^{p_1+1}+2^{p_2+1}+\cdots+2^{p_m+1}-m.$$

Now by Theorem 2.5 and Proposition 2.2 we have

$$cat(G_2(\mathbb{R}^{2^{p_1}+2}) \times \cdots \times G_2(\mathbb{R}^{2^{p_m}+2})) = 2^{p_1+1} + 2^{p_2+1} + \cdots + 2^{p_m+1} - m.$$

Corollary 2.13. For any positive integer p, we have;

$$cat\underbrace{(G_2(\mathbb{R}^{2^p+2})\times G_2(\mathbb{R}^{2^p+2})\times\cdots\times G_2(\mathbb{R}^{2^p+2}))}_{m-times} = m(2^{p+1}-1).$$

3 Topological complexity of products of $G_2(\mathbb{R}^3)$, $G_2(\mathbb{R}^4)$

In this section we will calculate the topological complexity of $G_2(\mathbb{R}^3)$, $G_2(\mathbb{R}^4)$ following the product of them. We briefly recall a result from [3] giving a lower bound on TC(X). It is quite useful since it allows us an effective computation of TC(X) in many examples. A lower bound for topological complexity is obtained by using the zero-divisor-cup-length of X.

Definition 3.1. Let k be a field. The kernel of homomorphism

$$\cup: H^*(X;k) \otimes H^*(X;k) \longrightarrow H^*(X;k)$$

is called the ideal of the zero-divisors of $H^*(X;k)$. The zero-divisorscup-length of $H^*(X;k)$ is the length of the longest nontrivial product in the ideal of the zero-divisors of $H^*(X;k)$. This number will be denoted by zcl(X).

Theorem 3.2. The number TC(X) is greater than the zero-divisors-cup-length of $H^*(X;K)$.

Proof. See Theorem 7 in [6].

Theorem 3.3. If X is path-connected and paracompact then

$$cat(X) \le TC(X) \le 2.cat(X) - 1.$$

Proof. See Theorem 5 in [6].

Theorem 3.4. For any path-connected metric spaces X and Y,

$$TC(X \times Y) \le TC(X) + TC(Y) - 1.$$

Proof. See Theorem 11 in [6].

Lemma 3.5. $TC(G_2(\mathbb{R}^3)) = 4$.

Proof. Since $G_2(\mathbb{R}^3)$ is infact $\mathbb{R}P^2$, so by [5], $TC(\mathbb{R}P^2) = 4 = TC(G_2(\mathbb{R}^3))$. We may give another proof with the method of zero divisior cup length. Since $H^*((G_2(\mathbb{R}^3)); \mathbb{Z}_2) = \mathbb{Z}_2[w_1, w_2]/\langle \bar{w}_2, \bar{w}_3 \rangle$ and $\bar{w}_2 = w_1^2 + w_2, \bar{w}_3 = w_1^3$, we have $H^*((G_2(\mathbb{R}^3)); \mathbb{Z}_2) = \mathbb{Z}_2[w_1, w_2]/\langle w_1^2 + w_2, w_1^3 \rangle$. Now define $\alpha, \beta \in H^*(G_2(\mathbb{R}^3) \otimes H^*(G_2(\mathbb{R}^3))$, by: $\alpha = (w_1 \otimes 1) + (1 \otimes w_1)$, $\beta = (w_2 \otimes 1) + (1 \otimes w_2)$. Since $\alpha^2 = (w_1^2 \otimes 1) + (1 \otimes w_1^2)$, $\alpha^3 = (w_1^2 \otimes w_1) + (w_1 \otimes w_1^2)$, $\beta^2 = (w_2^2 \otimes 1) + (1 \otimes w_2^2) = 0$, but $\alpha^3 \beta = 0$ on the other hand $\alpha^2 \beta = (w_1^2 \otimes w_2) + (w_2 \otimes w_1^2) \neq 0$ consequently $zcl(G_2(\mathbb{R}^3)) \geq 3$, by Theorem 3.3, $3 < TC(G_2(\mathbb{R}^3)) \leq 4$, as a result $TC(G_2(\mathbb{R}^3)) = 4$.

Lemma 3.6. For any positive integer m, we have:

$$zcl\underbrace{(G_2(\mathbb{R}^3) \times G_2(\mathbb{R}^3) \times ... \times G_2(\mathbb{R}^3))}_{m-times} \ge 3m.$$

Proof. Remember by Theorem 2.6, $w_1^2 \neq 0$. Let $\alpha_i, \beta_i \in H^*(G_2(\mathbb{R}^3) \times G_2(\mathbb{R}^3) \times \cdots \times G_2(\mathbb{R}^3)) \otimes H^*(G_2(\mathbb{R}^3) \times G_2(\mathbb{R}^3) \times \cdots \times G_2(\mathbb{R}^3))$, for $i = 1, 2, \dots, m$, defined by:

$$\begin{array}{lll} \alpha_1 & = & (w_1 \otimes 1 \otimes \cdots \otimes 1) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (w_1 \otimes 1 \otimes \cdots \otimes 1), \\ \alpha_2 & = & (1 \otimes w_1 \otimes \cdots \otimes 1) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (1 \otimes w_1 \otimes \cdots \otimes 1), \\ \vdots & & & \\ \alpha_m & = & (1 \otimes 1 \otimes \cdots \otimes w_1) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (1 \otimes 1 \otimes \cdots \otimes w_1) \\ \text{and} & & \\ \beta_1 & = & (w_2 \otimes 1 \otimes \cdots \otimes 1) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (w_2 \otimes 1 \otimes \cdots \otimes 1), \\ \beta_2 & = & (1 \otimes w_2 \otimes \cdots \otimes 1) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (1 \otimes w_2 \otimes \cdots \otimes 1), \end{array}$$

$$\beta_m = (1 \otimes 1 \otimes \cdots \otimes w_2) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (1 \otimes 1 \otimes \cdots \otimes w_2).$$

We may show by easy calculation that $\alpha_i s$ and $\beta_i s$ are in the kernel of $\cup : H^*(X) \otimes H^*(X) \longrightarrow H^*(X)$. Clearly $\alpha_i^2 \neq 0$ and calculation shows that

$$\alpha_1^2 \alpha_2^2 \cdots \alpha_m^2 \beta_1 \cdots \beta_m = w_1^2 w_2 \otimes w_1^2 w_2 \otimes \cdots \otimes w_1^2 w_2 \neq 0.$$

Consequently,

$$zcl(G_2(\mathbb{R}^3) \times G_2(\mathbb{R}^3) \times \cdots \times G_2(\mathbb{R}^3)) \ge 2m + m = 3m.$$

Theorem 3.7. For any positive integer $m \geq 1$, we have:

$$TC\underbrace{(G_2(\mathbb{R}^3) \times G_2(\mathbb{R}^3) \times \cdots \times G_2(\mathbb{R}^3))}_{m-times} = 3m+1.$$

Proof. This proof follows by Theorems 3.4 and Lemmas 3.5, 3.6.

Lemma 3.8. $TC(G_2(\mathbb{R}^4)) = 5$.

Proof. First, we calculate the zero divisior cup length of $G_2(\mathbb{R}^4)$. Since $H^*((G_2(\mathbb{R}^4)); \mathbb{Z}_2) = \mathbb{Z}_2[w_1, w_2]/\langle \bar{w}_3, \bar{w}_4 \rangle$ and $\bar{w}_3 = w_1^3$, $\bar{w}_4 = w_1^4 + w_1^2 w_2 + w_2^2$, we have $H^*((G_2(\mathbb{R}^4)); \mathbb{Z}_2) = \mathbb{Z}_2[w_1, w_2]/\langle w_1^3, w_1^2 w_2 + w_2^2 \rangle$. Now let $\alpha, \beta \in H^*(G_2(\mathbb{R}^4) \otimes H^*(G_2(\mathbb{R}^4))$, defined by:

$$\alpha = (w_1 \otimes 1) + (1 \otimes w_1), \qquad \beta = (w_2 \otimes 1) + (1 \otimes w_2).$$

By an easy calculation we see that

$$\alpha^3\beta = (w_1^2w_2 \otimes w_1) + (w_1^2 \otimes w_1w_2) + (w_1w_2 \otimes w_1^2) + (w_1 \otimes w_1^2w_2) \neq 0.$$

Consequently $zcl(G_2(\mathbb{R}^4)) \geq 4$, on the other hand by Theorem 3.3, $4 < TC(G_2(\mathbb{R}^4)) \leq 5$, as a result $TC(G_2(\mathbb{R}^4)) = 5$.

K. J. Pearson and Tan Zhang in [11] used the equality $TC(X) = cat(X \times X)$, to compute the topological complexity of $G_2(\mathbb{R}^4)$, which is not true in general. In fact we have $TC(X) \leq cat(X \times X)$. See the following example.

Example 3.9. Let $X = G_2(\mathbb{R}^4)$ by Lemma 3.11 TC(X) = 5 and by Corollary 2.13 $cat(X \times X) = 6$. This shows that the equality $TC(X) = cat(X \times X)$ is not true in general.

Lemma 3.10. For any positive integer m, we have:

$$zcl\underbrace{(G_2(\mathbb{R}^4) \times G_2(\mathbb{R}^4) \times ... \times G_2(\mathbb{R}^4))}_{m-times} \ge 4m.$$

Proof. Let $\alpha_i, \beta_i \in H^*(G_2(\mathbb{R}^4) \times \cdots \times G_2(\mathbb{R}^4)) \otimes H^*(G_2(\mathbb{R}^4) \times \cdots \times G_2(\mathbb{R}^4))$, for $i = 1, 2, \dots, m$, defined by:

$$\alpha_1 = (w_1 \otimes 1 \otimes \cdots \otimes 1) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (w_1 \otimes 1 \otimes \cdots \otimes 1)$$

$$\alpha_2 = (1 \otimes w_1 \otimes \cdots \otimes 1) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (1 \otimes w_1 \otimes \cdots \otimes 1)$$

:

$$\alpha_m = (1 \otimes 1 \otimes \cdots \otimes w_1) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (1 \otimes 1 \otimes \cdots \otimes w_1)$$

and

$$\beta_1 = (w_2 \otimes 1 \otimes \cdots \otimes 1) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (w_2 \otimes 1 \otimes \cdots \otimes 1)$$

$$\beta_2 = (1 \otimes w_2 \otimes \cdots \otimes 1) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (1 \otimes w_2 \otimes \cdots \otimes 1)$$

:

$$\beta_m = (1 \otimes 1 \otimes \cdots \otimes w_2) \otimes (1 \otimes \cdots \otimes 1) + (1 \otimes \cdots \otimes 1) \otimes (1 \otimes 1 \otimes \cdots \otimes w_2)$$

We may show by an easy calculation that $\alpha_i s$ and $\beta_i s$ are in the kernel of $\cup : H^*(X) \otimes H^*(X) \longrightarrow H^*(X)$. Since $w_1^2 \neq 0$ and $w_2 \neq 0$, then calculation shows that

$$\alpha_1^3 \alpha_2^3 \cdots \alpha_m^3 \beta_1 \cdots \beta_m = w_1^3 w_2 \otimes w_1^3 w_2 \otimes \cdots \otimes w_1^3 w_2 \neq 0.$$

Consequently,

$$zcl(G_2(\mathbb{R}^4) \times G_2(\mathbb{R}^4) \times \cdots \times G_2(\mathbb{R}^4)) \ge 3m + m = 4m.$$

Corollary 3.11. For any positive integer $m \geq 1$, we have:

$$TC\underbrace{(G_2(\mathbb{R}^4) \times G_2(\mathbb{R}^4) \times \cdots \times G_2(\mathbb{R}^4))}_{m-times} = 4m+1.$$

Proof. The proof follows by Theorems 3.4 and Lemmas 3.8 and 3.10. \Box

4 Lower and upper bounds on Topological complexity of certain real Grassmannian manifolds

In this section we calculate lower and upper bounds of Topological complexity of $G_2(\mathbb{R}^{2^p+1})$ and $G_2(\mathbb{R}^{2^p+2})$.

Theorem 4.1. For any positive integer $p \geq 2$ we have:

$$zcl(G_2(\mathbb{R}^{2^p+1})) \ge 3(2^p-1).$$

Proof. Let $w_1, w_2 \in H^*(G_2(\mathbb{R}^{2^p+1}); \mathbb{Z}_2)$ be generators. Then $w_1^{2^{p+1}-2} \neq 0$, but $w_1^{2^{p+1}-1} = 0$ and $w_2^{2^p-1} \neq 0$ but $w_2^{2^p} = 0$. Let $\alpha, \beta \in H^*(G_2(\mathbb{R}^{2^p+1}) \otimes H^*(G_2(\mathbb{R}^{2^p+1}))$ defined by:

$$\alpha = (w_1 \otimes 1) + (1 \otimes w_1), \qquad \beta = (w_2 \otimes 1) + (1 \otimes w_2).$$

By an easy calculation,

$$\alpha^{2^{p+1}-1} = (w_1^{2^{p+1}-2} \otimes w_1) + (w_1 \otimes w_1^{2^{p+1}-2}) + \dots \neq 0,$$

$$\beta^{2^{p}-2} = (w_2^{2^{p}-2} \otimes 1) + (1 \otimes w_2^{2^{p}-2}) + (w_2^{2^{p}-4} \otimes w_2^{2}) + (w_2^{2} \otimes w_2^{2^{p}-4}) + \dots \neq 0,$$

$$\beta^{2^{p}-1} = (w_2^{2^{p}-1} \otimes 1) + (1 \otimes w_2^{2^{p}-1}) + (w_2^{2^{p}-2} \otimes w_2) + (w_2 \otimes w_2^{2^{p}-2}) + \dots \neq 0.$$

Clearly α, β are in the kernel of $\cup : H^*(X) \otimes H^*(X) \longrightarrow H^*(X)$. And the calculation shows that $\alpha^{2^{p+1}-1}\beta^{2^p-1} = 0$ but $\alpha^{2^{p+1}-1}\beta^{2^p-2} \neq 0$. Consequently,

$$zcl(G_2(\mathbb{R}^{2^p+1})) \ge (2^{p+1}-1) + (2^p-2) = 3(2^p-1).$$

Corollary 4.2. For any positive integer $p \geq 2$, we have:

$$3(2^p) - 2 \le TC(G_2(\mathbb{R}^{2^p+1})) \le 2^{p+2} - 5.$$

Proof. It follows from Theorem 3.2, Theorem 3.3.

Remark 4.3. If p=1 then $TC(G_2(\mathbb{R}^3))=4$. Note that $G_2(\mathbb{R}^3)$ is infact $\mathbb{R}P^2$ wich is consistent with previous calculations. For p=2, $10 < TC(G_2(\mathbb{R}^5)) < 11$. We see there is a gape between lower and upper bounds. For $p \geq 3$ we find a gape between lower and upper bounds by $2^p - 7$.

At the end we calculate topological complexity of $G_2(\mathbb{R}^{2^p+2})$ for p >2 using the same method of Theorem 3.8, but we see there is a gape between lower and upper bounds.

Theorem 4.4. For any positive integer, $p \geq 2$, we have:

$$zcl(G_2(\mathbb{R}^{2^p+2})) \ge (2^{p+1}-2) + (2^p+1) = 2^{p+1} + 2^p - 1 = 3(2^p) - 1.$$

Proof. Let $w_1, w_2 \in H^*(G_2(\mathbb{R}^{2^p+2}); \mathbb{Z}_2)$ be generators. Clearly $w_1^{2^{p+1}-2} \neq 0$, $w_1^{2^{p+1}-1} = 0$ and $w_2^{2^p} \neq 0$, $w_2^{2^{p+1}} = 0$. Let $\alpha, \beta \in H^*(G_2(\mathbb{R}^{2^p+2}) \otimes \mathbb{R}^2)$ $H^*(G_2(\mathbb{R}^{2^p+2}), \text{ defined by:}$

$$\alpha = (w_1 \otimes 1) + (1 \otimes w_1), \qquad \beta = (w_2 \otimes 1) + (1 \otimes w_2).$$

By an easy calculation,

$$\alpha^{2^{p+1}-2} = (w_1^{2^{p+1}-2} \otimes 1) + (w_1^{2^{p+1}-4} \otimes w_1^2) + \dots + (w_1^2 \otimes w_1^{2^{p+1}-4}) + (1 \otimes w_1^{2^{p+1}-2})$$

$$\alpha^{2^{p+1}-1} = (w_1^{2^{p+1}-1} \otimes 1) + (w_1^{2^{p+1}-2} \otimes w_1) + \dots + (w_1 \otimes w_1^{2^{p+1}-2}) + (1 \otimes w_1^{2^{p+1}-1})$$
and also

and also

$$\beta^{2^{p}+1} = (w_2^{2^p} \otimes w_2) + (w_2 \otimes w_2^{2^p})$$

$$\beta^{2^p+2} = (w_2^{2^p} \otimes w_2^2) + (w_2^2 \otimes w_2^{2^p})$$

$$\vdots$$

$$\beta^{2^{p+1}-1} = (w_2^{2^p} \otimes w_2^{2^p-1}) + (w_2^{2^p-1} \otimes w_2^{2^p}).$$

Not that α, β are in the kernel of $\cup : H^*(X) \otimes H^*(X) \longrightarrow H^*(X)$. And best possibility for zero cup-length comes from the element $\alpha^{2^{p+1}-2}\beta^{2^p+1} \neq$ 0. Consequently,

$$zcl(G_2(\mathbb{R}^{2^p+2})) \ge (2^{p+1}-2) + (2^p+1) = 3(2^p) - 1$$

Corollary 4.5. For any positive integer, $p \geq 2$, we have:

$$3(2^p) \le TC(G_2(\mathbb{R}^{2^p+2})) \le 2^{p+2} - 3.$$

Proof. It follows from Theorems 3.2, 3.3, 4.4.

Remark 4.6. For p = 2, $12 \le TC(G_2(\mathbb{R}^6)) \le 13$, We see there is a gape between lower and upper bounds. For $p \ge 3$ we find a gape between lower and upper bound by $2^p - 3$.

Acknowledgements

The authors are grateful to the referees for their comments and advises.

References

- [1] F. Akhtaifar, M. A. Asadi Golmankhaneh, Topological complexity and LS-category of certain manifolds, Submitted.
- [2] I. Berstein, On the Lusternik-Schnirelmann category of grassmanians, Proc. Cambridge Philos. Soc. 79 (1976), 129-134.
- [3] Borel, A,La cohomologie mod 2 de certains espaces homogenes, comm. Math. Helv. 27 (1953), 165-197.
- [4] O.Cornea, G. Lupton, J. Oprea, and D. Tanreá; Lusternik-Schnirelmann category, Mathematical Surveys and Monographsm vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857 (2004e:55001)
- [5] M. Farber, S. Tabachnikov and S. Yuzvinsky, *Topological robotics:* Motion planning in projective spaces, Preprint arxiv: math. AT/0210018, (2 Oct. 2002).
- [6] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211-221.
- [7] M. Farber, Instabilities of robot motion Topology Appl. 140 (2004), no. 2-3, 245-266.

14 F. AKHTARIFAR, M. A. ASADI-GOLMANKHANEH

- [8] M. Farber, Topology of robot motion planning Morse theoretic methods in nonlinear analysis and in symplectic topology, NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 185-230.
- [9] A. Hatcher, Algebraic Topology Cambridge, 2002.
- [10] H. Hiller, On the cohomology of real Grassmannians, Trans. Amer. Math. Soc. 257 (2), 521-533, (1980).
- [11] K. J. Pearson and Tan Zhang, Topological Complexity and Motion Planning in Certain Grassmannian, Applied Mathematics Letters 17 (2004) 499-502.

Fezzeh Akhtarifar

Ph.D Student of Mathematics Department of Mathematics Urmia University, Urmia, Iran

E-mail: f.akhtarifar@urmia.ac.ir

M. A. Asadi-Golmankhaneh

Associated Professor of Mathematics Department of Mathematics Urmia University, Urmia, Iran

E-mail: m.asadi@urmia.ac.ir