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1 Introduction

In the case of ordinary differential equations the unknown function and
its derivatives are all evaluated at the same instant, t. This may not
always be the case as we could have differential equations, in which the
unknown function occurs with various different arguments. Such differ-
ential equations are popularly known as functional differential eqautions.
The simplest of these are found by expressing some derivative of the de-
pendent variable x at time t, which is the independent variable, in terms
of x and its lower derivatives, if any, at t and earlier instants. Such equa-
tions are called delay differential equations. Further, if the differential
equations contain the unknown function and the derivative with time
delays, then such differential equations are called neutral differential
equations. Neutral differential equations in particular are of importance
in studying models involving flip-flop circuit [27], compartmental sys-
tems [30], etc. Several research papers deal with obtaining solutions of
neutral differential equations. In [28], neutral differential equations are
solved using multistep block method. Other methods of solution include
implicit block method [14], and analysing discontinuities of the deriva-
tives as studied in [1]. In general, these differential equations have a wide
range of applications which include heat transfer problems, signal pro-
cessing, evolution of species, traffic flow, study of epidemics, population
models, prey-predator models, biological systems, population dynamics,
networking problems, rolling of ships, electrical engineering, control sys-
tems, etc [15]. Well known methods to solve these kinds of differential
equations include the method of steps, numerical solutions, substitu-
tions, and power series solutions (See [5]). A great detail of literature
on delay differential equations can be found in [7, 8].

Symmetries are transformations which leave an object unchanged or
invariant. Symmetries make a very important tool in studying various
laws governing nature. In [25] it is pointed that symmetry accounts
for the regularities of the laws that are independent of some inessential
circumstances. For example, reproducibility of experiments at different
places and time relies on invariance laws of nature under space trans-
lation, rotation and time translation. A very important implication
of symmetry in Physics and Mathematics is the existence of conserva-
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tion laws. Nöether [24], in 1918, observed this connection in proving a
relation between continuous symmetries and conservation laws. Even
scientists like Kepler and Newton studied the motion of planets as a
symmetry principle. Symmetry analysis is widely used in Mathematics,
Physics and Mechanics. Sophus Lie, over a century back initiated this
subject. Lie group analysis is an excellent tool in studying the properties
of solutions of differential equations.

In this paper we make a complete classification of second order func-
tional (delay and neutral) differential equations with constant coeffi-
cients to solvable Lie algebras. The presence of delay terms makes espe-
cially the higher order nonlinear differential equations difficult to solve.
As there is no analytic method to solve them directly, group analysis
is the best way to study the properties of delay differential equations.
Most of the existing research on symmetry analysis are done by changing
the space variables. However, differential equations with deviating ar-
guments do not possess any equivalent transformations related with the
change of the variables – both dependent and independent. We consider
the absence of such equivalent transformations to obtain a basis for the
solvable Lie algebras of such differential equations. We shall use certain
facts stated later to simplify our second order differential equations. We
provide a basis for the Lie algebra given by first order linear and nonlin-
ear differential equations, for which there is no existing literature. We
deal with second order differential equations by simplifying them and
using an approach different from the existing literature. We also make a
classification for some second order nonlinear differential equations for
which there is no existing literature.

We shall be studying the differential equation

Φ(t, x(t), x(t− r), x′(t), x′(t− r), x′′(t), x′′(t− r)) = 0,

where Φ is defined on I×D6 where D is an open set in R, I is an interval

in R and r > 0 is the delay. We assume that
∂Φ

∂x′′(t− r)
6= 0. We shall

find a Lie group under which these differential equations are invariant.
We call this the admitted Lie group by which we mean that one solution
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curve is carried to another solution curve of the same equation.

In [29], symmetries of delay differential equations are obtained by
defining a certain operator, equivalent to the canonical Lie-Bäcklund
operator. In [26], equivalent symmetries for second order linear delay
differential equation are obtained. However, it may be noted that in [26]
too, an operator equivalent to the canonical Lie-Bäcklund operator and
other suitable operators are defined. The research carried out in [4] ex-
haustively describes the Lie symmetries of systems of second order linear
ordinary differential equations with constant coefficients over both real
and complex fields. The research also proposes an algebraic approach
to obtain bounds for the dimensions of the maximal Lie invariance alge-
bras possessed by such systems. Further, such systems are thoroughly
provided their group classification in [19, 20], with extensions to linear
systems of second order ordinary differential equations with more than
two equations. Higher order symmetries for ordinary differential equa-
tions are studied in [10]. A group method is suggested in [16] to study
functional differential equations based on a search of symmetries of un-
derdetermined differential equations by methods of classical and modern
group analysis, using the principle of factorization. The method therein,
encompasses the use of a basis of invariants consisting of universal and
differential invariants. By using Lie-Bäcklund operator and invariant
manifold theorem, [21] classifies second order delay differential equa-
tions to solvable Lie algebras. It is seen that [21] performs a symmetry
analysis without simplification of the linear delay differential equations,
the simplification of which will be seen in this paper. In addition several
crucial cases are not considered in [21]. The approach for classification of
delay differential equations to solvable Lie algebras is extended to some
nonlinear differential equations in [22, 23]. Recently in [17], an admitted
Lie group for first order delay differential equations with constant coef-
ficients is defined, and the corresponding generators of the Lie group for
this equation are obtained. The approach in [17] consists of using Lie-
Bäcklund operators to obtain the determining equations. Further first
order neutral differential equations with most general time delay have
been studied in [18]. The drawback of the analysis in [17, 18, 26, 29]
is that the inverse of the obtained classification cannot be found. The
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research in Lie symmetry analysis has been extended to first-order lin-
ear and nonlinear fractional differential equations by [12]. Further, [13]
develops Lie symmetry analysis for second-order fractional differential
equations, based on conformable fractional derivatives and presents some
numerical examples to illustrate the approach. In this paper we use the
ideas from [2, 3, 11] for ordinary differential equations, (we particularly
use only Taylor’s theorem) to extend the study and results of obtain-
ing symmetries for linear and nonlinear functional differential equations.
Unlike the existing research, our approach does not lead to magnifica-
tion in the delay terms when obtaining the determining equations.

The rest of this paper is organised as follows: The next section gives
some preliminaries – definitions, examples and existing results. The
following section extends the results for ordinary differential equations
to functional differential equations, by obtaining a Lie type invariance
condition using Taylor’s theorem for a function of several variables. In
the sections to follow, each section will consist of two subsections —
one for linear and the other for nonlinear differential equations with
constant coefficients. Each section will independently be concerned with
(i) Second order delay differential equations (ii) Second order neutral
differential equations. We conclude with representation of our results,
which are the basis for the Lie algebras, in a tabular form.

2 Preliminaries

In this section, some preliminaries are given.

Definition 2.1. ([6]) In general, we consider transformations
t̄i = fi(tj , δ), i, j = 1, 2, · · · , n., which continuously depend on the pa-
rameter δ.
Further we assume that, for each i, fi is a smooth function of the vari-
ables tj and has convergent Taylor series in δ.
These set of transformations are said to form a group if:

1. Two transformations carried out in succession are equivalent to
another transformation of the set
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2. There is a transformation for which the source and image points
coincide.

3. Each transformation has an inverse.

Remark 2.2. The associativity law for groups follows from the closure
property.

Remark 2.3. In general, the order in which the transformations are
carried out matters. If the order does not matter, then we label the
group as abelian.

Having defined Lie groups, we now turn to define Lie algebras and
the terminologies involved:

Definition 2.4. ([11]) A Lie algebra L is a vector space over a real
or complex field F together with a binary operation “,” satisfying the
following properties:

1. (Bilinearity) For S1, S2 ∈ L and a, b ∈ F,
[S1, aS2 + bS3] = a[S1, S2] + b[S1, S3],
and
[aS1 + bS2, S3] = a[S1, S3] + b[S2, S3].

2. (Anti-symmetry) For S1, S2 ∈ L,
[S1, S2] = −[S2, S1].

3. (Jacobi identity) For S1, S2, S3 ∈ L,
[S1, [S2, S3]] + [S2, [S3, S1]] + [S3, [S1, S2]] = 0.

Definition 2.5. (Basis for a Lie algebra)([11]) A finite set of infinitesi-
mal generators {S1, S2, · · · , Sm} is said to be a basis for the Lie algebra
L if:

1. Si ∈ L and {S1, S2, · · · , Sm} forms a basis for the vector space L,

2. [Si, Sj ] =
∑
cijkSk.

The coefficients cijk are called the structure constants of the Lie
algebra, i, j, k = 1, 2, · · · ,m.
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Definition 2.6. (Solvable Lie algebra)([11]) A Lie algebra L is said to
be solvable if there exists a sequence

L = Lr ⊃ Lr−1 ⊃ · · · ⊃ L1,

of sub-algebras of dimensions r, r − 1, · · · , 1, respectively such that
∀s = 2, 3, · · · , r, Ls−1 is an ideal in Ls.

Definition 2.7. (Commutator)([11]) Let Si = ωiα(x)
∂

∂xα
, Sj = ωjβ(x)

∂

∂xβ
,

where x = (x1, x2, · · · , xn). Then the commutator of Si and Sj is defined
as:

[Si, Sj ] = SiSj − SjSi =
n∑

α,β=1

[(
ωiα(x)

∂

∂xα

)(
ωjβ(x)

∂

∂xβ

)

−
(
ωjβ(x)

∂

∂xβ

)(
ωiα(x)

∂

∂xα

)]
=

n∑
β=1

Υβ(x)
∂

∂xβ
,

where Υβ(x) =
∑n

α=1

[
ωiα(x)

∂ωjβ(x)

∂xα
− ωjβ(x)

∂ωiβ(x)

∂xβ

]
.

Example 2.8. Let S1 = t
∂

∂t
, S2 = tx

(
∂

∂x
+

∂

∂u

)
, then,

[S1, S2] = S1S2 − S2S1

=

(
t
∂

∂t

)(
tx

(
∂

∂x
+

∂

∂u

))
−
(
tx

(
∂

∂x
+

∂

∂u

))(
t
∂

∂t

)
= tx

(
∂

∂x
+

∂

∂u

)
= S2.

Definition 2.9. (Derived algebra)([11]) Let {S1, · · · , Sr} be a basis of
a Lie algebra Lr. The linear span of the commutators [Si, Sj ] of all
possible pairs of the basis operators is an ideal denoted by L′r and is
called the derived algebra. The higher-order derived algebras are defined

recursively: L
(n+1)
r = (L

(n)
r )′, n ∈ N.
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Theorem 2.10. In any algebra Lr, r > 2, there exists a two-dimensional
sub-algebra. Moreover, any operator S ∈ Lr, can be included in a two-
dimensional sub-algebra.

Theorem 2.11. An algebra Lr is solvable if and only if the derived al-

gebra of some order equals zero: L
(n)
r = 0 for some n > 0. In particular,

any two-dimensional algebra is solvable.

Theorem 2.12. Any two infinitesimal generators of a r− parameter
Lie group satisfy [Si, Sj ] =

∑
cijkSk, where i, j, k = 1, 2, · · · , r.

Symmetry analysis for ordinary differential equations is described
below. The work done for ordinary differential equations stands as a
motivation for our research.
For a second order ordinary differential equation expressed as
d2x̄

dt̄2
= G(t̄, x̄,

dx̄

dt̄
), if t̄ = f1(t, x; δ), x̄ = f2(t, x; δ), where f1 and f2 are

smooth functions in t and x having a convergent Taylor series in δ, then

ω(t, x) =
∂f1(t, x; 0)

∂δ
, Υ (t, x) =

∂f2(t, x; 0)

∂δ
.

ω and Υ are called coefficients of the infinitesimal transformations or
simply infinitesimals.
Then using invariance, we get the Lie Invariance condition for second
order ordinary differential equations as

Υtt + (2Υtx−ωtt)x′+ (Υxx− 2ωtx)x′2−ωxxx′3 + (Υx− 2ωt)G− 3ωxx
′G

= ωGt + ΥGx + Υ[t]Gx′ ,

where Υ[t] = Υt + (Υx − ωt)x′ − ωxx′2.

3 Lie Type Invariance Condition for Second Or-
der Functional Differential Equations

In this section, we extend the results for ordinary differential equations
to functional differential equations. The notation xr whenever it appears
will denote x(t− r).
We establish the following Lie type invariance condition for second order
neutral differential equations.
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Theorem 3.1. Consider the second order neutral differential equation

d2x

dt2
= F (t, x, x(t− r), x′(t), x′(t− r), x′′(t− r)),

where F be defined on a 6-dimensional space I ×D5, D is an open set
in R and I is any interval in R. Then the Lie type invariance condition
is given by

ωFt + ΥFx + Υ rFx(t−r) + Υ[t]Fx′(t) + Υ r[t]Fx′(t−r) + Υ r[tt]Fx′′(t−r) =

Υtt+(2Υtx−ωtt)x′+(Υxx−2ωtx)x′2−ωxxx′3 +(Υx−2ωt)x
′′−3ωxx

′x′′,

where,

Υ[t] = Dt(Υ )− x′Dt(ω),

Υ[tt] = Dt(Υ[t])− x′′Dt(ω), where Dt =
∂

∂t
+ x′

∂

∂x
+ x′′

∂

∂x′
+ · · · ,

Υ r[t] = (Υt)
r + ((Υx)r − (ωt)

r)x′(t− r)− (x′(t− r))2(ωx)r,

Υ r[tt] = (Υtt)
r + (2(Υtx)r − (ωtt)

r)x′(t− r) + ((Υxx)r − 2(ωtx)r)x′(t− r)2

− (ωxx)rx′(t− r)3 + ((Υx)r− 2(ωt)
r)x′′(t− r)− 3(ωx)rx′(t− r)x′′(t− r)),

and ωr = ω(t− r, x(t− r)), Υ r = Υ (t− r, x(t− r)).

Proof. Let the neutral differential equation be invariant under the Lie
group

t̄ = t+ δω(t, x) +O(δ2), x̄ = x+ δΥ (t, x) +O(δ2).

We then naturally define t− r = t − r + δω(t − r, x(t − r)) + O(δ2)
and
x(t− r) = x(t− r) + δΥ (t− r, x(t− r)) +O(δ2).

With the notations, ωr = ω(t−r, x(t−r)), and Υ r = Υ (t−r, x(t−
r)), it follows that,

x′(t− r) = dx̄
dt̄ (t− r)

= x′(t− r) + (Υt)
r + ((Υx)r − (ωt)

r)x′(t− r)
− (x′(t− r))2(ωx)r)δ +O(δ2).
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Considering the second-order extended infinitesimals, we can write

d2x̄

dt̄2
=

d

dt̄

(
dx̄

dt̄

)

=

d

dt

[
dx

dt
+ [Dt(Υ )− x′Dt(ω)]δ +O(δ2)

]
1 + δDt(ω) +O(δ2)

=

(
d2x

dt2
+Dt(Υ[t])δ +O(δ2)

)
(1− δDt(ω) +O(δ2))

=
d2x

dt2
+ (Dt(Υ[t])−Dt(ω)x′′)δ +O(δ2).

So, Υ[tt] = Dt(Υ[t])− x′′Dt(ω).
As Υ[t] contains t, x and x′, we need to extend the definition of Dt.

Let Dt =
∂

∂t
+ x′

∂

∂x
+ x′′

∂

∂x′
+ · · · .

Expanding Υ[tt], gives,

Υ[tt] = Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2

− ωxxx′3 + (Υx − 2ωt)x
′′ − 3ωxx

′x′′.

It follows that,

x′′(t− r) =
d2x̄

dt̄2
(t− r)

= x′′(t− r) +
[
(Υtt)

r + (2(Υtx)r − (ωtt)
r)x′(t− r)

+ ((Υxx)r − 2(ωtx)r)x′(t− r)2 − (ωxx)rx′(t− r)3

+ ((Υx)r − 2(ωt)
r)x′′(t− r)− 3(ωx)r

x′(t− r)x′′(t− r)
]
δ +O(δ2).

Let Υ r[t] = (Υt)
r + ((Υx)r − (ωt)

r)x′(t− r)− (x′(t− r))2(ωx)r and

Υ r[tt] = (Υtt)
r + (2(Υtx)r − (ωtt)

r)x′(t− r) + ((Υxx)r − 2(ωtx)r)

x′(t− r)2 − (ωxx)rx′(t− r)3 + ((Υx)r − 2(ωt)
r)x′′(t− r)

− 3(ωx)rx′(t− r)x′′(t− r)).
For invariance,
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d2x̄

dt̄2
= F (t̄, x̄, x(t− r), dx̄

dt̄
,
dx̄

dt̄
(t− r), d

2x̄

dt̄2
(t− r)).

This gives,

d2x

dt2
+ Υ[tt]δ +O(δ2) = F (t+ δω +O(δ2), x+ δΥ +O(δ2), x(t− r) + δΥ r

+O(δ2),
dx

dt
+ δΥ[t] +O(δ2),

dx

dt
(t− r) + Υ r[t]δ

+O(δ2),
d2x

dt2
(t− r) + Υ r[tt]δ +O(δ2))

= F (t, x, x(t− r), x′(t), x′(t− r), x′′(t− r))+
(ωFt + ΥFx + Υ rFx(t−r) + Υ[t]Fx′(t) + Υ r[t]Fx′(t−r)

+ Υ r[tt]Fx′′(t−r))δ +O(δ2).

Comparing the coefficient of δ, we get

ωFt + ΥFx + Υ rFx(t−r) + Υ[t]Fx′(t) + Υ r[t]Fx′(t−r) + Υ r[tt]Fx′′(t−r) =

Υtt+(2Υtx−ωtt)x′+(Υxx−2ωtx)x′2−ωxxx′3 +(Υx−2ωt)x
′′−3ωxx

′x′′.
(1)

The above obtained equation (1) is a Lie type invariance condition. �
We can define a prolonged operator (the general infinitesimal gen-

erator associated with the Lie algebra) as below, for the second order
neutral differential equation as:

ζ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂x(t− r)
.

We then, naturally define the extended operator, for second order
neutral differential equations as:

ζ(1) = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂x(t− r)
+ Υ[t]

∂

∂x′
+ Υ r[t]

∂

∂x′(t− r)

+ Υ[tt]
∂

∂x′′
+ Υ r[tt]

∂

∂x′′(t− r)
.

Defining, ∆ = x′′(t) − F (t, x(t), x(t − r), x′(t), x′(t − r), x′′(t − r)) = 0,
we get,

ζ(1)∆ = Υ[tt]−ωFt−ΥFx−Υ rFx(t−r)−Υ[t]Fx′(t)−Υ r[t]Fx′(t−r)−Υ
r
[tt]Fx′′(t−r).

(2)
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Comparing equation (2) and equation (1), we get

Υ[tt] = Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′2

− ωxxx′3 + (Υx − 2ωt)x
′′ − 3ωxx

′x′′.

On substituting x′′ = F into ζ(1)∆ = 0, we get an invariance
condition for the second order neutral differential equation which is
ζ(1)∆ |∆=0= 0, from which we shall obtain the determining equations.

Remark 3.2. If the term x′′(t − r) is absent, then the corresponding
second order neutral differential equation reduces to a second order delay
differential equation.

We conclude this section by proving two very elementary results
which we shall be using in our subsequent sections:

Proposition 3.3. If the linear differential equation is given by

x′′(t) + bx′(t) + cx′(t− r) + dx′′(t− r) + ex(t) + jx(t− r) = m(t), (3)

then by employing a change of variables namely t̄ = t, x̄ = x− x̃, where x̃
is a solution of equation (3), we can convert the given non-homogeneous
linear differential equation to a homogeneous one, namely
x′′(t) + bx′(t) + cx′(t− r) + dx′′(t− r) + ex(t) + jx(t− r) = 0.

Proof. The proposition easily follows by substituting t = t̄ and
x(t) = x̄+ x̃(t̄) in (3), by noting that
x̃′′(t) + bx̃′(t) + cx̃′(t− r) + dx̃′′(t− r) + ex̃(t) + jx̃(t− r) = m(t). �

The next proposition is particularly useful in simplifying second or-
der differential equations.

Proposition 3.4. If the linear differential equation is given by

x′′(t) + a1(t)x′(t) + b1(t)x′(t− r) + c1(t)x(t)

+d1(t)x(t− r) + k1(t)x′′(t− r) = 0,
(4)

where a1(t), b1(t), c1(t), d1(t) and k1(t) are twice differentiable functions
with variable coefficients, then by making a suitable transformation,
equation (4) can be reduced to a one in which the first order ordinary
derivative term is missing.
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Proof. By employing a change, x = u(t)s(t), where u(t) 6= 0 is some
twice differentiable function in t and with s(t) satisfying

s(t) = exp(−
t∫
a1(ξ)dξ

2
) + s0, where s0 is an arbitrary constant, equa-

tion (4) can be reduced to
u′′(t)+b2(t)u′(t−r)+c2(t)u(t)+d2(t)u(t−r)+k2(t)u′′(t−r) = 0, where

b2(t) =
b1(t)s(t− r) + 2k(t)s′(t− r)

s(t)
, c2(t) =

s′′(t) + a1(t)s′(t) + c1(t)s(t)

s(t)
,

d2(t) =
b1(t)s′(t− r) + d1(t)s(t− r) + k1(t)s′′(t− r)

s(t)
and k2(t) =

k1(t)

u(t)
.

�

Remark 3.5. It should be noted that this transformation does not affect
the symmetries of equation (4).

4 Classification of Second Order Delay Differ-
ential Equations to Solvable Lie Algebras

4.1 The Linear Case

We shall make a classification of

x′′(t) + αx′(t) + βx′(t− r) + γx(t) + ρx(t− r) = 0.

By using Proposition 3.4, we make a classification of

x′′(t) + βx′(t− r) + γx(t) + ρx(t− r) = 0. (5)

The extension and prolongation operator for equation (5) is given by,

ζ(1) = ω
∂

∂t
+ ωr

∂

∂(t− r)
+ Υ

∂

∂x
+ Υ r

∂

∂x(t− r)
+ Υ[t]

∂

∂x′

+ Υ r[t]
∂

∂xr ′
+ Υ[tt]

∂

∂x′′
.

(6)

Applying the operator defined by equation (6), to the delay equation
g(t) = t− r, we get ω(t, x) = ω(t− r, x(t− r)).
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Applying the operator defined by equation (6), to equation (5), we get,

Υtt + (2Υtx−ωtt)x′+ (Υxx− 2ωtx)x′
2−ωxxx′3 + (Υx− 2ωt)(−βx′(t− r)

−γx−ρx(t−r))−3ωxx
′(−βx′(t−r)−γx−ρx(t−r))+β(Υ rt +(Υ rx−ωrt )xr

′

− ωrxxr
′2

) + γΥ + ρΥ r = 0. (7)

Splitting equation (7) with respect to the constant term we get,

Υtt + βΥ rt + γΥ + ρΥ r = 0. (8)

Splitting equation (7) with respect to x we get,

γ(Υx − ωt) = 0. (9)

Splitting equation (7) with respect to x′ we get,

2Υtx = ωtt.

Splitting equation (7) with respect to x′2 we get,

Υxx = 2ωtx. (10)

Splitting equation (7) with respect to x′3 we get,

ωxx = 0.

Splitting equation (7) with respect to x′xr ′, xx′ or x′xr, we get,

ωx = 0. (11)

Splitting equation (7) with respect to xr we get,

− ρ(Υx − 2ωt) = 0. (12)

Splitting equation (7) with respect to xr
′2

we get,

− βωrx = 0. (13)

Splitting equation (7) with respect to xr
′

we get,

− β(Υx − 2ωt) + β(Υ rx − ωrt ) = 0. (14)
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From equation (11) and (13), we get ω = ω(t).
From equation (10), Υ = A(t)x+ θ(t).
From equation (9) or (12), we get,

ωt =
1

2
A(t). (15)

From equation (14) and using equation (15), we get

Υ r =
1

2
A(t)x+ ψ(t− r).

The following theorems make a complete group classification of the
second order delay differential equation. The notation u is used to denote
xr.

Theorem 4.1. The delay differential equation given by equation (5) for

which β 6= 0, γ 6= −ρ
2

admits a three dimensional group generated by

S1 =
∂

∂t
, S2 = x

∂

∂x
, S3 = x

∂

∂u
,

with the infinite dimensional Lie sub-algebra given by

Si4 = −

 1

2(γ +
ρ

2
)

+
4(γ +

ρ

2
)

β
A

 ∂

∂t
+

θ − x
 2

β
At +

4(γ +
ρ

2
)

β
ω


∂

∂x
+

ψ − x
 1

β
At +

2(γ +
ρ

2
)

β
ω

 ∂

∂u
.

Proof. Let β, γ, ρ be arbitrary non-zero constants, γ 6= −ρ
2

. Then from

equation (8), we get,

Att +
β

2
At + γA+

ρ

2
A = 0, (16)

and θtt + βψt + γθ + ρψ = 0.
Solving equation (16) using equation (15), we get,

ω = c1 −
At +

β

2
A

2(γ +
ρ

2
)
, (17)
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where c1 is an arbitrary constant. From equation (17),

A(t) = c2 −
2

β
At −

4ω(γ +
ρ

2
)

β
,

where c2 =
4c1(γ +

ρ

2
)

β
.

This yields,

Υ =

c2 −
2

β
At −

4ω(γ +
ρ

2
)

β

x+ θ,

and,

Υ r =

c3 −
1

β
At −

2ω(γ +
ρ

2
)

β

x+ ψ,

where c3 =
c2

2
.

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=

c1 −
At +

β

2
A

2(γ +
ρ

2
)

 ∂

∂t
+

c2 −
2

β
At −

4ω(γ +
ρ

2
)

β

x+ θ


∂

∂x
+

c3 −
1

β
At −

2ω(γ +
ρ

2
)

β

x+ ψ

 ∂

∂xr
.

The Lie algebra is spanned by

S1 =
∂

∂t
, S2 = x

∂

∂x
, S3 = x

∂

∂u
.
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With g = 2ωt, we get

S4 = −

 1

2(γ +
ρ

2
)

+
β

4(γ +
ρ

2
)
A

 ∂

∂t
+

θ − x
 2

β
At +

4(γ +
ρ

2
)

β
ω


∂

∂x
+

ψ − x
 1

β
At +

2(γ +
ρ

2
)

β
ω

 ∂

∂u

is the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2 S3

S1 0 0 0

S2 0 0 S3

S3 0 −S3 0

.

Then L = {S1, S2, S3} is a solvable Lie algebra. �

Theorem 4.2. The delay differential equation given by equation (5) for

which β 6= 0, γ = −ρ
2

admits a four dimensional group generated by

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 = tx

[
∂

∂x
+

1

2

∂

∂u

]
, S4 = x

[
∂

∂x
+

1

2

∂

∂u

]
,

with the infinite dimensional Lie sub-algebra given by

Si5 = −A
β

∂

∂t
+ (θ − βxω)

∂

∂x
+ (ψ − βxω

4
)
∂

∂u
.

Proof. Let β, γ, ρ be arbitrary non-zero constants, γ = −ρ
2

. Then from

equation (8), we get,

ωttt +
β

2
ωtt = 0, (18)

and θtt + βψt +
ρ

2
θ + ρψ = 0.

Solving equation (18) we get,

ω = c6t+ c7 −
A

β
, (19)
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where c4, c5 are arbitrary constants and c6 =
2c4

β
, c7 =

2c5

β
. From

equation (19),

A(t) = c8t+ c9 − βω,

where c8 = βc6, c9 = βc7. This yields,

Υ = (c8t+ c9 − βω)x+ θ(t),

and,

Υ r =
1

2
(c8t+ c9 − βω)x+ ψ(t− r).

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=

(
c6t+ c7 −

A

β

)
∂

∂t
+ [(c8t+ c9 − βω)x+ θ]

∂

∂x

+ [
1

2
(c8t+ c9 − βω)x+ ψ]

∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
, S2 =

∂

∂t
,

S3 = tx

[
∂

∂x
+

1

2

∂

∂u

]
, S4 = x

[
∂

∂x
+

1

2

∂

∂u

]
with

S5 = −A
β

∂

∂t
+ (θ− βxω)

∂

∂x
+ (ψ− βxω

4
)
∂

∂u
as the infinite dimensional

Lie sub-algebra.

The commutator table is given by

S1 S2 S3 S4

S1 0 −S2 S3 0

S2 S2 0 S4 0

S3 −S3 −S4 0 0

S4 0 0 0 0

.

Then L = {S1, S2, S3, S4} is a solvable Lie algebra. �
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Theorem 4.3. The delay differential equation given by equation (5) for
which β = 1, γ = 0 = ρ admits a three dimensional group generated by

S1 = t
∂

∂t
+ tx

[
∂

∂x
+

1

2

∂

∂u

]
, S2 =

∂

∂t
+ x

[
∂

∂x
+

1

2

∂

∂u

]
, S3 =

∂

∂u
,

with the infinite dimensional Lie sub-algebra given by

Si4 = −A ∂

∂t
+ (θ − xω)

∂

∂x
−
(
θt +

xω

2

) ∂

∂u
.

Proof. Let β = 1, γ = 0 = ρ. Then equation (8) becomes Υtt + Υ rt = 0,
which yields,

Att +
1

2
At = 0, (20)

and ψ = −θt + c10.
Solving equation (20) we get,

ω = c11t+ c12 −A(t), (21)

where c10, c11, c12 are arbitrary constants. From equation (21),

A(t) = c11t+ c12 − ω.

This yields,
Υ = (c11t+ c12 − ω)x+ θ(t),

and,

Υ r =
1

2
(c11t+ c12 − ω)x+ c10 − θt.

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c11t+ c12 −A(t))
∂

∂t
+ [(c11t+ c12 − ω)x+ θ(t)]

∂

∂x

+ [
1

2
(c11t+ c12 − ω)x+ c10 − θt]

∂

∂xr
.

The Lie algebra is spanned by

S1 = t
∂

∂t
+ tx

[
∂

∂x
+

1

2

∂

∂u

]
,
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S2 =
∂

∂t
+ x

[
∂

∂x
+

1

2

∂

∂u

]
, S3 =

∂

∂u

and S4 = −A ∂

∂t
+ (θ − xω)

∂

∂x
−
(
θt +

xω

2

) ∂

∂u
as the infinite dimen-

sional Lie sub-algebra.

The commutator table is given by

S1 S2 S3

S1 0 −S2 0

S2 S2 0 0

S3 0 0 0

.

Then L = {S1, S2, S3} is a solvable Lie algebra. �

Theorem 4.4. The delay differential equation given by equation (5) for
which β 6= 0, γ = 0 = ρ admits a five dimensional group generated by

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 = tx

[
∂

∂x
+

1

2

∂

∂u

]
,

S4 = x

[
∂

∂x
+

1

2

∂

∂u

]
, S5 =

∂

∂u
,

with the infinite dimensional Lie sub-algebra given by

Si6 = −A
β

∂

∂t
+ (θ − βxω)

∂

∂x
+

(
θt
β

+ βxω

)
∂

∂u
.

Proof. Let γ = 0 = ρ, β be an arbitrary non zero constant. Then
equation (8) becomes Υtt + βΥ rt = 0, which yields,

Att +
β

2
At = 0, (22)

and ψ = c14 −
θt
β
, where c13 is an arbitrary constant and c14 =

c13

β
.

Solving equation (22) we get,

ω = c17t+ c18 −
θ

β
, (23)
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where c15, c16 are arbitrary constants and c17 =
c15

β
, c18 =

c16

β
. From

equation (23),

A(t) = c15t+ c16 − βω.

This yields,

Υ = (c15t+ c16 − βω)x+ θ(t),

and,

Υ r =
1

2
(c15t+ c16 − βω)x+ c14 −

θt
β
.

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c17t+ c18 −
θ

β
)
∂

∂t
+ [(c15t+ c16 − βω)x+ θ(t)]

∂

∂x

+

[
1

2
(c15t+ c16 − βω)x+ c14 −

θt
β

]
∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
, S2 =

∂

∂t
,

S3 = tx

[
∂

∂x
+

1

2

∂

∂u

]
, S4 = x

[
∂

∂x
+

1

2

∂

∂u

]
, S5 =

∂

∂u
with

S6 = −A
β

∂

∂t
+(θ−βxω)

∂

∂x
+

(
θt
β

+ βxω

)
∂

∂u
as the infinite dimensional

Lie sub-algebra.

The commutator table is given by

S1 S2 S3 S4 S5

S1 0 −S2 S3 0 0

S2 S2 0 S4 0 0

S3 −S3 −S4 0 0 0

S4 0 0 0 0 0

S5 0 0 0 0 0

.

Then L = {S1, S2, S3, S4, S5} is a solvable Lie algebra. �
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4.2 A Nonlinear Case

We make a classification of

x′′(t) + x′(t) + x′(t− r)x(t) = 0. (24)

Applying the operator defined by equation (5), to the delay equation
g(t) = t− r, we get equation ω(t, x) = ω(t− r, x(t− r)).
Applying the operator defined by equation (5), to equation (24), we get,

Υtt+(2Υtx−ωtt)x′+(Υxx−2ωtx)x′
2−ωxxx′3+(Υx−2ωt)x

′′−3ωxx
′x′′+Υt

+ (Υx − ωt)x′ − ωxx′2 + xr ′Υ + x[Υ rt + (Υ rx − ωrt )xr
′ − ωrxxr

′2
] = 0.

(25)

Splitting equation (25) with respect to constant term, x′, x′2, x′3, x′′,

x′x′′, xr ′ and xr
′2

respectively, we get,

Υtt + Υt + xΥ rt = 0, (26)

and,

2Υtx − ωtt + Υx − ωt = 0, Υxx − 2ωtx − ωx = 0, ωxx = 0,
Υx − 2ωt = 0, ωx = 0, Υ + x(Υ rx − ωrt ) = 0, xωrx = 0.

From these equations we get, ω = ω(t), Υ = A(t)x+ θ(t),

Υ r =
1

2
A(t)x+ ψ(t− r), where A(t) = 2ωt.

Substituting the values of Υ, Υ r in equation (26) and solving it, we get,
A(t) = c19, ψ = c20, θ = c21 − θt, and

ω = c22t+ c23,

Υ = c19x+ c21 − θt, Υ r = c24x+ c20,

where c19, c20, c21, c22, c23, c24 are arbitrary constants.
The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c22t+ c23)
∂

∂t
+ (c19x+ c21 − θt)

∂

∂x
+ (c24x+ c20)

∂

∂xr
.
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The Lie algebra is spanned by

S1 = x
∂

∂x
, S2 =

∂

∂x
, S3 = t

∂

∂t
,

S4 =
∂

∂t
, S5 = x

∂

∂u
, S6 =

∂

∂u
and S7 = −θt

∂

∂x
is the infinite di-

mensional Lie sub-algebra.

The commutator table is given by

S1 S2 S3 S4 S5 S6

S1 0 −S2 0 0 S5 0

S2 S2 0 0 0 S6 0

S3 0 0 0 −S4 0 0

S4 0 0 S4 0 0 0

S5 −S5 −S6 0 0 0 0

S6 0 0 0 0 0 0

.

Then L = {S1, S2, S3, S4, S5, S6} is a solvable Lie algebra.

Remark 4.5. For the non-homogeneous nonlinear second order delay
differential equation x′′(t)+x′(t)+x′(t−r)x(t) = h(t), we get exactly the

same generators as in the homogeneous case, only that S7 = (θt− y)
∂

∂x
is the corresponding infinite dimensional Lie sub-algebra, where
y = c22

∫
t h′dt+ c23h.

5 Classification of Second Order Neutral Dif-
ferential Equations to Solvable Lie Algebras

5.1 The Linear Case

We shall make a classification of

x′′(t) + αx′(t) + βx′(t− r) + γx(t) + ρx(t− r) + κx′′(t− r) = 0.

By using the Theorem 3.1, we make a classification of

x′′(t) + βx′(t− r) + γx(t) + ρx(t− r) + κx′′(t− r) = 0. (27)
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The extension and prolongation operator for equation (5) is given by,

ζ(1) = ω
∂

∂t
+ ωr

∂

∂(t− r)
+ Υ

∂

∂x
+ Υ r

∂

∂x(t− r)
+ Υ[t]

∂

∂x′
+ Υ r[t]

∂

∂xr ′

+ Υ[tt]
∂

∂x′′
+ Υ r[tt]

∂

∂xr ′′
.

(28)

Applying the operator defined by equation (28), to the delay equation
g(t) = t− r, we get equation ω(t, x) = ω(t− r, x(t− r)).
Applying the operator defined by equation (28), to equation (27), we
get,

0 = Υtt+(2Υtx−ωtt)x′+(Υxx−2ωtx)x′
2−ωxxx′3+(Υx−2ωt)(−βx′(t−r)

−γx−ρx(t−r)−κx′′(t−r))−3ωxx
′(−βx′(t−r)−γx−ρx(t−r)−κx′′(t−r))

+ β
[
Υ rt + (Υ rx − ωrt )xr

′ − ωrxxr
′2
]

+ γΥ + ρΥ r + κ
[
Υ rtt + (2Υ rtx − ωrtt)xr

′

+ (Υ rxx − 2ωrtx)xr
′2 − ωrxxxr

′3
+ (Υ rx − 2ωrt )x

r′′ − 3ωrxx
r ′xr

′′
]
. (29)

Splitting equation (29) with respect to the constant term we get,

Υtt + βΥ rt + γΥ + ρΥ r + κΥ rtt = 0. (30)

Splitting equation (29) with respect to x we get,

γ(Υx − 2ωt) = 0. (31)

Splitting equation (29) with respect to x′ we get,

2Υtx − ωtt = 0.

Splitting equation (29) with respect to x′2 we get,

Υxx − 2ωtx = 0. (32)

Splitting equation (29) with respect to x′3 we get,

ωxx = 0.
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Splitting equation (29) with respect to x′xr ′, xx′, x′xr, or x′xr ′′ we get,

ωx = 0. (33)

Splitting equation (29) with respect to xr we get,

− ρ(Υx − 2ωt) = 0. (34)

Splitting equation (29) with respect to xr
′2

we get,

−βωrx + κ(Υ rxx − 2ωrtx) = 0.

Splitting equation (29) with respect to xr
′

we get,

−β(Υx − 2ωt) + β(Υ rx − ωrt ) + κ(2Υ rtx − ωrtt) = 0.

Splitting equation (29) with respect to xr
′3

we get,

−κωrxx = 0.

Splitting equation (29) with respect to xr ′ or xr ′′ we get,

− κωrx = 0. (35)

Splitting equation (29) with respect to xr ′′ we get,

− κ(Υx − 2ωt) + κ(Υ rx − 2ωrt ) = 0. (36)

From equation (33), we get ω = ω(t).
From equation (32), Υ = A(t)x+ θ(t).
From equation (31) or (34), we get,

ωt =
1

2
A(t). (37)

From equation (36) and using equations (35) and (37), we get
Υ r = A(t)x+ ψ(t− r).

The following theorems make a complete group classification of the
second order neutral differential equation. The notation u is used to
denote xr:
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Theorem 5.1. The neutral differential equation given by equation (27)
for which β 6= 0, κ 6= 0, γ 6= −ρ admits a two dimensional group gener-
ated by

S1 =
∂

∂t
, S2 = x

(
∂

∂x
+

∂

∂u

)
,

with the infinite dimensional Lie sub-algebra given by

Si3 = −
(

1 + κ

2(γ + ρ)
gt +

β

2(γ + ρ)
A

)
∂

∂t

+

[
θ − x

(
1 + κ

β
At +

2(γ + ρ)

β
ω

)]
∂

∂x

+

[
ψ − x

(
1 + κ

β
At +

2(γ + ρ)

β
ω

)]
∂

∂u
.

Proof. Let β, γ, ρ, κ be arbitrary non-zero constants, γ 6= −ρ. Then
from equation (30), we get,

(1 + κ)Att + βAt + (γ + ρ)A = 0, (38)

and θtt + βψt + γθ + ρψ + κψtt = 0.
Solving equation (38) by using equation (37), we get,

ω = c2 −
1 + κ

2(γ + ρ)
At −

β

2(γ + ρ)
A, (39)

where c1 is an arbitrary constant and c2 =
c1

γ + ρ
. From equation (39),

A(t) = c3 −
1 + κ

β
At −

2(γ + ρ)

β
ω,

where c3 =
2c2(γ + ρ)

β
.

This yields,

Υ =

(
c3 −

1 + κ

β
At −

2(γ + ρ)

β
ω

)
x+ θ,
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and,

Υ r =

(
c3 −

1 + κ

β
At −

2(γ + ρ)

β
ω

)
x+ ψ.

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=

(
c2 −

1 + κ

2(γ + ρ)
At −

β

2(γ + ρ)
A

)
∂

∂t

+

[(
c3 −

1 + κ

β
At −

2(γ + ρ)

β
ω

)
x+ θ

]
∂

∂x

+

[(
c3 −

1 + κ

β
At −

2(γ + ρ)

β
ω

)
x+ ψ

]
∂

∂xr
.

The Lie algebra is spanned by

S1 =
∂

∂t
, S2 = x

(
∂

∂x
+

∂

∂u

)
.

With g = 2ωt, we get

S3 = −
(

1 + κ

2(γ + ρ)
At +

β

2(γ + ρ)
A

)
∂

∂t

+

[
θ − x

(
1 + κ

β
At +

2(γ + ρ)

β
ω

)]
∂

∂x

+

[
ψ − x

(
1 + κ

β
At +

2(γ + ρ)

β
ω

)]
∂

∂u

is the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2

S1 0 0

S2 0 0

.

Then L = {S1, S2} is a solvable Lie algebra. �
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Corollary 5.2. For the neutral differential equation given by equation
(27), we obtain the same result as in Theorem 5.1, if either γ or ρ is 0.

Theorem 5.3. The neutral differential equation given by equation (27)
for which β 6= 0, γ = −ρ, κ 6= −1, admits a four dimensional group
generated by

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 = tx

[
∂

∂x
+

∂

∂u

]
, S4 = x

[
∂

∂x
+

∂

∂u

]
,

with the infinite dimensional Lie sub-algebra given by

Si5 = −1 + κ

2β
A
∂

∂t
+

[
θ − 2βωx

1 + κ

]
∂

∂x
+

[
ψ − 2βxω

1 + κ

]
∂

∂u
.

Proof. Let β, γ, ρ, κ be arbitrary non-zero constants, γ = −ρ, κ 6= −1.
Then from equation (30), we get,

(1 + κ)ωttt + βωtt = 0, (40)

and θtt + βψt + γ(θ − ψ) + κψtt = 0.
Solving equation (40) we get,

ω = c6t+ c7 −
1 + κ

2β
A, (41)

where c4, c5 are arbitrary constants and c6 =
c4

β
, c7 =

c5

β
. From equation

(41),

A(t) = c8t+ c9 −
2β

A
ω,

where c8 =
2c1

1 + κ
, c9 =

2c2

1 + κ
. This yields,

Υ =

(
c8t+ c9 −

2β

A
ω

)
x+ θ(t),

and,

Υ r =

(
c8t+ c9 −

2β

A
ω

)
x+ ψ(t− r).
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The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=

(
c6t+ c7 −

1 + κ

2β
A

)
∂

∂t
+

[(
c8t+ c9 −

2β

A
ω

)
x+ θ

]
∂

∂x

+

[(
c8t+ c9 −

2β

A
ω

)
x+ ψ

]
∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
, S2 =

∂

∂t
,

S3 = tx

[
∂

∂x
+

∂

∂u

]
, S4 = x

[
∂

∂x
+

∂

∂u

]
with

S5 = −1 + κ

2β
A
∂

∂t
+

[
θ − 2βωx

1 + κ

]
∂

∂x
+

[
ψ − 2βxω

1 + κ

]
∂

∂u
as the infinite

dimensional Lie sub-algebra.

The commutator table is given by,

S1 S2 S3 S4

S1 0 −S2 S3 0

S2 S2 0 S4 0

S3 −S3 −S4 0 0

S4 0 0 0 0

.

Then L = {S1, S2, S3, S4} is a solvable Lie algebra. �

Theorem 5.4. The neutral differential equation given by equation (27)
for which β 6= 0, γ = −ρ, κ = −1, admits a three dimensional group
generated by

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 = x

[
∂

∂x
+

∂

∂u

]
,

with the infinite dimensional Lie sub-algebra given by

Si4 = θ
∂

∂x
+ ψ

∂

∂u
.
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Proof. Let β, γ, ρ, κ be arbitrary non-zero constants, γ = −ρ, κ = −1.
Then equation (30) becomes Υtt + βΥ rt + γ(Υ − Υ r) − Υ rtt = 0, which
yields,

Att = 0, (42)

and θtt + βψt + γ(θ − ψ)− ψtt = 0.
Solving equation (42) we get,

ω = c10t+ c11, (43)

where c10, c11 are arbitrary constants. From equation (43),

A(t) = c12,

where c12 = 2c10.
This yields,

Υ = c12x+ θ(t),

and,
Υ r = c12x+ ψ.

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c10t+ c11)
∂

∂t
+ (c12x+ θ)

∂

∂x
+ (c12x+ ψ)

∂

∂xr
.

The Lie algebra is spanned by

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 = x

[
∂

∂x
+

∂

∂u

]
and

S4 = θ
∂

∂x
+ ψ

∂

∂u
is the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2 S3

S1 0 −S2 0

S2 S2 0 0

S3 0 0 0

.

Then L = {S1, S2, S3} is a solvable Lie algebra. �
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Theorem 5.5. The neutral differential equation given by equation (27)
for which β 6= 0, γ = 0 = ρ, κ 6= 0, admits a five dimensional group
generated by

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 = tx

[
∂

∂x
+

∂

∂u

]
,

S4 = x

[
∂

∂x
+

∂

∂u

]
, S5 =

∂

∂u
,

with the infinite dimensional Lie sub-algebra given by

Si6 = −1 + κ

2β
A
∂

∂t
+
[
θ − 2βωx

1 + κ

] ∂
∂x
−
[
κ

β
ψt +

1

β
+

2βω

1 + κ

]
∂

∂u
.

Proof. Let β, κ be arbitrary non-zero constants, γ = 0 = ρ.
Then equation (30) becomes Υtt + βΥ rt + κΥ rtt = 0, which yields,

(1 + κ)Att + βAt = 0, (44)

and ψ = c13 −
κ

β
ψt −

1

β
θt, where c13 is an arbitrary constant.

Solving equation (44) we get,

ω = c16t+ c17 −
1 + κ

2β
A, (45)

where c14, c15 are arbitrary constants and c16 =
c14

β
, c17 =

c15

β
. From

equation (45),

A(t) = c18t+ c19 −
2β

1 + κ
ω,

where c18 =
2c16β

1 + κ
and c19 =

2c17β

1 + κ
. This yields,

Υ =

(
c18t+ c19 −

2β

1 + κ
ω

)
x+ θ,

and,

Υ r =

(
c18t+ c19 −

2β

1 + κ
ω

)
x+ c13 −

κ

β
ψt −

1

β
θt.
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The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

=

(
c16t+ c17 −

1 + κ

2β
A

)
∂

∂t
+

[(
c18t+ c19 −

2β

1 + κ
ω

)
x+ θ

]
∂

∂x

+

[(
c18t+ c19 −

2β

1 + κ
ω

)
x+ c13 −

κ

β
ψt −

1

β
θt

]
∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
, S2 =

∂

∂t
,

S3 = tx

[
∂

∂x
+

∂

∂u

]
, S4 = x

[
∂

∂x
+

∂

∂u

]
, S5 =

∂

∂u
with

S6 = −1 + κ

2β
A
∂

∂t
+

[
θ − 2βωx

1 + κ

]
∂

∂x
−
[
κ

β
ψt +

1

β
+

2βω

1 + κ

]
∂

∂u

as the infinite dimensional Lie sub-algebra.

The commutator table is given by

S1 S2 S3 S4 S5

S1 0 −S2 S3 0 0

S2 S2 0 S4 0 0

S3 −S3 −S4 0 0 0

S4 0 0 0 0 0

S5 0 0 0 0 0

.

Then L = {S1, S2, S3, S4, S5} is a solvable Lie algebra. �

Theorem 5.6. The neutral differential equation given by equation (27)
for which β = 1, κ = 1, admits a three dimensional group generated by

S1 = t
∂

∂t
+ tx

[
∂

∂x
+

∂

∂u

]
, S2 =

∂

∂t
+ x

[
∂

∂x
+

∂

∂u

]
S3 =

∂

∂u
,

with the infinite dimensional Lie sub-algebra given by

Si4 = −A ∂

∂t
+ [θ − ωx]

∂

∂x
− [ωx+ (θt + ψt)]

∂

∂u
.
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Proof. Let β = 1 = κ, γ = −ρ, κ 6= −1. Then equation (30) becomes
Υtt + Υ rt + Υ rtt = 0, which yields,

2Att +At = 0, (46)

and ψ = c20 − (θt + ψt), where c20 is an arbitrary constant.
Solving equation (46) we get,

ω = c21t+ c22 −A, (47)

where c21, c22 are arbitrary constants. From equation (47),

A(t) = c21t+ c22 − ω.

This yields,
Υ = (c21t+ c22 − ω)x+ θ,

and,
Υ r = (c21t+ c22 − ω)x+ c20 − (θt + ψt).

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c21t+ c22 −A)
∂

∂t
+ [(c21t+ c22 − ω)x+ θ]

∂

∂x

+ [(c21t+ c22 − ω)x+ c20 − (θt + ψt)]
∂

∂xr
.

The Lie algebra is spanned by S1 = t
∂

∂t
+ tx

[
∂

∂x
+

∂

∂u

]
,

S2 =
∂

∂t
+ x

[
∂

∂x
+

∂

∂u

]
, S3 =

∂

∂u
with

S4 = −A ∂

∂t
+[θ−ωx]

∂

∂x
− [ωx+(θt+ψt)]

∂

∂u
as the infinite dimensional

Lie sub-algebra.

The commutator table is given by

S1 S2 S3

S1 0 −S2 0

S2 S2 0 0

S3 0 0 0

.

Then L = {S1, S2, S3} is a solvable Lie algebra. �
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5.2 A Nonlinear Case

We make a classification of

x′′(t) + x′′(t− r) + x′(t− r) + x′(t)x(t) = 0. (48)

Applying the operator defined by equation (27), to the delay equation
g(t) = t− r, we get equation ω(t, x) = ω(t− r, x(t− r)).
Applying the operator defined by equation (27), to equation (48), we
get,

Υtt + (2Υtx − ωtt)x′ + (Υxx − 2ωtx)x′
2 − ωxxx′3 + (Υx − 2ωt)x

′′

−3ωxx
′x′′+Υ rtt+(2Υ rtx−ωrtt)xr

′+(Υ rxx−2ωrtx)xr
′2−ωrxxxr

′3
+(Υ rx−2ωrt )x

r ′′

− 3ωrxx
r ′xr ′′ + Υ rt + (Υ rx − ωrt )xr

′ − ωrxxr
′2

+ x′Υ + x[Υt + (Υx − ωt)x′

− ωxx′2] = 0. (49)

Splitting equation (49) with respect to constant term, x′, x′2, x′3, x′′,

x′x′′, xr ′, xr
′2

, xr
′3

, xr ′′ and xr ′xr ′′ respectively, we get,

Υtt + Υ rtt + Υ rt + xΥt = 0, (50)

and,

2Υtx − ωtt + Υ = 0, Υxx − 2ωtx = 0,
ωxx = 0, Υx − 2ωt = 0, ωx = 0,
2Υ rtx − ωrtt + Υ rx − ωrt = 0, Υ rxx − 2ωrtx − ωrx = 0,
ωrxx = 0, Υ rx − 2ωrt = 0, ωrx = 0.

From these equations we get, ω = ω(t), Υ = A(t)x+ θ(t),

Υ r =
1

2
A(t)x+ ψ(t− r), where A(t) = 2ωt.

Substituting the values of Υ, Υ r in equation (50) and solving it, we get,
A(t) = c23, θ = c24, ψ = c25 − ψt, and,

ω = c26t+ c27,

Υ = c23x+ c24, Υ r = c23x+ c25 − ψt,
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where c23, c24, c25, c27 are arbitrary constants and c26 =
c23

2
.

The infinitesimal generator is given by

ζ∗ = ω
∂

∂t
+ Υ

∂

∂x
+ Υ r

∂

∂xr

= (c26t+ c27)
∂

∂t
+ (c23x+ c24)

∂

∂x
+ (c23x+ c25 − ψt)

∂

∂xr
.

The Lie algebra is spanned by

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 = x

[ ∂
∂x

+
∂

∂u

]
,

S4 =
∂

∂x
, S5 =

∂

∂u
and S6 = −ψt

∂

∂x
is the infinite dimensional Lie

sub-algebra.

The commutator table is given by

S1 S2 S3 S4 S5

S1 0 −S2 0 0 0

S2 S2 0 0 0 0

S3 0 0 0 −S4 − S5 0

S4 0 0 S4 + S5 0 0

S5 0 0 0 0 0

.

Then L = {S1, S2, S3, S4, S5} is a solvable Lie algebra.

Remark 5.7. For the non-homogeneous nonlinear second order neutral
differential equation x′′(t) + x′′(t − r) + x′(t − r) + x′(t)x(t) = h(t),
we get exactly the same generators as in the homogeneous case, only

that S6 = (y − ψt)
∂

∂xr
is the corresponding infinite dimensional Lie

sub-algebra, where y = c26

∫
t h′dt+ c27h.

6 Conclusion

With the notation Lmn , where m denotes the dimension of the solvable
Lie algebra and Si to mean the infinite dimensional Lie sub-algebra, the
entire classification of second order functional differential equations with
constant coefficients to solvable Lie algebras is summarized below:
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Table 1: Group Classification of Second Order Differential Equations

Type of Func-
tional
Differential Equa-
tion

Basis for the Lie Algebra
Solvable
Lie alge-
bra

x′′(t)+βx′(t−r)+
γx(t)+ρx(t−r) =
0,

γ 6= ρ

2
.

S1 =
∂

∂t
, S2 = x

∂

∂x
, S3 = x

∂

∂u
,

Si4 = −

 1

2(γ +
ρ

2
)

+
4(γ +

ρ

2
)

β
A

 ∂

∂t

+
[
θ − x

 2

β
At +

4(γ +
ρ

2
)

β
ω

] ∂
∂x

+

ψ − x
 1

β
At +

2(γ +
ρ

2
)

β
ω

 ∂

∂u
.

L3
1

x′′(t)+βx′(t−r)+
ρ

2
x(t)+ρx(t−r) =

0.

S1 = t
∂

∂t
, S2 =

∂

∂t
,

S3 = tx

[
∂

∂x
+

1

2

∂

∂u

]
,

S4 = x

[
∂

∂x
+

1

2

∂

∂u

]
,

Si5 = −A
β

∂

∂t
+(θ−βxω)

∂

∂x
+(ψ−βxω

4
)
∂

∂u
.

L4
2

x′′(t) +x′(t− r) =
0.

S1 = t
∂

∂t
+ tx

[
∂

∂x
+

1

2

∂

∂u

]
,

S2 =
∂

∂t
+ x

[
∂

∂x
+

1

2

∂

∂u

]
, S3 =

∂

∂u
,

Si4 = −A ∂

∂t
+(θ−xω)

∂

∂x
−
(
θt +

xω

2

) ∂

∂u
.

L3
3
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Table 2: Group Classification of Second Order Differential Equations

Type of Func-
tional
Differential Equa-
tion

Basis for the Lie Algebra
Solvable
Lie alge-
bra

x′′(t) + βx′(t −
r) = 0.

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 = tx

[
∂

∂x
+

1

2

∂

∂u

]
,

S4 = x

[
∂

∂x
+

1

2

∂

∂u

]
, S5 =

∂

∂u
,

Si6 = −A
β

∂

∂t
+ (θ − βxω)

∂

∂x
+(

θt
β

+ βxω

)
∂

∂u
.

L5
4

x′′(t) + x′(t) +
x′(t − r)x(t) =
v(t).

S1 = x
∂

∂x
, S2 =

∂

∂x
,

S3 = t
∂

∂t
, S4 =

∂

∂t
,

S5 = x
∂

∂u
, S6 =

∂

∂u
,

Si7 = (θt − y)
∂

∂x
.

L6
5

x′′(t)+βx′(t−r)+
γx(t)+ρx(t−r)+
κx′′(t− r) = 0,
γ 6= −ρ.

S1 =
∂

∂t
, S2 = x

(
∂

∂x
+

∂

∂u

)
,

Si3 = −
(

1 + κ

2(γ + ρ)
gt +

β

2(γ + ρ)
A

)
∂

∂t

+
[
θ − x

(
1 + κ

β
At +

2(γ + ρ)

β
ω

)] ∂
∂x

+

[
ψ − x

(
1 + κ

β
At +

2(γ + ρ)

β
ω

)]
∂

∂u
.

L2
6

x′′(t)+βx′(t−r)+
γ(x(t)−x(t−r))+
κx′′(t− r) = 0,
κ 6= −1.

S1 = t
∂

∂t
, S2 =

∂

∂t
,

S3 = tx

[
∂

∂x
+

∂

∂u

]
,

S4 = x

[
∂

∂x
+

∂

∂u

]
,

Si5 = −1 + κ

2β
A
∂

∂t
+

[
θ − 2βωx

1 + κ

]
∂

∂x
+[

ψ − 2βxω

1 + κ

]
∂

∂u
.

L4
7
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Table 3: Group Classification of Second Order Differential Equations

Type of Func-
tional
Differential Equa-
tion

Basis for the Lie Algebra
Solvable
Lie alge-
bra

x′′(t)+βx′(t−r)+
γ(x(t)−x(t−r))−
x′′(t− r) = 0.

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 = x

[
∂

∂x
+

∂

∂u

]
,

Si4 = θ
∂

∂x
+ ψ

∂

∂u
.

L3
8

x′′(t)+βx′(t−r)+
κx′′(t− r) = 0.

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 = tx

[
∂

∂x
+

∂

∂u

]
,

S4 = x

[
∂

∂x
+

∂

∂u

]
, S5 =

∂

∂u
,

Si6 = −1 + κ

2β
A
∂

∂t
+
[
θ − 2βωx

1 + κ

] ∂
∂x

−
[
κ

β
ψt +

1

β
+

2βω

1 + κ

]
∂

∂u
.

L5
9

x′′(t) +x′(t− r) +
x′′(t− r) = 0.

S1 = t
∂

∂t
+ tx

[
∂

∂x
+

∂

∂u

]
,

S2 =
∂

∂t
+ x

[
∂

∂x
+

∂

∂u

]
, S3 =

∂

∂u
,

Si4 = −A ∂

∂t
+ [θ − ωx]

∂

∂x
− [ωx + (θt +

ψt)]
∂

∂u
.

L3
10

x′′(t) + x′(t) +
x′(t − r)x(t) =
v(t).

S1 = t
∂

∂t
, S2 =

∂

∂t
, S3 =

∂

∂x
,

S4 = x
[ ∂
∂x

+
∂

∂u

]
, S5 =

∂

∂u
,

Si6 = (z − ψt)
∂

∂u
.

L5
11
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