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1 Introduction

Fuzzy integral equations is a significant tool for modeling and analysis of
uncertain real-world problems in various fields of science and engineer-
ing. The topic of fuzzy integral equations was first studied by Kaleva
(see [21]), Seikkala (see [31]), they converted the initial value problem
for first order fuzzy differential equations to the fuzzy Volterra inte-
gral equation. In this regards, the distinct work on the fuzzy integral
equations is carried out by Mordeson and Newman (see [22]) based on
Zadeh’s extension principle. Afterwards, Diamond in [12] studied the
NFVIE with applications in optimal control theory. The existence and
uniqueness results of the solution of fuzzy Volterra integral equations
have been investigated by many researchers using Banach fixed-point
theorem (see [5, 6, 16, 27, 29]). In [24], are provided conditions for hav-
ing the bounded solutions of fuzzy integral equations. In the literature,
we can find different approaches for solving fuzzy integral equation such
as Picard’s approximations scheme and quadrature rules which are ex-
ploited in [2, 7, 8, 9, 10, 14, 16, 17, 36, 37] and [26]. In several papers are
used direct method for solving fuzzy integral equations such as the Ado-
mian decomposition technique (see [3]), Nystrom method ([1]), Bernstein
polynomials and Haar wavelets (see [13, 35]). In some papers to solution
of these equations are applied successive approximations scheme with in-
terpolation of Lagrange(see [15]), finite differences(see [25]) and block-
pulse functions (see [37, 40]). Bica and Popescu, in [10] presented an
iterative scheme by using successive approximation scheme and Trape-
zoidal quadrature formula for solving NFVIEs. An iterative numerical
procedure has been presented recently in [39] which is solved NFVIE via
three-point quadrature rule.
In the present study, we provide an iterative procedure to the NFVIE
of the following form:

y(t) = g(t)⊕ (FR)

∫ t

a
f(t, s, y(s))ds, t ∈ [a, b] (1)

where f : [a, b] × [a, b] × RF → RF and g : [a, b] → RF are fuzzy
continuous. The purpose of the present work is to present an iterative
numerical scheme to gain the approximate solution of (1) based on block
pulse functions.
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2 Preliminaries

Herein, the essential notions of fuzzy mathematics employed in the sub-
sequent sections will be stated.

Definition 2.1. (see [33].) A fuzzy number is a function u from R to
[0, 1] satisfying the following conditions:
(i) u is normal,
(ii) u is fuzzy convex set,
(iii) u is upper semi-continuous on R,
(iv) supp(u) is a compact subset of R, where supp(u) = {x ∈ R : u(x) >
0} is the support of u and supp(u) denotes the closure of supp(u).

We denote by RF the set of all fuzzy numbers. For 0 < r ≤ 1, the
r−level sets of u is defined as [u]r = {x ∈ R : u(x) ≥ r}.Then, we
represent the parametric form of u as:

[u]r = [u(r), u(r)], 0 < r ≤ 1,

where u(r), u(r) are two real functions u, u : [0, 1]→ R, that u is increas-
ing and u is decreasing (see [19]). Furthermore, [u]0 = {x ∈ R : u(x) > 0}.
So, the r−cuts of a fuzzy number [u]r, r ∈ [0, 1], are compact subset of
R. For u1, u2 ∈ RF , k ∈ R, the addition and the scalar multiplication
based on levelsetwise are defined as follows

[u1 + u2]
r = [u1(r) + u2(r), u1(r) + u2(r)],∀0 ≤ r ≤ 1

[k � u1]r =

{
[ku1(r), ku1(r)], if k ≥ 0
[ku1(r), ku1(r)], if k < 0.

Definition 2.2. (see [18].) Suppose that u1, u2 ∈ RF the valueD(u1, u2) =
sup

r∈[0,1]
max{|u1(r)−u2(r)|, |u1(r)−u2(r)| } is the distance between u1 and

u2.

One can notice that (RF , D) is a complete metric space.

Theorem 2.3. ([18].) For any u1, u2, u3, u ∈ RF , k1 ≥ 0, k2 ≥
0, k ∈ R, the following properties hold:
(i) D(u1 ⊕ u3, u2 ⊕ u3) = D(u1, u2),
(ii) D(k � u1, k � u2) = |k|D(u1, u2),
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(iii) D(u1, u2) ≤ D(u1, u3) +D(u3, u2),
(iv) D(u1 ⊕ u2, u3) ≤ D(u1, u3) +D(u2, u3),

(v) D (k1 · u, k2 · u) = |k1 − k2|D
(
u, 0̃
)
.

Definition 2.4. (see [21]). Let f : [a, b]→ RF :
(i) f is fuzzy continuous at x0 ∈ [a, b], if ∀ ε > 0 there exists δ > 0 such
that |x− x0| < δ implies D(f(x), f(x0)) < ε.

(ii) f is bounded iff there exists M > 0 such that D
(
f (x) , 0̃

)
≤ M ,

∀ x ∈ [a, b].

We note that f is fuzzy continuous on [a, b] if f is continuous at each
x0 ∈ [a, b], and the space of all such functions is denoted by C([a, b],RF )
and any fuzzy continuous function is bounded. For any fuzzy-valued
function (or fuzzy mapping) f : [a, b] → RF , the left and right r−level
functions of f are specified respectively as f (·, r) , f (·, r) : [a, b] → R,
r ∈ [0, 1].

The uniform distance between f, g ∈ C([a, b],RF ) is denoted by the
supremum metricD∗(f, g) = sup

a≤x≤b
D(f(x), g(x)) on the set C([a, b],RF ).

The space C([a, b],RF ) equipped with the uniform distance is a complete
metric space.

Definition 2.5. (see [18].) Let f : [a, b] → RF be a fuzzy-valued func-
tion. For every partition P = {[xi−1, xi] : i = 1, n} of [a, b and ar-
bitrary point ξi ∈ [xi−1, xi], i = 1, n, we say that f is fuzzy-Riemann
integrable to If ∈ RF if for ∀ ε > 0, there exists δ > 0 such that
max{|xi − xi−1| : i = 1, n} < δ implies that

D

(
n∑

i=1

(xi − xi−1)� f (ξi) , If

)
< ε.

The quantity If is written as

If = (FR)

∫ b

a
f(x)dx.

If f ∈ C([a, b],RF ), then fuzzy-Riemann integral of f exists, and[
(FR)

∫ b

a
f (x) dx

]r
=

[∫ b

a
f (x, r) dx,

∫ b

a
f (x, r) dx

]
, ∀ 0 ≤ r ≤ 1.
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Lemma 2.6. (see [18]). If f, g ∈ C([a, b],RF ), then the function F :
[a, b]→ R+ given by F (x) = D(f(x), g(x)) is continuous on [a, b], and

D

(
(FR)

∫ b

a
f(x)dx, (FR)

∫ b

a
g(x)dx

)
≤
∫ b

a
D(f(x), g(x))dx.

Definition 2.7. (see [7].) Let f : [a, b]→ RF is L-Lipschitz. Then

D(f(x1), f(x2)) ≤ L|x1 − x2|, ∀ x1, x2 ∈ [a, b].

A function F : RF → RF is L-Lipschitz if there exists LF ≥ 0 such that
D(F (u1), F (u2)) ≤ LFD(u1, u2) , ∀ u1, u2 ∈ RF .

Definition 2.8. (see [20]). Block-pulse functions on the unit interval
[a, b) is defined as follows:

ϕi(t) =

{
1 t ∈ [a+ (i− 1)h, a+ ih),
0 otherwise,

where i = 1, n with a positive integer value for n and h = b−a
n . Also,

ϕi is called ith block-pulse function (BPF).

Some properties of the BPFs are disjointness, orthogonality and com-
pleteness (see [20]).
It is clear that ϕi(t) ≥ 0, for all t ∈ [a, b), ϕ1(t), ϕ2(t), ..., ϕn(t) are
linearly independent, and

n∑
i=1

ϕi(t) = 1.

Now, we employ the following notation:

Bi(t) =

∫ t

0
ϕi(τ)dτ, t ∈ [a, b]. (2)

By using the definition of block-pulse function the integral given in Eq.
(2) can be computed as follows:

Bi(t) =


0 t ∈ [a, a+ (i− 1)h),
t− ih t ∈ [a+ (i− 1)h, a+ ih),
h t ∈ [a+ ih, b)
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where h = b−a
n . Now, we can evaluate the approximate value of the fuzzy

integral of f ∈ C([a, b],RF ) which satisfy in Lipschitz condition from a
to t = ti, based on block-pulse functions as follows:

(FR)

∫ ti

a
f(s)ds ' I(f) = (FR)

∫ ti

a

n∑
j=1

f(zj)� ϕj(s)ds,

where zj =
tj−1+tj

2 for j = 1, n. The error estimate of this approximation
can be obtained as:

D

(
(FR)

∫ ti

a
f(s)ds, I(f)

)
=

= D

(FR)

∫ ti

a

n∑
j=1

ϕj(s)� f(s)ds, (FR)

∫ ti

a

n∑
j=1

f(zj)� ϕj(s)ds


≤
∫ ti

a

n∑
j=1

ϕj(s)D(f(s), f(zj))ds ≤
∫ ti

a

n∑
j=1

ϕj(s)L|s− zj |ds.

By similar way in [40], we compute the above integral as follows:∫ ti

a

n∑
j=1

φj(s) (L |s− zj |) ds =

= L

n∑
j=1

∫ ti

a
φj(s) |s− zj | ds = L

n∑
j=1

∫ tj

tj−1

|s− tj−1| ds

= L

n∑
j=1

(∫ zj

tj−1

(zj − s) ds+

∫ tj

zj

(s− zj) ds

)
=
L(b− a)2

4n
.

Finally, we have:

D

(FR)

∫ ti

a
f(s)ds, (FR)

∫ ti

a

n∑
j=1

f(zj)� ϕj(s)ds

 ≤ L(b− a)2

4n
.

3 Successive approximations method

In this section, problem (1) will be studied according to the following
hypotheses:
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(i) g ∈ C([a, b],RF ) and f ∈ C ([a, b]× [a, b]× RF ,RF );
(ii) there exist α and η > 0 such that

D (f (t, s1, u1) , f (t, s2, u2)) ≤ η|s1 − s2|+ αD (u1, u2) ,

∀ t, s1, s2 ∈ [a, b], u1, u2 ∈ RF ;

(iii) γ = α(b− a) < 1;
(iv) there exists β > 0 such that

D(g(t1), g(t2)) ≤ β|t1 − t2|, ∀ t1, t2 ∈ [a, b].

Lemma 3.1. Suppose that the following assumptions are satisfied:

(i) f ∈ C ([a, b]× [a, b]× RF ,RF ),
(ii) there exists µ > 0 such that

D (f (t1, s, u) , f (t2, s, u)) ≤ µ|t1 − t2|, ∀ t1, t2, s ∈ [a, b], u ∈ RF ,

then the function F : [a, b]→ RF formulated by

F (t) = (FR)

∫ t

a
f(t, s, y(s))ds,

is uniformly continuous.

Proof. By the hypothesis (i), there exist constants My, Mf > 0 such
that D

(
y(s), 0̃

)
≤My, D

(
f(t, s, u), 0̃

)
≤Mf for all t, s ∈ [a, b], u ∈ RF .

Taking t1, t2 ∈ [a, b] with a ≤ t1 ≤ t2 ≤ b, we have: and regarding to
hypothesis (ii) we have:

D(F (t1), F (t2)) = D

(
(FR)

∫ t1

a
f(t1, s, y(s))ds, (FR)

∫ t2

a
f(t2, s, y(s))ds

)
≤ D

(
(FR)

∫ t1

a
f(t1, s, y(s))ds, (FR)

∫ t1

a
f(t2, s, y(s))ds

)
+D

(
(FR)

∫ t2

t1

f(t2, s, y(s))ds, 0̃

)
≤
∫ t1

a
D (f(t1, s, y(s)), f(t2, s, y(s))) ds

+

∫ t2

t1

D
(
f(t2, s, y(s)), 0̃

)
ds.
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According to hypothesis (ii), we obtain:

D(F (t1), F (t2)) ≤
∫ t1

a
µ|t1−t2|ds+

∫ t2

t1

Mfds ≤ µ(b−a)|t1−t2|+Mf (t2−t1).

For any ε > 0, there exists δ,

0 < δ ≤ min

(
1,

ε

µ(b− a) +Mf

)
such that |t1 − t2| < δ concludes that

D(F (t1), F (t2)) ≤ (µ(b− a) +Mf ) δ ≤ ε.

This proves that F is uniformly continuous. �
To express the existence and uniqueness of Eq. (1), we consider the

associated sequence of successive approximations:

y0(t) = g(t),

ym(t) = g(t)⊕ (FR)

∫ t

a
f(t, s, ym−1(s))ds, t ∈ [a, b], m ∈ N

and we construct the sequence (Fm(t))m∈N such that Fm : [a, b]×[a, b]→
RF , by Fm(t, s) = f(t, s, ym(s)), m ∈ N.
Theorem 3.2. (see [10].) Considering hypotheses (i)− (iii), the equa-
tion (1) has unique solution in C([a, b],RF ), y∗ ∈ C([a, b],RF ) and se-
quence of Picard’s approximations (ym)m∈N ⊂ C([a, b],RF ), depicted in
(3) tends to y∗ in C([a, b],RF ) for any election of y0 ∈ C([a, b],RF ).
Furthermore, the below error bounds satisfied:

D(y∗(t), ym(t)) ≤ γm

1− γ
.D(y1(t), y0(t), ∀t ∈ [a, b],m ∈ N∗, (3)

and

D(y∗(t), ym(t)) ≤ γ

1− γ
.D(ym(t), ym−1(t), ∀t ∈ [a, b],m ∈ N∗.

Choosing y0 ∈ C([a, b],RF ), y0 = g the inequality (3) converts

D(y∗(t), ym(t)) ≤ γm

1− γ
M0(b− a), ∀t ∈ [a, b],m ∈ N∗, (4)

where M0 ≥ 0 is such that D(f(t, s, g(s)), 0̃) ≤ M0, ∀ t, s ∈ [a, b],
Furthermore, conditions (i)-(iv) provide uniformly bounded and uniform
Lipschitz of the sequences (ym)m∈N∗ and (Fm)m∈N∗ respectively.
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4 Description of the method and error analysis

Now, we present the iterative method using block-pulse functions to ap-
proximate the solution of (1). Taking into account the uniform partition
of the interval [a, b],

∆ : a = t0 < t1 < ... < tn−1 < tn = b,

with ti = a+ i(b−a)
n , ∀ i = 0, n. For i = 0, n, we have:

y0(ti) = g(ti),

ym(ti) = g(ti)⊕ (FR)

∫ ti

a
f(t, s, ym−1(s))ds, m ∈ N.

(5)

Now, we approximate the integral in (5) as follows:

(FR)

∫ ti

a
f(t, s, ym−1(s))ds ' (FR)

∫ ti

a

n∑
j=1

f(ti, zj , ym−1(zj))�ϕj(s)ds,

where zj =
tj−1+tj

2 for j = 1, n.
Then, the following approximations are gained:

ym(ti) = g(ti)⊕
n∑

j=1

f(ti, zj , ym−1(zj))�Bj(ti)⊕Rm,i, (6)

where

Bj(ti) =

∫ ti

a
ϕj(s)ds and D(Rm,i, 0̃) ≤ L(b− a)2

4n
. (7)

In this way, we get the following iterative procedure:

ỹ0(ti) = y0(ti) = g(ti),

ỹm(ti) = g(ti)⊕
n∑

j=1

f(ti, zj , ỹm−1(zj))�Bj(ti).
(8)

The following theorem proves the convergence of the presented method.
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Theorem 4.1. By the hypothesis (i)-(iv), the iterative scheme (8) con-
verges to the exact solution y∗ of (1), and the following error bound is

true on the knots ti = i(b−a)
n , i = 0, n:

D(y∗(ti), ỹm(ti)) ≤
γm

1− γ
M0(b− a) +

L(b− a)2

4n(1− γ)
.

Proof. According to Eq. (4), we know:

D(y∗(ti), ym(ti)) ≤
γm

1− γ
M0(b− a), ∀i = 0, n, m ∈ N∗. (9)

Since

D(y∗(ti), ỹm(ti)) ≤ D(y∗(ti), ym(ti)) +D(ym(ti), ỹm(ti)), (10)

so, we try to gain the estimates forD(ym(ti), ỹm(ti)) , ∀ i = 0, n, m ∈ N∗.
Since

y1(ti) = g(ti)⊕
n∑

j=1

f(ti, zj , g(zj))⊕R1,i, i = 0, n,

Hence

D(y1(ti), ỹ1(ti)) ≤ D(g(ti), g(ti))

+D

 n∑
j=1

f(ti, zj , g(zj))�Bj(ti)⊕R1,i,

n∑
j=1

f(ti, zj , g(zj))�Bj(ti)


≤ D

(
R1,i, 0̃

)
≤ L(b− a)2

4n
.
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Now, using Eqs. (6)-(8) we get:

D(y2(ti), x̃2(ti)) ≤ D(g(ti), g(ti))+

+D

 n∑
j=1

f(ti, zj , y1(tj))�Bj(ti)⊕R2,i,
n∑

j=1

f(ti, zj , ỹ1(tj))�Bj(ti)


= D

( n∑
j=1

f(ti, zj , y1(tj))�
∫ ti

a
ϕj(s)ds⊕R2,i,

,

n∑
j=1

f(ti, zj , ỹ1(zj))�
∫ ti

a
ϕj(s)ds

)
≤
∫ ti

a

n∑
j=1

ϕj(s)D (f(ti, zj , y1(zj)), f(ti, zj , ỹ1(zj))) ds+D
(
R2,i, 0̃

)
≤
∫ ti

a

n∑
j=1

ϕj(s)αD (y1(zj), ỹ1(zj)) ds+D
(
R2,i, 0̃

)
≤ αL(b− a)3

4n
+
L(b− a)2

4n
= (1 + γ)

L(b− a)2

4n
.

By mathematical induction, for m ∈ N∗, m ≥ 3, we get:

D(ym(ti), ỹm(ti)) ≤
(
1 + γ · · ·+ γm−1

) L(b− a)2

4n

=

(
1− γm

1− γ

)
L(b− a)2

4n
.

By considering condition (iii), we get:

D(ym(ti), ỹm(ti)) ≤
L(b− a)2

4n(1− γ)
, ∀ i = 0, n, m ∈ N∗. (11)

So, the assertion follows from (9), (10) and (11). �

5 Numerical experiment

To establish the theoretical results in the previous section, a numerical
example has been demonstrated by iterative procedure (8). The results
have been provided by Mathematica.
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Example 5.1. Let the NFVIE

y(t) = g(t)⊕ (FR)

∫ t

0
te−s � [y(s)]2ds, s ≤ t, t ∈ [0, 1]

with

g (t, r) = rt− tr2 + r2e−t
(
t3

2
+ t2 + t

)
,

g (t, r) = (2− r)t+ (2− r)2
(
t3e−t

2
+ t2e−t + te−t − t

)
.

The exact solution is as follows[
y(t, r), y(t, r)

]
= [rt, (2− r)t] .

To solve the above stated equation, we apply the iterative scheme (8)
with n = 10 and m = 5, to determine r-levels of the results e(r) =
|ỹm(t, r) − y(t, r)|, e(r) = |ỹm(t, r) − y(t, r)|, at point t = 0.5, for

r ∈ {14 ,
1
2 ,

3
4 , 1} are put in Table 1. To peruse the convergence of the

presented method is considered n = 100 and m = 5 too and the ob-
tained results are given in Table 1.

Table 1: Error on the r-level sets for Example 5.1 at t = 0.5

n = 10, m = 5 n = 100, m = 5

r-level e(r) e(r) e(r) e(r)

0.25 1.252e-004 6.392e-003 1.196e-005 6.031e-004
0.50 5.042e-004 4.664e-003 4.808e-005 4.410e-004
0.75 1.142e-003 3.216e-003 1.087e-004 3.048e-004

1 2.045e-003 2.045e-003 1.941e-004 1.941e-004

According to Table 1, the convergence of presented method is con-
firmed.

6 Conclusions

The current paper presented an iterative numerical scheme via block-
pulse functions to solve NFVIEs. The proposed method is computation-
ally efficient with respect to the other existing methods. Moreover, We
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have given the error estimate of the iterative technique by taking into
account the Lipschitz condition. The numerical results confirmed the
validity of the results in theoretical aspect.
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