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Abstract. In this essay, extensions to the results of Lie symmetry
classification of Reynolds equation are proposed. The infinitesimal tech-
nique is used to derive symmetry groups of the Reynolds equation. One-
dimensional optimal system is constructed for symmetry sub-algebras
gained through Lie point symmetry. At the end, the general symmetry
group of the non-conservative generalized thin-film equation are deter-
mined.
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1 Introduction

As you know the symmetry property is a natural phenomenon. By us-
ing partial differential equations having symmetry properties, we can
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describe many physical, biological and chemical processes. After creat-
ing the group classification method by Sophus Lie in 19th century [8],
Lie symmetry analysis has always been an interesting method for mathe-
maticians in dealing with differential equations. The Lie group approach
proposes a useful procedure for integrability, reducing equations and
finding out the exact solutions of differential equations. Its algorithm
is as follows that group of transformations transforms solutions of the
system of differential equations to other solutions of them [3, 11, 12]. In
the first article published on this subject [7], Lie calculated symmetry
group of one dimensional heat equation and then reduced this equation
by symmetry reduction method to find solution of it. In [14], partially
invariant solutions has extended by Ovsiannikov. In this attempt, the
significance of the equivalence group has investigated. An equivalence
group or Lie transformation group acts on the generalization space of
independent variables, dependent variables, and their derivatives while
keeps the class of partial differential equations.

This article is assigned to studying and finding out analytical solu-
tions of the one-dimensional Reynolds equation. This partial differential
equation by describing pressure generation of thin viscous fluid films is
one of the important equations in fluid dynamics and lubrication theory.
The initial version of this equation was proposed by Osborne Reynolds
in 1886. The extension of rupture singularities in this equation is studied
in [4]. In the one- dimensional Reynolds equation x belongs to bounded
interval [0, l],

ut = ∂x
(
u3px

)
− J,

where u is fluid film thickness and J = −γp(u)/(u + K0) is the non-
conservative flux. γ is a scaling constant, K0 > 0 and p(u) ≡ f(u)−uxx
is the fluid pressure. f(u) and uxx respectively are disjoining pressure
function and the linearised curvature. A physical model stimulates the
form of f(u). While the case γ ≤ 0 in J corresponds to physical models
where intermolecular forces can complete against the evaporative flux,
while the case γ > 0 leads to a mathematically-interesting PDE where
singularity formation can accur (see references [4, 5, 6] for more de-
tails). For γ = 0, we have the fourth-order differential equation for one
dimensional covering flows [4] as follows:

ut = ∂x
(
u3∂x [f(u)− uxx]

)
. (1)
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Rupture bearing in a non conservative generalized thin film equation
will allow to compete evaporation and dewetting and the competition
between them conduce finite time rupture.

2 Lie Symmetry Group Analysis

Before considering Lie symmetry groups of Reynolds equation, it is es-
sential that we recall a system differential equation(see [11, 12]).

Definition 2.1. A system of n-th order differential equations in p in-
dependent and q dependent variables is given as a system of equations

∆ν(x, u(n)) = 0, ν = 1, · · · , l,

involving x = (x1, · · · , xp), u = (u1, · · · , xq) and the derivatives of u with
respect to x up to n, where u(n) representations all the derivatives of u
of all orders from 0 to n.

Suppose a partial differential equation including one dependent vari-
able and p independent variables. A one-parameter Lie group of point
transformations

xi = xi + εξi(x, u) +O(ε2); u = u+ εϕ(x, u) +O(ε2),

where i = 1, · · · , p, ε� 1, and ξi = ∂εxi|ε=0, operating on (x, u)−space.

x = ξi∂xi + ϕ∂u, i = 1, · · · , p, (2)

is infinitesimal generator. Therefore the vector field x have characteristic
function Q(x, u1) = ϕ(x, u)−

∑p
i=1 ξi(x, u)uxi . The symmetry generator

associated with (2) is presented by

x = ξ∂x + τ∂t + ϕ∂u.

The n-th prolongation of x is the vector field

x(n) = x +

q∑
α=1

∑
J

ϕJα(x, u(n))
∂

∂uαJ
, (3)

J = (j1, · · · , jk), 1 ≤ jk ≤ p, 1 ≤ k ≤ n,
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where the coefficients ϕJα are found by the following:

ϕJα(x, u(n)) = DJ(ϕα −
p∑
i=1

ξiuαi ) +

p∑
i=1

ξiuαJ,i,

where uαi := ∂uα/∂xi, and uαJ,i := ∂uαJ/∂x
i [12].

Therefore the vector field

x(4) = x + ϕx∂ux + ϕt∂ut + ϕxt∂uxt + ϕxx∂uxx+ (4)

· · ·+ ϕxxxt∂uxxxt + ϕxxxx∂uxxxx ,

is fourth prolongation of x. Its coefficient functions are:

ϕx = Dxϕ− uxDxξ − utDxτ,

ϕt = Dtϕ− uxDtξ − utDtτ,

ϕxt = Dtϕ
x − uxxDtξ − uxtDtτ, (5)

ϕxx = Dxϕ
x − uxxDxξ − uxtDxτ,

...

ϕxxxx = Dxϕ
xxx − uxxxxDxξ − utxxxDxτ.

Where the total derivatives operators Dx and Dt are as follows:

Dx = ∂x + ux∂u + uxx∂ux + uxt∂ut + · · · ,
Dt = ∂t + ut∂u + utt∂ut + utx∂ux + · · · .

If vector field is admitted by Eq.(1), then x must satisfy in the condition
x(4)[ut−∂x(u3∂x(f(u)−uxx))] = 0, whenever ut = ∂x(u3∂x[f(u)−uxx]).
Substituting (5) into infinitesimal criterion and equating the coefficients
of the various monomials in the various power partial derivatives of u,
we obtain the compelet set of determining equations:

τtt = ϕx = ϕt = ξt = ξu = 0,

2uϕfuu + uFtfu + 3ϕ = 0,

4uξx = 3ϕ+ uFt,

uϕu = ϕ,
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wherer ξ, τ, ϕ are depend on x, t, u and f depends on u and F is arbitrary
function. With solving determining equations we obtain:

F = (4c2 − 3c1)t+ c4, ϕ = c1u, ξ = c2x+ c3.

Where ci, i = 1, · · · , 4 are arbitrary constants. Therefore we have:

c1ufuu + 2c2fu = 0. (6)

3 Lie Group Classification of Reynolds Equa-
tion

In the following section, according to the above discussion about Lie
theory, considering (6) and we classify the symmetries of the Eq.(1).
We consider four general Cases(Idea from[8, 9, 10]).

Case 1: If f ′ = 0, then f = a is constants. Therefore we have

ut = −3u2uxux3 − u3ux4 . (7)

For the equation (7) the Lie group infinitesimals are ξ = c1t+ c2,
τ = c3x + c4, ϕ = u(4c3 − c1)/3. Thus the infinitesimal generator of
symmetry algebra is resulted as

x1 = ∂x, x2 = ∂t, x3 = t∂t −
1

3
u∂u, x4 = x∂x +

4

3
u∂u. (8)

The characteristic equation associated with x3 is dx/0 = dt/t = du/(−u/3).
By integrating we obtain

r = x, s = ln t, v(r) = ut1/3. (9)

Substituting (9) in (7) leads to 9vvrrrvr + 3v2vrrrr = 1. The reduced
equation is ut1/3 = 0. Therefore u = 0.

The characteristic equation associated with x4 is dx/x = dt/0 =
du/(4u/3). By integrating we obtain r = t, s = lnx, v(r) = ux−4/3.
Therefore u = c1 = 0.

The invariants associated with x1 are t and u, and its symmetry
group is gε1 = (x+ ε, t, u).
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Table 1: Commutator table for Case 1 and Case 3.

[xi,xj ] x1 x2 x3 x4

x1 0 0 0 x1

x2 0 0 x2 0
x3 0 −x2 0 0
x4 −x1 0 0 0

[xi,xj ] x1 x2 x3

x1 0 0 −α−1x1

x2 0 0 x2

x3 α−1x1 −x2 0

The invariants associated with x2 are x and u, and its symmetry
group is gε2 = (x, t+ ε, u).

The invariants associated with x3 are x and ut1/3, and its symmetry
group is gε3 = (x, eεt, e−ε/3u).

The invariants associated with x4 are t and x−4/3u and its symmetry
group is gε4 = (eεx, t, e4ε/3u).

Case 2: If f ′′ = 0 and f ′ 6= 0 then f = au + b (a, b ∈ R, a 6= 0) .
Therefore we have

ut = 3u2ux(ux − uxxx) + u3(auxx − uxxxx). (10)

The symmetry algebra is generated by the Lie symmetry generators
x1 = ∂x, x2 = ∂t, x3 = t∂t − (u/3)∂u. The characteristic equation
associated with x3 is
dx/0 = dt/t = du/(−u/3). By integrating we obtain r = x, s = ln t,
v(r) = ut1/3. Substituting (9) in (10) leads to

3v2vr4 + 9vvrvr3 = 3av2vrr + 9avv2r + 1.

The reduced equation is ut1/3 = 0. Therefore u = 0. The invariants
associated and symmetry groups with x1 and x2 and x3 aforesaid.

Case 3: If f ′′ 6= 0 then f ′′/f ′ = −2c2u/c1. By integrating we obtain
f = aub + c, where a, c ∈ R, b ∈ N, a 6= 0, and b > 1.

The equation is

ut = abub+1((b+ 2)u2x + uuxx)− 3u2uxux3 − u3ux4 .
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The Lie algebra is generated by the Lie symmetry vectors x1 = ∂x,
x2 = ∂t, x3 = (4b+2)−1

(
(b−1)x∂x+ t(4b+2)∂t−2u∂u

)
. By integrating

the characteristic equation associated with x3 we obtain r = txα,
s = −α lnx, and v(r) = ux−α/(2b+9), where α = (4b+ 2)/(1− b).

The invariants associated and symmetry groups with x1 and x2 afore-
said. The invariants associated with x3 are txα and ux2/(b−1).

Case 4: Otherwise c1 = c2 = 0. Herein, the Lie symmetry algorithm
leads us to the generators x1 = ∂x and x2 = ∂t. The invariants and
the symmetry group associated with x1 and x2 aforesaid. In this Case
u = 0.
The commutatore table for Case 1 and Case 3 are listed in the table (1).

Theorem 3.1. The Reynolds equation have maximum four generator
(8) and minimum two generator ∂x and ∂t.

The physiologys can make some connections between these cases and
the corresponding physical lubrication models (see [2, 13]).

4 Optimal Control System of the Reynolds Equa-
tion

In what follows we perform the optimal system for one dimensional
subalgebra of the Reynolds equation. In order to obtain a complete
optimal system, we classify the orbits for the adjoint representation.
For this purpose, we take an element of the Lie algebra and simplify it
by adjoint transformation.

Definition 4.1. Suppose g be Lie algebra corresponding to Lie group
G. An optimal system of r-parameter subgroups is a list of conjugacy
non-equivalent r-parameter subalgebras which are not related by trans-
formations that is to say any other subgroup is conjugate to exactly one
subgroup in the list. In asimilar way, a list of r-parameter subalgebra
constitutes an optimal system if between every r-parameter subalgebra
of g with a unique element of the list there is an equivalence relation,
under some elements of the adjoint representation h = Ad(g(h))[12].
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Table 2: Adjoint representation table of the symmetry generators for
Case 1.

Ad(exp(εxi)xj) x1 x2 x3 x4

x1 x1 x2 x3 x4 − εx1

x2 x1 x2 x3 − εx2 x4

x3 x1 eεx2 x3 x4

x4 eεx1 x2 x3 x4

Theorem 4.2. (See [12]) Suppose G be Lie group with corresponding Lie
algebra g and H and H be s−dimensional Lie subgroups of the Lie group
G that are connected to each other and corresponding Lie subalgebras are
h and h respectively. Then H = gHg−1 are conjugate subgroups if and
only if h = Ad(g(h)).

We apply the following Lie series to computing the adjoint represen-
tation
Ad(exp(εxi)xj) = xj − ε[xi,xj ] + (ε2/2)[xi, [xi,xj ]]− · · · ,
where [xi,xj ] is the Lie bracket for the Lie algebra, ε is a parameter,
i, j = 1, 2, 3, 4.
The adjoint actions of the symmetry generators for Case 1 are listed in
the table (2).

Theorem 4.3. The one-dimensional optimal system of Lie subalgebras
of the equation (7) is as {x1, βx1 + x3, γx1 + x2, δx3 + x4}.

Proof. A nonzero vector x = a1x1 + a2x2 + a3x3 + a4x4 is given. We
start by Simplification of the coefficient ai as far as possible through
judicious applications of adjoint maps to x.

Let a4 6= 0. Scaling x if necessary, we let a4 = 1. Considering table
3 and the vanishing coefficients x1, x2 then vector x is equivalent to
δx3 + x4.

If a4 = 0, a3 6= 0, then we can consider that a3 = 1 and then the
coefficients of x2 vanish. Thus the vector x is equivalent to βx1 + x3.

If a4 = a3 = 0, a2 6= 0, then we can assume that a2 = 1. Then the
vector x is equivalent to γx1 + x2.
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If a4 = a3 = a2 = 0, then we can assume that a1 = 1 and the vector
x is equivalent to x1. �

Once we have calculated the one-dimensional optimal system, we
can go on to talk about higher dimensions. Lack of space precludes us
from following this interesting problem any further here. So we refer the
reader to [14], for some of the techniques accessible.

5 Generalization

Consider the following generalized thin-film equation describing the ef-
fect of surface tension

ut = −(unuxxx)x. (11)

If we let n = 3 in the above equation we get to Case1. Bernis and
Friedman in their work obtained the solutions of Eq.(11) for n ≥ 4 on
bounded domains [1]. In [4] influence of the non-conservative to create
rupture to dominate the intermolecular forces has been investigated.

The behavior of solution of the non-conservative generalized thin-film
equation

ut = −∂x(un∂x[u−4 + uxx])− u−(m+4) + u−muxx, (12)

depend on the values of the parameters m, n that control the competing
non-conservative influences and arranging conservative surface tension
influences. The dynamism coefficients (n,m) are the conservative and
evaporative terms respectively [5, 6].

The Lie symmetry algebra of (12) is generated by vector fields ∂x
and ∂t. By using the characteristic equation associated with ∂x and
integrating and substituting in (12) we obtain v − r = −v−m−4 that
r = t, s = x, v(r) = u. The reduced equation is u = (−5t−tm+c1)

−m−5.
u is independent on the values of the parameter n.

6 Conclusion and Motivation

In what presented, we consider the Reynolds equations in the 4 Cases,
then using the classical Lie symmetric method we determined Lie sym-
metries group and their invariants associated to the Reynolds equation
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ut = ∂x(u3∂x[f(u)− uxx]) where f(u) is some determined function on u
for some physical models, in the different Cases. The commutator table
and adjoint representation table of the Lie symmetry generator is con-
structed. Ultimately, using the optimal control theory we achieve the
optimal system of the Reynolds equation.

Classical and nonclassical symmetries for similar and generalized
equations can be obtained, for example ut = ∂x(u3∂x[f(x)− uxx]), with
f = f(t), f = f(x, t) or f = f(x, t, u).
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