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Abstract. For an edge e = uv in a graph G, MG
u (e) is introduced as

the set all edges of G that are at shorter distance to u than to v. We
say that G is an edge quasi-distance-balanced graph whenever for every
arbitrary edge e = uv, there exists a constant λ > 1 such that mG

u (e) =
λ±1mG

v (e). We investigate that edge quasi-distance-balanced garphs are
complete bipartite graphs Km,n withm 6= n. The aim of this paper is to
investigate the notion of cycles in edge quasi-distance-balanced graphs,
and expand some techniques generalizing new outcome that every edge
quasi-distance-balanced graph is complete bipartite graph. As well as, it
is demontrated that connected quasi-distance-balanced graph admitting
a bridge is not edge quasi-distance-balanced graph.
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1 Introduction

Consider G be a finite, undirected and connected graph and has vertex
set V (G) and edge set E(G). The distance between any two vertices
u, v ∈ V (G) in a graph G is defined the number of edges in a shortest
path conneting them and it is shown by dG(u, v). Also dG(u, é) is defined
the distance between a vertex u and an edge é = úv́ in a graph G and it
is equal to min{dG(u, ú), dG(u, v́). For any two arbitrary edges e = uv,
é = úv́, the distance between e and é is defined by:

dG(e, é) = min{dG(u, é), dG(v, é)} =
min{dG(u, ú), dG(u, v́), dG(v, ú), dG(v, v́)}.

Set Mu(e) = {é ∈ E(G)|dG(u, é) < dG(v, é)},
Mv(e) = {é ∈ E(G)|dG(v, é) < dG(u, é)},

and M0(e) = {é ∈ E(G)|dG(u, é) = dG(v, é)}.

In this paper, we define mu(e), mv(e), m0(e) as follows:
mu(e) = |{é ∈ E(G)|dG(u, é) < dG(v, é)}|,
mv(e) = |{é ∈ E(G)|dG(v, é) < dG(u, é)}|,

and m0(e) = |{é ∈ E(G)|dG(u, é) = dG(v, é)}|.

For a given graph G, assume that e = uv is an arbitrary edge of G.
For any two integers i, j we let:

D́i
j(e) = {é ∈ E(G)|dG(é, u) = i, dG(é, v) = j}.

The sets D́i
j(e) lead the way to a ”distance partition” of E(G) with re-

spect to the edge e = uv. Only the sets D́i−1
i (e), D́i

i(e) and, D́i
i−1(e),

for each (1 6 i 6 d) may be nonempty based on the triangle inequality
(d is the diameter of the graph G). Also D́0

0(e) = φ.
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For two adjacent vertices u, v of G we indicate
WG
u,v = {x ∈ V (G)|dG(x, u) < dG(x, v)}. Similarly, we can define WG

v,u.
We call G quasi-distance-balanced (QDB) whenever for two arbitrary
adjacent vertices u and v of G there exists a constant λ > 1 such that
|WG

u,v| = λ±1|WG
v,u|.

A graph G is defined as edge quasi-λ-distance-balanced if there is
a positive rational number λ > 1, in which for any edge e = uv of G,
either mu(e) = λmv(e) or mv(e) = λmu(e).

We can orient edges of an edge quasi-distance-balanced graph G in
the below way, we introduce ~e : u → v for any edge ~e = ~uv ∈ E(G),
if and only if mu(e) = λmv(e) or mv(e) = λmu(e). (an example is il-
lustrated in Figure 1). Suppose the directed graph made in this way is
denoted Q(G). Assume that a cycle of length n in an edge quasi-DB
graph G be as C = e1, ..., en. Consider C+ is denoted as the set of indices
i ∈ {1, ..., n}, where ei → ei+1, that is, C+ = {i ∈ {1, ..., n}|ei → ei+1}
(here we linked en+1 with e1 and e0 with en). In the same way suppose
that C− = {i ∈ {1, ..., n}|ei+1 → ei}.

The study of construction of cycle in edge quasi-distance-balanced
graphs is principal aim of this paper. All examples of edge quasi-λ-DB
graphs known to the authors are complete bipartite graphs. Therefore,
at first the following theorem is presented.

Theorem 1.1. Let G be a connected edge quasi-λ-distance-balanced
graph. Then G is complete bipartite graph Km,n with m 6= n.

Theorem 1.2. If G be an edge quasi-DB-graph with a cycle C = e1, ..., en,
then

∑
i∈C+ mu(ei) =

∑
i∈C− mv(ei).

Theorem 1.3. Suppose that G is an edge quasi-DB graph and C =
e1, ..., en is a cycle in G. Then

2 6 |C+| 6 n− 2 and also 2 6 |C−| 6 n− 2.
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There exist equalities between sizes of C+ and C−, for complete
bipartite edge quasi-DB graph, as presented in the next theorem.

Theorem 1.4. If G be a complete bipartite edge quasi-DB- graph with
a cycle C = e1, ..., e2n of length 2n, then

|C+| = |C−| = n.

a bridge is an edge of a graph whose deletion increases the graph,s
number of connected components.

In the next theorem, we characterize the relatrion between quasi-DB
graphs having a bridge and edge quasi-DB graphs.

Theorem 1.5. Every connected quasi-DB graph admitting a bridge is
not an edge quasi-DB graph.

This article is arranged as follows. In a graph G some significant
consequences concerning partitions of edge set are explained according
to distance from some specified closed walk in Section 2 (notice Theorem
2.5). Theorem 1.1, 1.2, 1.3 and 1.4 are proved in section 3. In Section 4
we verify Theorem 1.5.

2 Preliminaries

Here, we are going to express some important concepts that will be
applied in the succeeding sections. At first, we must describe useful
terms.

Definition 2.1. Asuume that G is a graph and C = e1, ..., en is a walk in
G. We determine a mapping ϕc = E(G)→ Zn with ϕC(e) = (x1, ..., xn),
where xi = dG(é, v)−dG(é, u), for every i ∈ {1, ..., n}. For i ∈ {1, ..., n},
consider A+

i = D́+
1

2(e) = {(x1, ..., xn) ∈ {−1, 0, 1}n|xi = 1} and also

A−i = D́−
2

1(e) = {(x1, ..., xn) ∈ {−1, 0, 1}n|xi = −1}.

For every walk C in a graph G and every edge e ∈ E(G), it follows
that ϕC(e) ∈ {−1, 0, 1}n, therefore the next remark.
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Remark 2.2. Suppose that G is a graph with a walk C = e1, ..., en. A
partition of E(G) is the set {ϕ−1((x1, ..., xn))(x1, ..., xn) ∈ {−1, 0, 1}n}.

In the following lemma is stated a relation between the sets Mu(e),
Mv(e) and also the mapping ϕC .

Lemma 2.3. If G be a graph and C = e1, e2, ..., en be a walk, then

Mu(e) = ϕ−1
C (D́+

1

2(e)) andMv(e) = ϕ−1
C (D́−

2

1(e)) for every i ∈ {1, ..., n}.

Proof. Suppose that é ∈ E(G), and at first assume that é ∈ Mu(e).
Then d(é, u) < d(é, v). Besides, since é ∈ E(G), it implies that d(é, v) =
d(é, u) + 1. Therefore, d(é, v) − d(é, u) = 1, thus é ∈ Mu(e). This con-

cludes that Mu(e) = ϕ−1
C (D́+

1

2(e)). By analogy, Mv(e) = ϕ−1
C (D́−

2

1(e)).
�

Lemma 2.4. Let G be a graph and let C = e1, ..., en be a walk of length
n in G. Suppose that é ∈ E(G) and ϕC(é) = (x1, ..., xn). Then∑n

i=1 xi = d(é, un+1)− d(é, u1).

Proof. By the definition of the cycle we have,

C = u1, e1, v1 = u2, e2, v2 = u3, ..., vn−1 = un, en, vn = un+1,

and according to the defined mapping ϕ we have xi = d(é, v) − d(é, u).
Therefore, Σn

i=1xi = Σn
i=1d(é, vi)− d(é, ui) = Σn

i=1d(é, ui+1)− d(é, ui) =
d(é, un+1)− d(é, u1). �

Theorem 2.5. Consider in a graph G there exists a closed walk e1, ..., en.
Then ∑n

i=1mu(ei) =
∑n

i=1mv(ei).

Proof. Suppose that a closed walk in G be C = u1, e1, ..., en, vn, u1,
and é is an arbitrary edge of G. Let ϕC(é) = (x1, ..., xn). Consider that
é contributes k to the sum

∑n
i=1mu(ei) such that é ∈ Mu(e). Hence

there exists exactly k coordinates of ϕC(é) equal to 1 by Lemma 2.3.
Lemma 2.4 concludes

∑n
i=1 xi = 0. If xi ∈ {−1, 0, 1}, then it can be

shown that there are also exactly k coordinates of ϕC(é) equal to −1.
Thus, é contributes k to the sum

∑n
i=1mv(é). for every é ∈ E(G), the

proof completed. �
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3 The structure of cycles in edge quasi-distance-
balanced graphs

Suppose that G is an edge quasi-DB graph. In the introduction, it
was clarified a fundamental result that all examples of edge quasi-λ-DB
graphs recognized to the authors are complete bipartite graphs. Hence,
we initially prove Theorem 1.1.

Proof of Theorem1.1. Let G be a edge quasi-λ-DB graph with
d = diam(G), and the edge set {e1, e2, ..., e2l+1} form an odd circle
with length 2l + 1 such that e = uv ∈ E(G) and

Aij = {e ∈ E(G)|d(e, ei+k) = mjk, mjk = {1, 2, ..., d}, k = 0, 1, ..., 2l},

2 6 j 6 r,

such that Mu(ei) = (
⋃r
j=1Aij) ∪ {ei+2l} and Mv(ei) = (

⋃r
j=1A(i+1)j) ∪

{ei+2}, in which the computations in indexes i are performed modulo
2l + 1 and some r ∈ N. Taking |Aij | = aij for i = 0, 1, ..., 2l and
j = 1, 2, ..., r and following the hopothesis there exist si ∈ {±1}, i =
0, 1, ..., 2l, such that,∑r

j=1 a0j + 1 = λs0(
∑r

j=1 a1j + 1),∑r
j=1 a1j + 1 = λs1(

∑r
j=1 a2j + 1),

.

.

.

∑r
j=1 a(2l−1)j + 1 = λs2l−1(

∑r
j=1 a(2l)j + 1),∑r

j=1 a(2l)j + 1 = λs2l(
∑r

j=1 a0j + 1).

Now, combining all (2l + 1) equations above follows that λΣ2l
i=0si = 1,

that is, Σ2l
i=0si = 0. On the other hand,

si ∈ {±1} ⇒ 1 6 |Σ2l
i=0si|,
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which is a contradiction and so G has no circle.
For being complete this graph, we must show that every vertex of the
first set is connected to every vertex of the second set, that is, vertices
degree in every set of graph is equal with opposite set size. Then, for
vertices ui ∈ A and vi ∈ B, i ∈ {1, 2, ..., n} with |A| = m and |B| = n,
we have deg(ui) = n and deg(vi) = m.
Now, suppose that G is not complete. So, there is at least an edge
ei = uivi, so that, deg(u1) < n and deg(v1) < m. Since, G is edge
quasi-λ-DB, we conclude that

mu1 (e1)

mv1 (e1) ∈ {λ1,
1
λ1
}.

Let E(G)− {e1} = {ei}, i ∈ {2, 3, ..., n} we have,

mui (ei)

mvi (ei)
∈ {λi, 1

λi
}.

Therefore, we have found at least two distinct {λ1, λi} for G. Hence it
contradicts with the definition of being edge quasi-λ-DB. This completes
the proof.

Figure 1: Oriented edges in P3�P3.

Let G be an edge quasi-λ-DB. Then, the edges of G are oriented nat-
urally by ~e : u→ v if and only if mG

u (e) = λmG
v (e) or mG

v (e) = λmG
u (e).

Bring in mind that we defined C+ = {i ∈ {1, ..., n}|ei → ei+1} and
C− = {i ∈ {1, ..., n}|ei+1 → ei}, for a cycle C = e1, ..., en, where
en+1 = ei and e0 = en. We are now going to present the proof of
Theorem 1.2.

Proof of Theorem 1.2. It is obvious to show that C+ ∩ C− = φ
and C+ ∪ C− = {1, ..., n}. So Theorem 2.5 implies that∑

i∈C+ mu(ei) +
∑

i∈C− mu(ei) =
∑

i∈C+ mv(ei) +
∑

i∈C− mv(ei),

and accordingly∑
i∈C+ mu(ei)−

∑
i∈C− mv(ei) =

∑
i∈C+ mv(ei)−

∑
i∈C− mu(ei). (1)
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It follows based on the definition of set C+ and C− that,

mu(ei) = λ mv(ei), ( for each i ∈ C+) (2)

mv(ei) = λ mu(ei). ( for each i ∈ C−) (3)

Combining equations (2) and (3) we have∑
i∈C+ mu(ei)−

∑
i∈C− mv(ei) = λ(

∑
i∈C+ mv(ei)−

∑
i∈C− mu(ei)). (4)

Applying equations (1), (4) and the fact that λ > 1 the result follows.

The following proof of the Theorem 1.3 gives us bounds on sizes of
C+ and C−.

Proof of Theorem 1.3. At first, we suppose that |C−| = 0. Thus, it
is easy to see that C+ = {1, ..., n} and also

∑
i∈C− mv(ei) = 0. More-

over, it follows that
∑

i∈C+ mu(ei) = 0 by Theorem 1.2. However, if
é ∈ Mu(e), ∀é ∈ E(G), then we have the implication that mu(e) > 1.
Thus, it contradicts the fact that

∑
i∈C+ mu(ei) = 0. Therefore, it fol-

lows that |C−| > 1. Now, let |C−| = 1. Without loss of generality, let
C− = {n} and C+ = {1, ..., n− 1}. We assert that∑n−1

i=1 mu(ei)−mu(en) > 0. (5)

We are first going to prove that

Mu(en) ⊆
⋃n−1
i=1 Mu(ei).

Assume that é ∈ Mu(e1), and let ϕc(é) = (x1, ..., xn). By lemma 2.3,
xn = −1. Further, there are j ∈ {1, ..., n − 1}, in which xj = 1 by
Lemma 2.4. We have éj ∈Mu(ej) by Lemma 2.3. Therefore, Mu(en) ⊆⋃n−1
i=1 Mu(ei). It is clear that én ∈ Mu(en). It follows that a proper

subset of
⋃n−1
i=1 Mu(ei) is Mu(en) which concludes equation (5). Hence,

equation (5) contradicts Theorem 1.2. The recent contradiction yields
that |C−| > 2. Similarly, it implies that also |C+| > 2.

Corollary 3.1. Suppose that G is an edge quasi-DB graph with a 4-cycle
C = e1, e2, e3, e4. Then |C+| = |C−| = 2.
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It is indicated that for every cycle C in a complete bipartite quasi-DB
graph, we have |C+| = |C−| and it is stated in the proof of Theorem 1.4.

Proof of Theorem 1.4. To prove we suppose that G is a complete
bipartite edge quasi-DB graph. Note that sets Mu(e),Mv(e) and M0(e)
form a partition of E(G) for any edge e = uv in G. Therefore, there
exists constant T with |E(G)| −m0(ei)/2 < T < |E(G)|, such that

mu(ei) = T , mv(ei) = |E(G)| − (m0(ei) + T ), ( for each i ∈ C+),

and

mu(ei) = |E(G)| − (m0(ei) + T ), mv(ei) = T , ( for each i ∈ C−).

Thus, by Theorem 2.5 we obtain for each i ∈ {1, ..., n},

|C+|.T + |C−|.(|E(G)| − (m0(ei) + T )) =
|C+|.(|E(G)| − (m0(ei) + T )) + |C−|.T .

Hence,

2(|C+| − |C−|).T = (|C+| − |C−|).|E(G)| − (|C+| − |C−|).m0(ei).

If |C+| − |C−| 6= 0, then it follows that T = |E(G)|/2 − m0(ei), a
contradiction. This contradiction implies that |C+| = |C−|.

Remark 3.2. If all edge quasi-DB graphs be complete bipartite, then
we conclude that in all recognized edge quasi-DB graphs, it holds |C+| =
|C−| for any cycle C.

Now, the existance of cycles of length 5 in edge quasi-DB graphs will
be investigated. A 5-cycle e1, e2, e3, e4, e5 is called central if distance
every edge in G be at most 2 from every edge on the 5-cycle, which
means, for each e ∈ E(G), it holds d(e, ei) 6 2, for each i ∈ {1, 2, 3, 4, 5}.
We show that there is no central 5-cycle in an edge quasi-DB graph in
the following result.

Proposition 3.3. Every graph G that has a central 5-cycle, is not edge
quasi-DB.
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Proof. To prove we must suppose contrary. Hence G is edge quasi-DB
and a central 5-cycle is induced by a cycle C = e1, e2, e3, e4, e5 in G.
To do this we assert that Mv(ei) \ {ei+2} = Mu(ei+2) \ {ei}, for every
i ∈ {1, 2, 3, 4, 5}. Consider e ∈ Mv(ei) \ {ei+2}. If e = ei+1, then it is
easy to see that e ∈ Mu(ei+2) \ {ei}. If e 6= ei+1, such that there is
central 5-cycle C in G, then we have d(e, ei+1) = 1. We know that G is
complete bipartite hence, it implies that d(e, ei) = d(e, ei+2) = 2. It is
now obvious that e ∈Mu(ei+2)\{ei} which follows that Mv(ei)\{ei+2} ⊆
Mu(ei+2) \ {ei} and also the reverse inequality. Thus, we have

mv(ei) = mu(ei+2), for each i ∈ ({1, 2, 3, 4, 5}). (6)

If G is edge quasi-DB, then it yields that mu(e) = λmv(e), where si ∈
{±1}.
Multiplying these equalities and applying equation (6) this proves that∏5

i=1mu(ei) = λs1+s2+s3+s4+s5 .
∏5
i=1mu(ei).

We observe that λs1+s2+s3+s4+s5 = 1 since mu(ei) > 1 for each i ∈
{1, 2, 3, 4, 5}. This is impossible, for λ > 1, and s1 +s2 +s3 +s4 +s5 6= 0.
The proof is completed by the obtained contradiction. �

4 Bridges in quasi-DB graphs and edge quasi-
DB graphs

The minimum degree of G is defined the degree of the vertex with the
least number of edges incident to it and is denoted by δ(G). We would
determine quasi-DB graphs with δ = 1 in the next lemma.

Lemma 4.1. Suppose that G is a connected quasi-DB graph. Every
graph G with δ(G) = 1 is isomorphic to a star.

Proof. Assume that G is a connected quasi-DB graph and the degree
of vertex u is 1 in G. Suppose that the only adjacent vertex of u is v.
We know that |Wuv| = 1 and |Wvu| = |V (G)| − 1, which shows that
λ(G) = |V (G)| − 1. Suppose that adjacent vertex of v is w different
from u. If |Wvw| > 2, then we observe that |Wvw| = |V (G)| − 1 and also
|Wwv| = 1 which means that every adjacent vertex of v is a leaf in G,
therefore G is isomorphic to star. �
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We would determine the relation between quasi-DB graphs having
a bridge and edge quasi-DB graphs. Recollect a bridge (or cut-edge)
is an edge of a graph whose deletion increases the graph,s number of
connected components. Below is the proof of Theorem 1.5.

Proof of Theorem 1.5. Let G be a connected quasi-DB graph and
e12 = v1v2 be a bridge in G. Let λ = QDB(G). Suppose that the
component containing vi after removing bridge v1v2 is Gi for i ∈ {1, 2}
. Without loss of generality we suppose that |V (G1)| > |V (G2)|. We

have WG
v1v2 = V (G1) and WG

v2v1 = V (G2) which show that λ = |V (G1)|
|V (G2)| .

Let V (G2) = {v2}. Then δ(G) = 1, and based on Lemma 4.1 we can
see that G is isomorphic to a star. If x ∈ V (G2) \ {v2} then it is easily
seen that |WG

v2x| > |V (G1)|+ 1, and also |WG
xv2 | 6 |V (G2)| − 1. Clearly,

|WG
v2x| > |W

G
xv2 |, yielding that |WG

v2x| = λ|WG
xv2 |, that is,

λ =
|WG

v2x
|

|WG
xv2
| >

|V (G1)|+1
|V (G2)|+1 >

|V (G1)|
|V (G2)| = λ,

a contradiction. A quasi-DB graph admitting a bridge is isomorphic to
a star and it follows from the above contradiction. Now we are going to
show that G is not edge quasi-DB graph. Let G be an edge quasi-DB
graph. Let e = uv be an edge in G such that v is a pendant vertex in G,
so deg(v) = 1 but deg(u) = |V (G)|−1 > 1. Hence 0 = mv(e) 6= λmu(e).
It is a contradiction with λ > 0. Thus G is not an edge quasi-DB
graph.
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