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Abstract. This paper considers an inverse eigenvalue problem for
bisymmetric nonnegative matrices. We first discuss the specified struc-
ture of the bisymmetric matrices. Then for a given set of real numbers
of order maximum five with special conditions, we construct a non-
negative bisymmetric matrix such that the given set is its spectrum.
Finally, we solve the problem for arbitrary order n in the special case
of the spectrum.
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1 Introduction

Bisymmetric matrices have been widely discussed since 1939, and are
very useful in communication theory, engineering and statistics [1]. In
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fact, symmetric Toeplitz matrices and persymmetric Hankel matrices are
two useful examples of bisymmetric matrices. The bisymmetric nonneg-
ative inverse eigenvalue problem is the problem of finding necessary and
sufficient conditions for a list of n real numbers to be the spectrum of
an n × n bisymmetric nonnegative matrix. If there exists an n × n
bisymmetric nonnegative matrix A with spectrum σ, we say that σ is
realizable and that A realizes σ.

The nonnegative inverse eigenvalue problem is very difficult and it is
solved only for n = 3 by Loewy and London and for matrices with trace
0 of order n = 4 by Reams and for n = 5 in some special cases by Nazari
and Sherafat in 2012 [5]. Recently Nazari et.al solve symmetric nonneg-
ative inverse eigenvalue problem (SNIEP) with one positive eigenvalue
and nonnegative summation [4].

Through this paper the following notation is used. The spectral ra-
dius of nonnegative matrix A denoted by ρ(A). For nonnegative matrices
the largest eigenvalue is called Perron eigenvalue and denoted by λ1 and
we have λ1 = ρ(A), so there is a right and a left eigenvector associated
with the Perron eigenvalue with nonnegative entries.

Some necessary conditions on the list of real number

σ = {λ1, λ2, . . . , λn},

to be the spectrum of a nonnegative matrix are listed below.
(1) The Perron eigenvalue max{|λi|;λi ∈ σ} belongs to σ (PerronÂ—
Frobenius theorem).
(2) sk =

∑n
i=1 λ

k
i ≥ 0.

(3)smk ≤ nm−1skm for k,m = 1, 2, . . . (JLL inequality)[3, 2].
This paper is organized as follows. First, we discuss the specified

properties and structure of bisymmetric matrices in section 2, and in
the next section find a solution for BSNIEP for order 2,3,5 and finally,
we solve BSNIEP for a special given spectrum of arbitrary order n.

2 THE PROPERTIES OF BISYMMETRICMA-
TRICES

A matrix for which the values on each line parallel to the main diag-
onal are constant, is called a Toeplitz matrix and Hankel matrix, is a
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square matrix in which each ascending skew-diagonal from left to right
is constant.

Let A = (aij) be an n× n matrix. A is a persymmetric if for all i, j
we have

aij = An−j+1,n−i+1.

This can be equivalently expressed as AJn = JnA
T where Jn is the

exchange matrix, i.e. Jn = (en, en−1, ..., e1) and we denote by ei the ith,
(i = 1, ..., n) column of identity matrix In. Also it is clear that

Jn = JTn , JnJ
T
n = In.

If a symmetric matrix is rotated by 90 degrees, it becomes a persym-
metric matrix. Symmetric persymmetric matrices are sometimes called
bisymmetric matrices [1].

Definition 2.1. A real n× n matrix A = (ai,j) is called a bisymmetric
matrix if its elements satisfy the properties

ai,j = aj,i, ai,j = an−j+1,n−i+1.

The set of all n×n bisymmetric real matrices is denoted by BSRn×n.

Clearly, a bisymmetric matrix is a square matrix that is symmetric
about both of its main diagonals.

If A is a real bisymmetric matrix with distinct eigenvalues, then the
matrices that commute with A must be bisymmetric [7]. The inverse of
bisymmetric matrices can be represented by recurrence formulas [6].

Lemma 2.2. A matrix A ∈ BSRn×n if and only if AT = A and
JnAJn = A.

Noting that BSRn×n ⊂ SRn×n, all eigenvalues of a bisymmetric
matrix are real numbers, where SRn×n denote the set of symmetric
matrices of dimnesion n.

Definition 2.3. Given A ∈ Rn×n, if n − k is even, then the k-square
central principal submatrix of A, denoted as Ac (k), is a k-square sub-
matrix obtained by deleting the first and last n−k

2 rows and columns of
A, that is

Ac (k) = (0 Ik 0)A(0 Ik 0)T , 0 ∈ R(k)×(n−k
2

)
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central principal submatrices preserves the bisymmetric structure of the
given matrix.

The product of two bisymmetric matrices is a centrosymmetric ma-
trix.

3 CONSTRUCTION

3.1 CASE n=2

Theorem 3.1. Let σ = {λ1, λ2} be a set of two real numbers such that
λ1 ≥ |λ2|. Then σ is the set of eigenvalues of a bisymmetric nonnegative
matrix.

Proof. Based on the structure of the matrix A and a simple computa-
tion, it follows that the matrix

A =

[
λ1+λ2

2
λ1−λ2

2
λ1−λ2

2
λ1+λ2

2

]
,

solves the problem. �

3.2 CASE n=3

Theorem 3.2. Let σ = {λ1, λ2, λ3} be a set of real numbers such that

1. λ1 + λ2 + λ3 ≥ 0,

2. λ1 ∈ R, λ1 ≥ |λi|; i = 2, 3.,

Then there exists a bisymmetric nonnegative matrix that realize σ

Proof. If λ1 is Perron eigenvalue of real set σ = {λ1, λ2, λ3} with non-
negative λ2 and this set is the spectrum of 3×3 nonnegative bisymmetric
matrix( also 3× 3 centrosymmetric, since all 3× 3 bisymmetric matrix
is centrosymmetric matrix) then the matrix:

A =

 λ1+λ3
2 0 λ1−λ3

2
0 λ2 0

λ1−λ3
2 0 λ1+λ3

2

 ,
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is a trivial solution. Let λ1 > 0 ≥ λ3 ≥ λ2 and if we assume that the
nonnegative matrix solution has the following form:

C =


a b c

b a b

c b a

 ,
then its charactristic polynomial is:

P (λ) = λ3 − 3λ2a−
(
c2 + 2 b2 − 3 a2

)
λ+

ac2 − 2 cb2 + 2 ab2 − a3 = (λ− λ1)(λ− λ2)(λ− λ3).
(1)

By comparing the both sides of (1) it follows that

a = λ1+λ2+λ3
3 ,

c = −2/3λ3 + 1/3λ2 + 1/3λ1,

b = 1/4
√

2λ1
2 − 4λ2λ1 + 2λ2

2 − 2 c2.

So the 3× 3 nonnegative bisymmetric matrix is:
λ1+λ2+λ3

3 b λ1−2λ2+λ3
3

b λ1+λ2+λ3
3 b

λ1−2λ2+λ3
3 b λ1+λ2+λ3

3

 ,
and it is easy to see that this matrix is nonnegative bisymmetric and
has spectrum σ. �

Suppose σ ∈ Q, the following Theorem shows the conditions under
which we can have a 3×3 bisymmetric nonnegative matrix from rational
numbers.

Theorem 3.3. Let σ = {λ1, λ2, λ3} be a set of rational numbers such
that

1. λ1 + λ2 + λ3 ≥ 0,

2. λ1 ∈ R, λ1 ≥ |λi|; i = 2, 3.,

3. λ1 + 2λ3 ≥ 0,
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4. λ1 + λ3 ≥ ±3λ2.

Then there exists a bisymmetric nonnegative matrix that realize σ

Proof. Same as case n = 2

A =

2λ1+3λ2+λ3
6

λ1−λ3
3

2λ1−3λ2+λ3
6

λ1−λ3
3

2λ1+4λ3
6

λ1−λ3
3

2λ1−3λ2+λ3
6

λ1−λ3
3

2λ1+3λ2+λ3
6

 ,
is nonnegative bisymmetric matrix and solves the problem. �

Example 3.4. For σ = {5,−1,−3} find a bisymmetric nonnegative
matrix that realizes spectrum σ.

By Theorem (3.2) the following bisymmetric nonnegative matrix is
a solution: 

1/3 2/3
√

14 4/3

2/3
√

14 1/3 2/3
√

14

4/3 2/3
√

14 1/3

 .
and we see that for this spectrum we cannot find a nonnegative bisym-
metric matrix according to Theorem (3.3) because the (3) or (4) con-
dition of the Theorem (3.3) will not always exist. But if we increase
the Perron eigenvalue’s to 6, the matrix of the following nonnegative
bisymmetric matrix of the set of rational numbers will be the answer:

1 3 2

3 0 3

2 3 1

 .
3.3 CASE n=4

If λ1 is Perron eigenvalues of σ = {λ1, λ2, λ3, λ4} with nonnegative λ2
and λ2 ≥ λ4 is the spectrum of 4 × 4 nonnegative bisymmetric matrix,
then the following trivial solution solve the problem:

λ1+λ3
2 0 0 λ1−λ3

2

0 λ2+λ4
2

λ2−λ4
2 0

0 λ2−λ4
2

λ2+λ4
2 0

λ1−λ3
2 0 0 λ1+λ3

2

 ,
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otherwise we study some special cases in the following Theorem:

Theorem 3.5. Let σ = {λ1, λ2, λ3, λ4} be a set of real numbers with
following condition

1. λ1 + λ2 + λ3 + λ4 ≥ 0,

2. λ1 ∈ R, λ1 ≥ |λi|; i = 2, 3, 4, λ3 = λ4,

3. λ1 + λ2 ≥ ±2λ3.

Then there exists a bisymmetric nonnegative matrix that realizes σ.

Proof. In the first case, we assume that λ3 = λ4 = 0. Then it easy
to see that the following circulant nonnegative bisymmetric matrix has
eigenvalues {λ1, λ2, 0, 0}:

λ1+λ2
4

λ1−λ2
4

λ1+λ2
4

λ1−λ2
4

λ1−λ2
4

λ1+λ2
4

λ1−λ2
4

λ1+λ2
4

λ1+λ2
4

λ1−λ2
4

λ1+λ2
4

λ1−λ2
4

λ1−λ2
4

λ1+λ2
4

λ1−λ2
4

λ1+λ2
4

 .
Now we consider the answer matrix as a 4 × 4 circulant matrix. It is
clear that this matrix is a type of Teoplitz matrix such as

A =


a b c b
b a b c
c b a b
b c b a

 ,
By a simple computations, the roots of the characteristic polynomial
det(A − λI) = 0 are λ1 = a + 2b + c, λ2 = a − 2b + c, λ3 = a − c and
λ4 = a − c. So a = λ1+λ2+λ3+λ4

4 , b = λ1+λ4−λ2−λ3
4 , c = λ1+λ2+λ4−3λ3

4 .
Therefore the following bisymmetric nonnegative matrix:

A =


λ1+λ2+λ3+λ4

4
λ1+λ4−λ2−λ3

4
λ1+λ2+λ4−3λ3

4
λ1+λ4−λ2−λ3

4
λ1+λ4−λ2−λ3

4
λ1+λ2+λ3+λ4

4
λ1+λ4−λ2−λ3

4
λ1+λ2+λ4−3λ3

4
λ1+λ2+λ4−3λ3

4
λ1+λ4−λ2−λ3

4
λ1+λ2+λ3+λ4

4
λ1+λ4−λ2−λ3

4
λ1+λ4−λ2−λ3

4
λ1+λ2+λ4−3λ3

4
λ1+λ4−λ2−λ3

4
λ1+λ2+λ3+λ4

4

 ,
is the solution, with Perron eigenvalue λ1.
�
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Theorem 3.6. Let σ = {λ1, λ2, λ3, λ4} be a set of real numbers with the
following conditions

1. λ1 + λ2 + λ3 + λ4 ≥ 0,

2. λ1 ∈ R, λ1 ≥ |λi|; i = 2, 3, 4, λ3 = λ4,

3. λ1 + λ2 ≥ ±(λ3 + λ4).

Then there exists a bisymmetric nonnegative matrix that realizes σ.

Proof. We consider the nonnegative bisymmetric matrix as following
Hankel form: 

a b c b

b c b c

c b c b

b c b a

 .
The charactristic polynomial of this matrix is obtained as:

P (λ) = λ4 + (−2 a− 2 c)λ3 +
(
−4 b2 − c2 + 4 ca+ a2

)
λ2+(

−4 cb2 + 4 ab2 + 2 c3 − 2 ca2
)
λ− a2b2 + 2 ab2c− b2c2 + c4 − 2 c3a+ a2c2,

and the roots of the above polynomial, denoted by λ1, λ2, λ2 and λ4, are
λ1 = b+ 1/2 a+ 1/2 c+ 1/2

√
4 b2 + 8 bc+ a2 − 2 ca+ 5 c2,

λ2 = b+ 1/2 a+ 1/2 c− 1/2
√

4 b2 + 8 bc+ a2 − 2 ca+ 5 c2,

λ3 = −b+ 1/2 a+ 1/2 c+ 1/2
√

4 b2 − 8 bc+ a2 − 2 ca+ 5 c2,

λ4 = −b+ 1/2 a+ 1/2 c− 1/2
√

4 b2 − 8 bc+ a2 − 2 ca+ 5 c2.

(2)

Now from (2) we find a, b and c and then we will provide the bisymmetric
nonnegative matrix in this case. To do this, from the first two equations
and then from the last two equations of (2) respectively we have:

λ1 + λ2 = 2b+ a+ c,
λ3 + λ4 = −2b+ a+ c,

(3)

then

b =
(λ1 + λ2)− (λ3 + λ4)

4
, (4)
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also from (2) we have

λ1 − λ2 =
√

(2 b+ 2 c)2 + (a− c)2,

λ3 − λ4 =
√

(2 b− 2 c)2 + (a− c)2,
(5)

so

c =
(λ1 − λ2)2 − (λ3 − λ4)2

16b
=

(λ1 − λ2)2 − (λ3 − λ4)2

4[(λ1 + λ2)− (λ3 + λ4)]
.

By (5)we have λ1 − λ2 ≥ λ3 − λ4. Then by hypthesis we have b, c ≥ 0.
Now, by combinig and simplifying the relations (3) and (4), we can
obtain a by

a =
(λ1 + λ2)

2 − (λ3 + λ4)
2 + 4λ1λ2 − 4λ3λ4

4[(λ1 + λ2)− (λ3 + λ4)]
. (6)

By placing a, b and c in Hankel matrix, the desired matrix will be ob-
tained. �

Example 3.7. Assume given

σ =
{

9/2 + 1/2
√

65, 9/2− 1/2
√

65, 7/2 + 1/2
√

65, 7/2− 1/2
√

65
}
,

by Theorem (3.6) we see that λ1 + λ2 ≥ (λ3 + λ4). Then we have a =
8, b = 1

2 and c = 0 and so the following Hankel matrix is bisymmetric
matrix and has eigenvalues σ:

A =


8 1/2 0 1/2

1/2 0 1/2 0

0 1/2 0 1/2

1/2 0 1/2 8

 .

3.4 CASE n=5

In this subsection at first we try to get an extention of problem that
related to above subsection.
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Theorem 3.8. Let σ1 = {λ1, λ2, λ3} be the spectrum of nonnegative
bisymmetric matrix 

a b c

b d b

c b a

 ,
and λ4 and λ5 are two real numbers such that λ4 ≥ 0 and λ4 + λ5 ≥ 0.
Then σ = {λ1, λ2, λ3, λ4, λ5} is realized by a nonnegative bisymmetric
5× 5 matrix.

Proof. It is tivial that the matrix

A =



λ4+λ5
2 0 0 0 λ4−λ5

2
0 a b c 0

0 b d b 0

0 c b a 0
λ4−λ5

2 0 0 0 λ4+λ5
2

 ,

is nonnegative and bisymmeytric and has spectrum σ. �

Theorem 3.9. Let σ = {λ1, λ2, λ3, λ4} be the spectrum of nonnegative
bisymmetric matrix 

a b c d

b c b c

c b c b

d c b a

 ,
and λ5 ≥ 0. Then the following nonnegative bisymmetric matrix is
realized the spectrum σ = {λ1, λ2, λ3, λ4, λ5}

a b 0 c d

b c 0 b c

0 0 λ5 0 0

c b 0 c b

d c 0 b a


.



INVERSE EIGENVALUE PROBLEM OF BISYMETRIC ... 11

4 SPECAL CASES OF PROBLEM

Theorem 4.1. Let σ = {λ1, λ2, . . . , λn} with the following conditions

1. λ1 ≥ |λi|, and
∑n

i=1 λi ≥ 0,

2. λi = λj , i, j = 2, 3, · · · , n.

Then the following nonnegative bisymmatric matrix is realzied spectrum
σ

C =



λ1+(n−1)λ2
n

λ1−λ2
n−1 · · · λ1−λ2

n−1
λ1−λ2
n−1

λ1−λ2
n−1

λ1+(n−1)λ2
n · · · λ1−λ2

n−1
λ1−λ2
n−1

λ1−λ2
n−1

λ1−λ2
n−1 · · · λ1−λ2

n−1
λ1−λ2
n−1

...
...

...
...

...

λ1−λ2
n−1

λ1−λ2
n−1 · · · λ1−λ2

n−1
λ1+(n−1)λ2

n


.

Proof. We select the matrices A and L as follows:

A =



λ2 0 0 0 · · · 0 λi
n−1

0 λ2 0 0 · · · 0 2 λ1
n−1

0 0 λ2 0 · · · 0 3 λ1
n−1

...
...

...
...

...
...

...

0 0 0 0 · · · λ2 (n− 1) λ1
n−1

0 0 0 0 · · · 0 λ1


,

and

L =



1 0 0 0 · · · 0

1 1 0 0 · · · 0

1 1 1 0 · · · 0

1 1 1 1 · · · 0

...
...

...
...

...
...

1 1 1 1 · · · 1


,
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It is easy to see that we have C = L−1AL. �

Example 4.2. Let σ = {70,−15,−15,−15,−15}. By Theorem (4.1)
we find a bisymmetric matrix such that σ is its spectrum.

We assume that

A =



−15 0 0 0 17

0 −15 0 0 34

0 0 −15 0 51

0 0 0 −15 68

0 0 0 0 70


, L =



1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1


.

Then we have

L−1 =



1 0 0 0 0

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1


.

So the soultion matrix is:

C = L−1AL =



2 17 17 17 17

17 2 17 17 17

17 17 2 17 17

17 17 17 2 17

17 17 17 17 2


.
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