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Abstract. Let B(H) denote the algebra of all bounded linear opera-
tors acting on a complex Hilbert space H. For A,B ∈ B(H), define the
bimultiplication operator M2,A,B on the class of Hilbert-Schmidt oper-
ators by M2,A,B(X) = AXB. In this paper, we show that if B∗, the
adjoint operator of B, is hyponormal, then

co
(
W0(A)W0(B)

)
⊆W0(M2,A,B),

where co stands for the convex hull and W0(.) denotes the maximal
numerical range. If in addition, A is hyponormal, we show that

co
(
W0(A)W0(B)

)
= W0(M2,A,B).
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1 Introduction

Before stating the results, we set some notations and recall some results
from the literature.
If L is a subset of the complex plane C, we shall write L and co(L) for
the closure and the convex hull of L, respectively.
Let A be a C∗-algebra with unit I and let A′ be its dual space. Define
the state space of A by

S(A) = {f ∈ A′ : f(I) = ‖f‖ = 1}.

For A ∈ A, the algebraic numerical range of A is given by

V (A) = {f(A) : f ∈ S(A)}.

It is well known that V (A) (A ∈ A) is a bounded convex compact
set and contains the convex hull of the spectrum σ(A) of A; that is,
co
(
σ(A)

)
⊆ V (A), this result follows at once from the corresponding

properties of the set S(A). For more details, see [17].

Let B(H) denote the C∗-algebra of all bounded linear operators acting
on a complex Hilbert space H with inner product 〈·, ·〉 and the corre-
sponding norm ‖·‖. For A ∈ B(H), the numerical range of A is defined
as follows

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.

The most important properties of the numerical range are that it is
convex and that its closure includes the spectrum of the operator. It is
closed if dim(H) < ∞, but it is not always closed if dim(H) = ∞. The
interested reader is referred to [3, 4, 10, 11] and references therein for a
comprehensive account of the theory of the numerical range. There is
another set which is close to the numerical range; that is the maximal
numerical range. It was introduced by Stampfli [18] and is given as
follows.

Definition 1.1. For A ∈ B(H), the maximal numerical range W0(A) of
A is given by

W0(A) = {lim
n
〈Axn, xn〉 : xn ∈ H, ‖xn‖ = 1, lim

n
‖Axn‖ = ‖A‖}.
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It was shown in [18] that W0(A) is nonempty, closed, convex, and con-
tained in the closure of the numerical range; W0(A) ⊆ W (A). Let us
recall some results we will need in the sequel. First, recall that an oper-
ator A ∈ B(H) is said to be positive, we often write A ≥ 0 for brevity,
if 〈Ax, x〉 ≥ 0 for all x ∈ H (i.e, W (A) is formed by non-negative real
numbers). It is called hyponormal if A∗A−AA∗ ≥ 0 (i.e., ‖Ax‖ ≥ ‖A∗x‖
for all x ∈ H). Familiar examples of hyponormal operators are normal
operators, those A for which A∗A = AA∗. Recall also that if A is hy-
ponormal, then r(A) = ‖A‖ (see, [10]). Here, r(A) is the spectral radius
of A given by r(A) = sup{|λ| : λ ∈ σ(A)}. It is known (see for example,
[16]), that for any operator A ∈ B(H)

W0(A) ∩ CA = σn(A),

where CA = {z : |z| = ‖A‖} and σn(A) = {λ ∈ σ(A) : |λ| = ‖A‖}.
Therefore, since W0(A) is convex,

co(σn(A)) ⊆W0(A), (1)

for any A ∈ B(H). In the case where A is hyponormal, we proved in [2]
the following.

Theorem 1.2. Let A ∈ B(H) be hyponormal. Then

W0(A) = co
(
σn(A)

)
.

Let A ∈ A, we say that a linear functional f ∈ S(A) is maximal for A
if f(A∗A) = ‖A‖2. For any A ∈ A, we set

Smax(A) := {f ∈ S(A) : f is maximal for A}.

According to [1, Theorem 6.2.17], for every A ∈ A there exists a state
s on A such that s(A∗A) = ‖A‖2. Therefore, Smax(A) is a nonempty
subset of S(A) for all A ∈ A.
Define the algebraic maximal numerical range of A as follows.

Definition 1.3. Let A ∈ A. The algebraic maximal numerical range of
A is the set

V0(A) = {f(A) : f ∈ Smax(A)}.
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In [8], Fong established that V0(A) is a non-empty convex compact sub-
set of V (A) and in the case where A = B(H), he proved the following.

Theorem 1.4. For any operator A ∈ B(H), V0(A) = W0(A).

Let C2(H) denote the class of Hilbert-Schmidt operators on H. Recall
that C2(H) = {X ∈ B(H) : ‖X‖2 < ∞}, where ‖X‖22 = tr(X∗X),
(X ∈ C2(H)), and tr stands for the usual trace functional. Recall
also that C2(H) is a Hilbert space with respect to the inner product
〈X,Y 〉2 = tr(XY ∗), (X,Y ∈ C2(H) associated with the norm ‖.‖2. For
A ∈ B(H), the left and right multiplications L2,A and R2,A are de-
fined on C2(H) by L2,A(X) = AX and R2,A(X) = XA, respectively.
For A,B ∈ B(H), the bimultiplication M2,A,B is defined on C2(H) by
M2,A,B(X) = (L2,AR2,B)X = AXB. The operators L2,A and R2,A are
then particular bimultiplications since L2,A = M2,A,I and R2,A = M2,I,A.
Some results concerning the norm and the spectrum of M2,A,B are proved
in [7] and [14]. Let A,B ∈ B(H). In [7], it is proved that

‖M2,A,B‖ = ‖A‖ ‖B‖ , (2)

in particular, ‖L2,A‖ = ‖R2,A‖ = ‖A‖. In [14], it is proved that

σ(M2,A,B) = σ(A)σ(B). (3)

Note that
σn(M2,A,B) = σn(A)σn(B). (4)

Our motivation stems from the following theorem which is proved in [13]
for the subnormality case and is generalized in [5] for the hypnormality
case.

Theorem 1.5. Let A,B ∈ B(H). If either A or B is hyponormal, then

W (M2,A,B) = co
(
W (A)W (B)

)
. (5)

Our purpose is studying Equality (5) when replacing the numerical range
by the maximal numerical range. In Section 2, we begin by showing that
for any A,B ∈ B(H) with B∗ is hyponormal

co
(
W0(A)W0(B)

)
⊆W0(M2,A,B). (6)
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Next, we show that if B∗ is hyponormal and A has a normal dilation N
on some complex Hilbert space K with σ(N) ⊆ σ(A), then

W0(M2,A,B) = co
(
W0(A)W0(B)

)
. (7)

Recall that if A and B are bounded linear operators on complex Hilbert
spaces H and K, respectively, the operator B is said to be a dilation of
the operator A (or A is dilated to B) if there is an isometry V from H to
K such that A = V ∗BV . Using the fact that any hyponormal operator
A ∈ B(H) has a normal dilation N on some complex Hilbert space K
with σ(N) ⊆ σ(A) (see, [9]), we deduce that Equality (7) remains true
if A and and B∗ are hyponormal. At the end of Section 2, we give
some remarks about the maximal numerical range of the generalized
derivation δ2,A,B on C2(H), defined by δ2,A,B(X) = AX − XB (X ∈
C2(H)).
Before closing this introduction, note that in the definition of a maximal
linear functional for an element A ∈ A intervenes the adjoint A∗ of A.
Then, for A,B ∈ B(H), in the sequel we will need the adjoint M ∗

2,A,B

of M2,A,B. For the sake of completeness and for the convenience of the
reader, we shall show here that M ∗

2,A,B = M2,A∗,B∗ . Indeed, for any
operators A,B ∈ B(H) and X,Y ∈ C2(H), we have

〈M2,A,BX,Y 〉2 = 〈AXB, Y 〉2
= tr(AXBY ∗)

= tr(XBY ∗A) (because X, BY ∗ ∈ C2(H))

= tr(X(A∗Y B∗)∗)

= 〈X,A∗Y B∗〉2
= 〈X,M2,A∗,B∗Y 〉2.

Note that in the third equality we used the fact that if S, T ∈ C2(H),
then for any A ∈ B(H), tr(AST ) = tr(STA), see, [6, Proposition 18.8
and Theorem 18.11].
From now on, all operators are bounded. We shall denote the set of all
bounded operators on a Banach space E by L(E).
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2 Main results

In this section, we consider Equality (7) when the operators A and B∗

are hyponormal. For the moment, we establish Inclusion (6) whenever
B∗ is hyponormal.

Theorem 2.1. Let A,B ∈ B(H). If B∗ is hyponormal, then

co
(
W0(A)W0(B)

)
⊆W0(M2,A,B).

Proof. Let (λ, µ) ∈W0(A)×W0(B). There is two sequences (xn) and
(yn) of unit vectors in H such that λ = lim

n
〈Axn, xn〉, lim

n
‖Axn‖ = ‖A‖,

µ = lim
n
〈Bxn, yn〉 and lim

n
‖Byn‖ = ‖B‖. Recall that xn ⊗ yn ∈ C2(H),

where xn ⊗ yn is the tensor product of xn and yn and define the map
fλ,µ on L(C2(H)) by

fλ,µ(T ) = lim
n
〈T (xn ⊗ yn), xn ⊗ yn〉2.

It is clear that fλ,µ is a linear functional on L(C2(H)). For any T ∈
L(C2(H)), since ‖xn ⊗ yn‖2 = ‖xn‖ ‖yn‖ = 1, we have

|fλ,µ(T )| = | lim
n
〈T (xn ⊗ yn), xn ⊗ yn〉2|

≤ ‖T‖ lim
n
‖xn ⊗ yn‖2

= ‖T‖ ,

so, ‖fλ,µ‖ ≤ 1. Since, fλ,µ(I) = 1, then fλ,µ ∈ S(C2(H)). On the other
hand

fλ,µ(M ∗
2,A,BM2,A,B) = fλ,µ(M2,A∗A,BB∗)

= lim
n
〈M2,A∗A,BB∗(xn ⊗ yn), xn ⊗ yn〉2

= lim
n
〈A∗A(xn ⊗ yn)BB∗, xn ⊗ yn〉2

= lim
n
〈A∗Axn ⊗BB∗yn, xn ⊗ yn〉2

= lim
n
tr [(A∗Axn ⊗BB∗yn)(yn ⊗ xn)]

= lim
n
〈A∗Axn, xn〉〈yn, BB∗yn〉

= lim
n
‖Axn‖2 ‖B∗yn‖2 .
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Since B∗ is hyponormal, then

‖B‖2 = ‖B∗‖2 ≥ ‖B∗yn‖
2 ≥ ‖Byn‖

2 ,

and hence, lim
n
‖B∗yn‖2 = ‖B‖2. So, fλ,µ(M ∗

2,A,BM2,A,B) = ‖A‖2 ‖B‖2 .
By Equation (2), ‖M2,A,B‖ = ‖A‖ ‖B‖, then fλ,µ(M ∗

2,A,BM2,A,B) =

‖M2,A,B‖2, that is fλ,µ ∈ Smax(M2,A,B). A similar calculation as above
gives fλ,µ(M2,A,B) = λµ. Consequently, λµ ∈W0(M2,A,B) and it follows
that W0(A)W0(B) ⊆ W0(M2,A,B). The convexity of W0(M2,A,B) gives
us the desired result. �

Corollary 2.2. Let A ∈ B(H) be hyponormal. Then W0(M2,A,A∗) con-
tains a real segment (which may be a point).

Proof. Using Equation (1) and Theorem 2.1 (taking B = A∗), we get

co
(
σn(A)σn(A∗)

)
⊆ co

(
W0(A)W0(A

∗)
)
⊆W0(M2,A,A∗).

Note that σn(A) is non-empty because A is hyponormal. On the other
hand, σn(A∗) = {λ : λ ∈ σn(A)}, here λ denotes the conjugate of λ.
Therefore, W0(M2,A,A∗) contains real numbers and the convexity then
yields the result. �

Corollary 2.3. For any A ∈ B(H), W0(L2,A) = W0(A) and if A is
normal, then W0(R2,A) = W0(A).

Proof. From the previous theorem, we have W0(A) ⊆ W0(M2,A,I) =
W0(L2,A). Now, we show that W0(L2,A) ⊆ W0(A). Therefore, let λ ∈
W0(L2,A), then there is f ∈ Smax(L2,A) such that λ = f(L2,A). Define
the map h on L(C2(H))) by h(T ) = f(L2,T ). We claim that h ∈ Smax(A).
Everything but h(A∗A) = ‖A‖2 is obvious. So, h(A∗A) = f(L2,A∗A) =
f(L2,A∗L2,A) = f(L∗2,AL2,A) = ‖L2,A‖2 = ‖A‖2. Since λ = f(L2,A) =
h(A), it follows that λ ∈ W0(A) and hence W0(L2,A) ⊆ W0(A). The
proof of the second part is similar taking into account that in this case
A is normal. �

Theorem 2.4. Let A,B ∈ B(H) such that B∗ is hyponormal. If A has a
normal dilation N on some complex Hilbert space K with σ(N) ⊆ σ(A),
then

W0(M2,A,B) = co
(
W0(A)W0(B)

)
.
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For the proof, we need the following auxiliary lemmas.

Lemma 2.5. Let A,B ∈ B(H). If A and B∗ are hyponormal, then so
is M2,A,B.

Proof. We first show that for any operators C,D ∈ B(H) such that C ≥
0 and D ≥ 0, we have M2,C,D ≥ 0. Indeed, by hypothesis, W (C) and
W (D) are positive, then so is co

(
W (C)W (D)

)
. Since C is hyponormal

we can apply Theorem 1.5 to obtain the result. Now, assume that A
and B∗ are hyponormal. We have

M ∗
2,A,BM2,A,B −M2,A,BM ∗

2,A,B = M2,A∗A,BB∗ −M2,AA∗,B∗B

= M2,A∗A,BB∗ −M2,A∗A,B∗B

+ M2,A∗A,B∗B −M2,AA∗,B∗B

= M2,A∗A,BB∗−B∗B + M2,A∗A−AA∗,B∗B.

Since A∗A ≥ 0, BB∗ − BB∗ ≥ 0, A∗A − AA∗ ≥ 0 and B∗B ≥ 0, the
first case states that M ∗

2,A,BM2,A,B −M2,A,BM ∗
2,A,B ≥ 0, that is M2,A,B

is hyponormal. �

Lemma 2.6. Let A ∈ B(H). If there exists a hyponormal operator H
on some complex Hilbert space K and an isometry V from H to K such
that A = V ∗HV and σ(H) ⊆ σ(A), then

W0(A) = W0(H).

Proof. We have A = V ∗HV , then ‖A‖ ≤ ‖V ∗‖ ‖H‖ ‖V ‖ = ‖H‖. Since
H is hyponormal and σ(H) ⊆ σ(A), we derive that ‖H‖ = r(H) ≤
r(A) ≤ ‖A‖. Consequently, ‖A‖ = ‖H‖. Since H is hyponormal, by
Theorem 1.2, W0(H) = co

(
σn(H)

)
⊆ co

(
σn(A)

)
⊆ W0(A), (the first

inclusion is due to the fact that σ(H) ⊆ σ(A) and ‖H‖ = ‖A‖). The
proof of the inclusion W0(A) ⊆W0(H) is analogous to that of [2, Lemma
3.1]. �

Proof of Theorem 2.4. By hypothesis, there is an isometry V from
H to K such that A = V ∗NV . A simple calculation gives M2,A,B =
L∗2,V M2,N,BL2,V . Moreover, L2,V is an isometry and by Lemma 2.5,
M2,N,B is hyponormal. On the other hand, since σ(N) ⊆ σ(A), by Equa-
tion (3), we have σ(M2,N,B) = σ(N)σ(B) ⊆ σ(A)σ(B) = σ(M2,A,B).
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Then, according to Lemma 2.6, we obtain W0(M2,A,B) = W0(M2,N,B).
Therefore,

W0(M2,A,B) = W0(M2,N,B)

= co
(
σn(M2,N,B)

)
(by Theorem 1.2)

= co
(
σn(N)σn(B)

)
(by Equation (4))

⊆ co
(
W0(N)W0(B)

)
(by Equation (1))

= co
(
W0(A)W0(B)

)
(by Lemma 2.6).

We conclude by Theorem 2.1 that W0(M2,A,B) = co
(
W0(A)W0(B)

)
.

Since any hyponormal operator A ∈ B(H) has a normal dilation N on
some complex Hilbert space K with σ(N) ⊆ σ(A) (see, [9]), we have the
following corollary.

Corollary 2.7. Let A,B ∈ B(H). If A and B∗ are hyponormal, then

W0(M2,A,B) = co
(
W0(A)W0(B)

)
.

Corollary 2.8. Let A,B ∈ B(H). If A is hyponormal and B is normal,
then

W0(M2,A,B) = co
(
W0(A)W0(B)

)
.

Proof. Just notice that if B is normal, so is B∗. Then, B∗ is hyponormal
and the result follows from the previous corollary. �

Remark 2.9. Let A,B ∈ B(H). There is no condition on A and B for
the inclusion co

(
W (A)W (B)

)
⊆ W (M2,A,B), see [15]. However, there

is one condition (that is, B∗ is hyponormal) for having Inclusion (6).
On the other hand there is one condition (that is, either A or B is hy-
ponormal) for Equality (5) while there are two conditions for Equality
(7). In other word, one more condition for the case of the maximal nu-
merical range. This is due to the fact that the numerical range is defined
by only one condition while the maximal numerical range is defined by
two conditions. We may see this in the proof of Theorem 2.1, when we
show the second condition concerning the maximal linear functional for
M2,A,B. According to this point of view, we therefore estimate that two
conditions but not one will be necessary to have Equality (7).
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We end this paper by the following remark concerning the maximal
numerical range of δ2,A,B.

Remark 2.10. It is proved in [12] that for any operators A,B ∈ B(H)
we have

W (δ2,A,B) = W (A)−W (B).

Unfortunately, this identity does not hold in general for the maximal nu-
merical range. Moreover, there may be no inclusion relationship between
the subsets W0(δ2,A,B) and W0(A)−W0(B) as is shown in the following
example. Let A be the operator on the complex Hilbert space H = C2

represented by

A =

(
0 0
0 1

)
.

We have δ2,A,I = L2,A−I , then by Corollary 2.3, W0(δ2,A,I) = W0(A−I).
Since A−I is hyponormal, then by Theorem 1.2, W0(A−I) = co

(
σn(A−

I)
)

= {−1}. For the same reason as above, W0(A) = co
(
σn(A)

)
= {1}

and W0(A)−W0(I) = {0}.
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