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tively.

AMS Subject Classification: 47A12; 47A30.

Keywords and Phrases: positive operators, normalized positive lin-
ear map, numerical radius, Specht’s ratio.

Received: February 2021; Accepted: August 2021
∗Corresponding Author

1



2 Y. KHATIB, M. HASSANI AND M. AMYARI

1 Introduction

Suppose that (H, 〈., .〉) is a complex Hilbert space and that B(H) denotes
the C∗-algebra of all bounded linear operators on H. We recall some
definitions and concepts from [11].

An operator A in B(H) is positive, denoted by A ≥ 0, if A is self-
adjoint (A = A∗) and 〈Ax, x〉 ≥ 0 for every x ∈ H; equivalently, A
is positive if and only if A = B∗B for some operator B ∈ B(H). In
particular, for some scalars m and M , we write mI ≤ A ≤ MI if
m ≤ 〈Ax, x〉 ≤ M for every unit vector x ∈ H, where I stands for
the identity operator of B(H). The absolute value of A is denoted by

|A| = (A∗A)
1
2 . Note that for a self-adjoint operator A, mI ≤ A ≤ MI

if and only if sp(A) ⊂ [m,M ]. Also the set of all positive invertible
operators is denoted by B+(H).

For an operator A ∈ B(H), the usual operator norm is defined by
‖A‖ = sup ‖Ax‖ for every unit vector x ∈ H and the numerical radius
of A is given by ω(A) = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}. The numerical
radius satisfies

1

2
‖A‖ ≤ ω(A) ≤ ‖A‖. (1)

The second inequality in (1) has been improved in [9, Theorem 1] as
follows:

ω(A) ≤ 1

2
‖|A|+ |A∗|‖ ≤ 1

2
(‖A‖+ ‖A2‖

1
2 ) (2)

for every operator A ∈ B(H). The left hand of inequality (2) was ex-
tended in [6, Theorem 1] as follows:

ωr(A) ≤ 1

2

∥∥|A|2rν + |A∗|2r(1−ν)
∥∥, r ≥ 1, 0 < ν < 1. (3)

Heydarbeygi and Amyari in [7, Theorem 2.2] improved the left hand
of inequality (3) by an improvement of Hölder-McCarthy’s inequality.
Dragomir in [2, Theorem 1], proved the following inequality by the prod-
uct of two operators

ωr(B∗A) ≤ 1

2

∥∥|A|2r + |B|2r
∥∥, r ≥ 1. (4)

Sababheh and Moradi in [12, Corollary 2.1] and [12, Proposition 2.2],
respectively, proved the following inequalities:
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ωr(A) ≤
∥∥∫ 1

0
(t|A|+ (1− t)|A∗|)rdt

∥∥ ≤ 1

2

∥∥|A|r + |A∗|r
∥∥. (5)

and

ωr(B∗A) ≤
∥∥∫ 1

0
(t|A|2 + (1− t)|B|2)rdt

∥∥ ≤ 1

2

∥∥|A|2r + |B|2r
∥∥. (6)

In section 3, we improve the left hand of inequalities (5) and (6).

Let A ∈ B+(H) and let B be a positive operator in B(H). The
operator ν-weighted geometric mean of A and B for ν ∈ [0, 1] is defined
by

A\νB ≡ A
1
2 (A−

1
2BA−

1
2 )νA

1
2 .

Recall that a linear map ϕ : B(H)→ B(K) is positive, if it preserves
positivity. It is normalized if ϕ(IH) = IK. The Specht’s ratio [4, 14] was
defined by

S(h) =
h

1
h−1

e log h
1

h−1

(h 6= 1)

for a positive real number h, and it has some properties as follows:

(i) S(1) = 1 and S(h) = S( 1
h) > 1 for h > 0.

(ii) S(h) is a monotone increasing function on (1,∞).

(iii) S(h) is a monotone decreasing function on (0, 1).

Lemma 1.1. [5, Theorem 1] For a, b > 0 and ν ∈ [0, 1], it follows that
(1− ν)a+ νb ≥ S(( ba)r)a1−νbν , where r = min{ν, 1− ν} and S(.) is the
Specht’s ratio.

Theorem 1.2. [5, Theorem 2] Let A and B be two positive operators
and let m,m′,M,M ′ be positive real numbers satisfying the following
conditions (i) or (ii):

(i) 0 < m′I ≤ A ≤ mI < MI ≤ B ≤M ′I,

(ii) 0 < m′I ≤ B ≤ mI < MI ≤ A ≤M ′I,
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with h = M
m and h′ = M ′

m′ . Then

(1− ν)A+ νB ≥ S(hr)A\νB ≥ A\νB

≥ S(hr){(1− ν)A−1 + νB−1}−1

≥ {(1− ν)A−1 + νB−1}−1,

where ν ∈ [0, 1], r = min{ν, 1− ν}, and S(.) is the Specht’s ratio.

Remark 1.3. Note that if A = aI, B = bI, ν = 1
2 , and r = 1

2 in
Theorem 1.2, then

S(
√
h)
√
ab ≤ a+b

2 ,

where S(.) is the Specht’s ratio.

2 Main Results

In this section, we state some useful lemmas that we need them for
improving and generalizing some inequalities. The first lemma is a gen-
eralized form of the mixed Schwarz inequality, which was proved by
Kittaneh [8, Theorem 1].

Lemma 2.1. Let A ∈ B(H) be an operator in B(H) and let f and g be
nonnegative continuous functions on [0,∞) satisfying f(t)g(t) = t for
all t ∈ [0,∞). Then

|〈Ax, y〉| ≤ ‖f(|A|)x‖‖g(|A∗|)y‖

for all x, y ∈ H.

The well-known Hermite–Hadamard inequalities state that for a con-
vex function f : J → R, it follows that

f
(a+ b

2

)
≤
∫ 1

0
f(ta+ (1− t)b)dt ≤ f(a) + f(b)

2
, (7)

for every a, b in real interval J .
Let f be a convex function on a real interval J containing sp(A),

where A is a self-adjoint operator. Then for every unit vector x ∈ H,
the inequality

f(〈Ax, x〉) ≤ 〈f(A)x, x〉 (8)
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is an operator version of the Jensen’s inequality due to Mond and Pečarić
[10, Theorem 1].

The second lemma in this section is a direct result of [1, Theorem
2.3].

Lemma 2.2. Let f be a nonnegative increasing convex function on
[0,∞) and let A,B ∈ B(H) be positive operators. Then

‖f((1− ν)A+ νB)‖ ≤ ‖(1− ν)f(A) + νf(B)‖

for every 0 ≤ ν ≤ 1.

The third lemma is useful at the end of section 2.

Lemma 2.3. [12, Proposition 2.1] Let ϕ : B(H) → B(H) be a unital
positive linear map, let A ∈ B(H), and let f : [0,∞) → [0,∞) be an
increasing operator convex function. Then

f(ω2(ϕ(A))) ≤
∥∥∥ϕ(∫ 1

0
f(t|A|2 + (1− t)|A∗|2)dt

)∥∥∥.
In particular, for any 1 ≤ r ≤ 2, it follows that

ω2r(A) ≤
∥∥∥∫ 1

0
(t|A|2 + (1− t)|A∗|2)rdt

∥∥∥.
Now, we want to improve inequality (2) with respect to Specht’s

ratio. We state the following lemma that contains a norm inequality for
sums of positive operators, which is sharper than the triangle inequality.

Lemma 2.4. [9, Lemma 3] Let A,B ∈ B(H) be positive operators; then

‖A+B‖ ≤ 1

2

(
‖A‖+ ‖B‖+

√
(‖A‖+ ‖B‖)2 + 4‖A

1
2B

1
2 ‖2
)
.

LetA ∈ B(H). Kittaneh also proved that |〈Ax, y〉| ≤ 〈|A|x, x〉
1
2 〈|A∗|y, y〉

1
2

for all x, y ∈ H (see [9, Lemma 1]) and ‖A
1
2B

1
2 ‖ ≤ ‖AB‖

1
2 for positive

operators A,B ∈ B(H) (see [9, Lemma 2]).

Theorem 2.5. Let A in B(H) and let the positive real numbers
m,m′,M,M ′ satisfy one of the following conditions:



6 Y. KHATIB, M. HASSANI AND M. AMYARI

(i) 0 < m′I ≤ |A| ≤ mI ≤MI ≤ |A∗| ≤M ′I,

(ii) 0 < m′I ≤ |A∗| ≤ mI ≤MI ≤ |A| ≤M ′I.

with h = M
m and h′ = M ′

m′ . Then

ω(A) ≤ 1

2S(
√
h)

(‖A‖+ ‖A2‖
1
2 ) (9)

for an operator A ∈ B(H).

Proof. By using [9, Lemma 1] and Remark 1.3, we get

|〈Ax, x〉| ≤ 〈|A|x, x〉
1
2 〈|A∗|x, x〉

1
2 ≤ 1

2S(
√
h)

(〈|A|x, x〉+ 〈|A∗|x, x〉)

=
1

2S(
√
h)
〈(|A|+ |A∗|)x, x〉

for each x ∈ H. Then

ω(A) ≤ 1

2S(
√
h)

sup{|〈(|A|+ |A∗|)x, x〉| : x ∈ H, ‖x‖ = 1} (10)

=
1

2S(
√
h)
‖|A|+ |A∗|‖.

Since ‖|A|‖ = ‖|A∗|‖ = ‖A‖ and ‖|A||A∗|‖ = ‖A2‖, from inequality (10)
and [9, Lemma 2] for positive operators |A| and |A∗|, we reach

‖|A|+ |A∗|‖ ≤ ‖A‖+ ‖A2‖
1
2 . (11)

Hence, inequalities (10) and (11) imply inequality (9). �
We use Lemma 2.2 to prove the following theorem.

Theorem 2.6. Let A,B,X ∈ B(H), let the continuous functions f and
g be non-negative functions on [0,∞) satisfying the relation f(t)g(t) = t
for all t ∈ [0,∞), and let k be a non-negative increasing convex function
on [0,∞). Also let the positive real numbers m,m′,M,M ′ satisfy one of
the following conditions:

(i) 0 < m′ ≤ 〈B∗f2(|X|)Bx, x〉 ≤ m < M ≤ 〈A∗g2(|X∗|)Ax, x〉 ≤M ′
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(ii) 0 < m′ ≤ 〈A∗f2(|X|)Ax, x〉 ≤ m < M ≤ 〈B∗g2(|X∗|)Bx, x〉 ≤
M ′,

with h = M
m and h′ = M ′

m′ . Then

k(ω(A∗XB)) ≤ 1

2S(
√
h)

∥∥k(B∗f2(|X|)B) + k(A∗g2(|X∗|)A)
∥∥,

where S(.) is the Specht’s ratio.

Proof. Using Lemma 2.1, we get

|〈A∗XBx, x〉| = |〈XBx,Ax〉| ≤
√
〈B∗f2(|X|)Bx, x〉〈A∗g2(|X∗|)Ax, x〉. (12)

Now Remark 1.3 implies that√
〈B∗f2(|X|)Bx, x〉〈A∗g2(|X∗|)Ax, x〉

≤ 1

2S(
√
h))

(
〈B∗f2(|X|)Bx, x〉+ 〈A∗g2(|X∗|)Ax, x〉

)
=

1

2S(
√
h)

(
〈(B∗f2(|X|)B +A∗g2(|X∗|)A)x, x〉

)
.

It follows from the last inequality and (12) that

|〈A∗XBx, x〉| ≤ 1
2S(
√
h)

(〈
(B∗f2(|X|)B +A∗g2(|X∗|)A)x, x

〉)
.

Taking the supremum over x ∈ H with ‖x‖=1, we reach

ω(A∗XB) ≤ 1
2S(
√
h)
‖B∗f2(|X|)B +A∗g2(|X∗|)A‖.

Also,

k(ω(A∗XB)) ≤ k
( 2

2S(
√
h)

∥∥B∗f2(|X|)B +A∗g2(|X∗|)A
2

∥∥)
≤ 1

S(
√
h)
k
(∥∥B∗f2(|X|)B +A∗g2(|X∗|)A

2

∥∥) (13)

≤ 1

S(
√
h)

∥∥∥k(B∗f2(|X|)B +A∗g2(|X∗|)A
2

)∥∥∥ (14)

≤ 1

2S(
√
h)

∥∥∥k(B∗f2(|X|)B)+ k
(
A∗g2(|X∗|)A

)∥∥∥.
(by Lemma2.2)
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Note that inequalities (13) and (14) follow from that k is a non-negative
increasing convex function and that 1

S(
√
h)
≤ 1. Also by Jensen’s in-

equality, we have k(‖Y ‖) = k(sup‖x‖=1〈Y x, x〉) = sup‖x‖=1 k(〈Y x, x〉) ≤
sup‖x‖=1〈k(Y )x, x〉 = ‖k(Y ‖ for each positive operator Y ∈ B(H). �

Shebrawi and Albadawi [13, Remark 2.10], for each A,B,X ∈ B(H),
proved the following general numerical radius inequality:

ωr(A∗XB) ≤ 1

2

∥∥(A∗|X∗|A)r +
(
B∗|X|B

)r∥∥, r ≥ 1. (15)

From inequality (15) and Theorem 2.6, we obtain the following in-
equalities.

Corollary 2.7. We know that k(t) = tr, r ≥ 1, is an increasing convex
function on [0,∞). Let the assumption of Theorem 2.6 hold.

(i) If 0 < m′I < B∗|X|B ≤ mI < MI ≤ A∗|X∗|A < M ′I or 0 <
A∗|X|A ≤ mI < MI ≤ B∗|X|B, for positive real numbers m,m′,M,M ′,
then

ωr(A∗XB) ≤ 1
2S(
√
h)

∥∥(A∗|X∗|A)r +
(
B∗|X|B

)r∥∥, r ≥ 1,

which improves inequality (15).
(ii) If X = I holds in conditions (i), then

ωr(A∗B) ≤ 1

2S(
√
h)

∥∥∥|A|2r + |B|2r
∥∥∥,

which improves inequality (4).
(iii) If A = B = I holds in conditions (i), then

ωr(X) ≤ 1

2S(
√
h)

∥∥∥|X∗|r + |X|r
∥∥∥,

where S(.) is the Specht’s ratio.

Definition 2.8. Let A ∈ B+(H), let B be a self-adjoint operator,
and let f be a continuous function on a real interval J containing
sp(A−

1
2BA−

1
2 ). Then by using the continuous functional calculus, the

f -connection is denoted by σf and defined as

AσfB = A
1
2 f(A−

1
2BA−

1
2 )A

1
2 .
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Note that the above definition for the functions tν and (1− ν) + νt,
where ν ∈ [0, 1], leads to the operator ν-weighted geometric mean and
the operator ν-weighted arithmetic mean, respectively. Now we intro-
duce the following theorem relative to the numerical radius inequality
concerning f -connection of operators.

Theorem 2.9. Suppose that A ∈ B+(H), that B is self-adjoint, that
X ∈ B(H), and that f is a continuous function on the real interval J

containing sp(A−
1
2BA−

1
2 ). Let the positive real numbers m,m′,M,M ′

satisfy one of the following conditions:

(i) 0 < m′I ≤ X∗A
1
2 f2(A−

1
2BA−

1
2 )A

1
2 ≤ mI ≤MI ≤ A ≤M ′,

(ii) 0 < mI ′ ≤ A ≤ mI ≤MI ≤ X∗A
1
2 f2(A−

1
2BA−

1
2 )A

1
2 ≤M ′I,

with h = M
m and h′ = M ′

m′ . Then

ω((AσfB)X) ≤ 1

2S(
√
h)

∥∥∥X∗A 1
2 f2(A−

1
2BA−

1
2 )A

1
2X +A

∥∥∥, (16)

where S(.) is the Specht’s ratio.

Proof. For every vector x ∈ H with ‖x‖ = 1, we have

|〈(AσfB)Xx, x〉| = |〈A 1
2 f(A− 1

2BA− 1
2 )A

1
2Xx, x〉|

= |〈f(A− 1
2BA− 1

2 )A
1
2Xx,A

1
2x〉|

≤
∥∥f(A− 1

2BA− 1
2 )A

1
2Xx‖‖A 1

2x
∥∥

=

√
〈f(A− 1

2BA− 1
2 )A

1
2Xx, f(A− 1

2BA− 1
2 )A

1
2Xx〉〈A 1

2x,A
1
2x〉

=

√
〈X∗A

1
2 f2(A− 1

2BA− 1
2 )A

1
2Xx, x〉〈Ax, x〉

≤ 1

2S(
√
h)
〈X∗A

1
2 f2(A− 1

2BA− 1
2 )A

1
2X +Ax, x〉.

Taking the supremum over x ∈ H with ‖x‖=1, produces the desired
inequality (16). �

Putting f(t) =
√
t in Theorem 2.9, we get the following corollary.

Corollary 2.10. Suppose that A,B,X are operators in B(H) such that
A ∈ B+(H) and B is positive. If one of the conditions (i) or (ii) of
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Theorem 2.9 is satisfied, then

ω((A\B)X) ≤ 1

2S(
√
h)
‖X∗BX +A‖,

where S(.) is the Specht’s ratio.

Dragomir [3, section 2] introduced some inequalities for numerical
radius inequality related to the product operators. In the following
theorems, we improve some inequalities for numerical radius inequality
related to the product operators by Specht’s ratio.

Recall that if X ∈ B(H) is a positive operator, then (z, y)X = 〈Xz, y〉
defines an inner product on the Hilbert space H and also it follows from
[3, Corollary 1] that

1

2

(
‖x‖X‖z‖X + |(x, z)X |

)
‖y‖2X ≥ |(x, y)X(y, z)X | (17)

for each x, y, z ∈ H and (x, x)X = ‖x‖2X .

Theorem 2.11. Suppose that A,B,C,X ∈ B(H), where X is a positive
operator. Let the positive real numbers m,m′,M,M ′ satisfy one of the
following conditions:

(i) 0 < m′I ≤ A∗XA ≤ mI ≤MI ≤ B∗XB ≤M ′I

(ii) 0 < m′I ≤ B∗XB ≤ mI ≤MI ≤ A∗XA ≤M ′I,

with h = M
m and h′ = M ′

m′ . Then for every x ∈ H, it follows that

∥∥A∗XCx∥∥∥∥B∗XCx∥∥ ≤ 1

2

∥∥X 1
2Cx

∥∥2[ 1

2S(
√
h)

(∥∥X 1
2A
∥∥2 +

∥∥X 1
2B
∥∥2)

+
∥∥B∗XA∥∥] (18)

and

ω(C∗XAB∗XC) ≤ 1

2

∥∥X 1
2C
∥∥2[ 1

2S(
√
h)

(
‖X

1
2A‖2+‖X

1
2B‖2

)
+‖B∗XA‖

]
,

(19)
where S(.) is the Specht’s ratio.
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Proof. Since X is positive, from inequality (17), we have

1

2

(
‖z‖X‖y‖X + |(z, y)X |

)
‖x‖2X ≥ |(z, x)X(x, y)X |,

where x, y, z ∈ H. Therefore

1

2

[
〈Xz, z〉

1
2 〈Xy, y〉

1
2 + |〈Xz, y〉|

]
〈Xx, x〉 ≥ |〈Xz, x〉〈Xx, y〉|.

Replacing z by Az, y by By, and x by Cx in the previous inequality, we
get that

1

2

[
〈XAz,Az〉

1
2 〈XBy,By〉

1
2 + |〈XAz,By〉|

]
〈C∗XCx, x〉

≥ |〈z,A∗XCx〉〈x,C∗XBy〉|. (20)

Taking the supremum over z, y ∈ H with ‖z‖ = ‖y‖ = 1, leads to∥∥A∗XCx∥∥∥∥B∗XCx∥∥ (21)

= sup
‖z‖=1

|〈z,A∗XCx〉| sup
‖y‖=1

|〈y,B∗XCx〉|

= sup
‖z‖=1

|〈z,A∗XCx〉| sup
‖y‖=1

|〈B∗XCx, y〉|

= sup
‖z‖=1

|〈z,A∗XCx〉| sup
‖y‖=1

|〈x,C∗XBy〉|

= sup
‖z‖=‖y‖=1

{
|〈z,A∗XCx〉〈x,C∗XBy〉|

}
≤ 1

2
〈C∗XCx, x〉 sup

‖z‖=‖y‖=1

(
〈A∗XAz, z〉

1
2 〈B∗XBy, y〉

1
2 + |〈B∗XAz, y〉|

)
≤ 1

2
〈C∗XCx, x〉

[ 1

2S(
√
h)

(
〈A∗XAz, z〉+ 〈B∗XBy, y〉

)
+ |〈B∗XAz, y〉|

]
≤ 1

2
〈C∗XCx, x〉

(
sup
‖z‖=1

1

2S(
√
h)
〈A∗XAz, z〉+ sup

‖y‖=1

1

2S(
√
h)
〈B∗XBy, y〉

+ sup
‖z‖=‖y‖=1

|〈B∗XAz, y〉|
)

=
1

2
〈C∗XCx, x〉

[ 1

2S(
√
h)

(
‖A∗XA‖+ ‖B∗XB‖

)
+ ‖B∗XA‖

]



12 Y. KHATIB, M. HASSANI AND M. AMYARI

for every x ∈ H. On the other hand, since

A∗XA = |X
1
2A|2, B∗XB = |X

1
2B|2, C∗XC = |X

1
2C|2, (22)

by utilizing (21), we reach inequality (18). Now, we have

|〈C∗XBA∗XCx, x〉| ≤
∥∥A∗XCx∥∥∥∥B∗XCx∥∥ (Schwarz inequality).

By using inequality (18), we get

|〈C∗XBA∗XCx, x〉| ≤ 1

2

∥∥X 1
2Cx

∥∥2[ 1

2S(
√
h)

(
‖X

1
2A‖2

+ ‖X
1
2B‖2

)
+ ‖B∗XA‖

]
(23)

for every x ∈ H. Taking the supremum over x ∈ H, with ‖x‖=1 in (23)
implies

ω(C∗XBA∗XC) ≤ 1

2

∥∥X 1
2C
∥∥2[ 1

2S(
√
h)

(
‖X

1
2A‖2+‖X

1
2B‖2

)
+‖B∗XA‖

]
.

(24)
By inequality (24), since ω(C∗XBA∗XC) = ω(C∗XAB∗XC), we reach
the desired inequality (19). Note that ‖x‖ = sup

‖z‖=1
|〈z, x〉| for all x ∈ H.

�

Theorem 2.12. Suppose that A,B,C,X ∈ B(H), where X is a posi-
tive operator such that B∗XC = C∗XA. Let the positive real numbers
m,m′,M,M ′ satisfy one of the following conditions:

(i) 0 < m′I ≤ A∗XA ≤ mI ≤MI ≤ B∗XB ≤M ′I

(ii) 0 < m′I ≤ B∗XB ≤ mI ≤MI ≤ A∗XA ≤M ′I,

with h = M
m and h′ = M ′

m′ . Then

ω2(C∗XA) ≤ 1

2

∥∥∥X 1
2C
∥∥∥2(∥∥∥ |X 1

2A|2 + |X
1
2B|2

2S(
√
h)

∥∥∥+ ω(B∗XA)
)
,

where S(.) is the Specht’s ratio.
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Proof. By using inequality (20) (see [3, Theorem 8, inequality (2.6)]),
we have

1

2

(
〈A∗XAx, x〉

1
2 〈B∗XBx, x〉

1
2 + |〈B∗XAx, x〉|

)
〈C∗XCx, x〉

≥ |〈x,A∗XCx〉〈x,B∗XCx〉| (25)

for every x ∈ H. We know that B∗XC = C∗XA = (A∗XC)∗. Then

|〈x,A∗XCx〉〈x,B∗XCx〉| = |〈x,A∗XCx〉〈x, (A∗XC)∗x〉| (26)

= |〈A∗XCx, x〉|2 = |〈C∗XAx, x〉|2

for every x ∈ H. Inequalities (25) and (26) imply that

|〈C∗XAx, x〉|2 ≤ 1

2

(
〈A∗XAx, x〉 12 〈B∗XBx, x〉 12 + |〈B∗XAx, x〉|

)
〈C∗XCx, x〉

(27)

for every x ∈ H. Now, by using Remark 1.3, we get

〈A∗XAx, x〉
1
2 〈B∗XBx, x〉

1
2 ≤ 1

2S(
√
h)

(
〈A∗XAx, x〉+ 〈B∗XBx, x〉

)
= 〈A

∗XA+B∗XB

2S(
√
h)

x, x〉

for every ∈ H. Hence we can improve inequality (27), and we imply

|〈C∗XAx, x〉|2 ≤ 1

2

(
〈A
∗XA+B∗XB

2S(
√
h)

x, x〉+|〈B∗XAx, x〉|
)
〈C∗XCx, x〉.

(28)
Equivalently, by using (22), we can write

|〈C∗XAx, x〉|2 ≤ 1

2

(
〈 |X

1
2A|2 + |X

1
2B|2

2S(
√
h)

x, x〉+|〈B∗XAx, x〉|
)
〈|X

1
2C|2x, x〉

for every x ∈ H. Now, by taking the supremum over x ∈ H, with ‖x‖=1
in (28), the following interest inequality is deduced:

ω2(C∗XA) ≤ 1

2

∥∥∥X 1
2C
∥∥∥2(∥∥∥ |X 1

2A|2 + |X
1
2B|2

2S(
√
h)

∥∥∥+ ω(B∗XA)
)
.

�
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3 Some Improvement Inequalities Involving In-
tegral

The purpose of this section is to establish a generalization of numerical
radius inequalities based on Specht’s ratio.
The following theorem is useful for improving inequality (5).

Theorem 3.1. Let A ∈ B(H) be an operator and let f : [0,∞)→ [0,∞)
be an increasing operator convex function. Also let the positive real
numbers m,m′,M,M ′ satisfy one of the following conditions:

(i) 0 < m′I ≤ |A| ≤ mI ≤MI ≤ |A∗| ≤M ′

(ii) 0 < m′I ≤ |A∗| ≤ mI ≤MI ≤ |A| ≤MI ′,

with h = M
m and h′ = M ′

m′ . Then

f(ω(A)) ≤ 1

S(
√
h)

∥∥∫ 1

0
f(t|A|+ (1− t)|A∗|)dt

∥∥, (29)

where S(.) is the Specht’s ratio.

Proof. Suppose that x is a unit vector in H. Since f is a non-negative
operator increasing convex function and 1

S(
√
h)
≤ 1, then

f(|〈Ax, x〉|) ≤ f
(√
〈|A|x, x〉〈|A∗|x, x〉

)
(by the Schwarz inequality)

≤ f
( 〈|A|x, x〉+ 〈|A∗|x, x〉

2S(
√
h)

)
(by Remark 1.3)

≤ 1

S(
√
h)
f
( 〈|A|x, x〉+ 〈|A∗|x, x〉

2

)
≤ 1

S(
√
h)

∫ 1

0

f(t〈|A|x, x〉+ (1− t)〈|A∗|x, x〉)dt.

(by inequality (7))

Moreover, we note that f is an operator convex function and we have

f(t〈|A|x, x〉+ (1− t)〈|A∗|x, x〉) = f(〈(t|A|+ (1− t)|A∗|)x, x〉)
≤ 〈f(t|A|+ (1− t)|A∗|)x, x〉.

(by inequality (8))
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Continuity of the inner product and integrating both sides of the above
inequality from 0 to 1 give

1

S(
√
h)

∫ 1

0
f(t〈|A|x, x〉+ (1− t)〈|A∗|x, x〉)dt

≤ 1

S(
√
h)

∫ 1

0
〈f(t|A|+ (1− t)|A∗|)x, x〉dt

=
1

S(
√
h)

〈∫ 1

0
(f(t|A|+ (1− t)|A∗|)dtx, x

〉
.

Therefore

f(|〈Ax, x〉|) ≤ 1

S(
√
h)

〈∫ 1

0

(
f(t|A|+ (1− t)|A∗|)dt

)
x, x

〉
.

By taking the supremum, we get the desired inequality (29). �
Recall that the function f(t) = tr, 1 ≤ r ≤ 2 is an increasing

operator convex function.

Corollary 3.2. Under the assumption of Theorem 3.1, if f(t) = tr, 1 ≤
r ≤ 2, then

ωr(A) ≤ 1
S(
√
h)

∥∥∥∫ 1

0
(t|A|+ (1− t)|A∗|)rdt

∥∥∥.

In particular,

ω2(A) ≤ 1
S(
√
h)

∥∥∥∫ 1

0
(t|A|+ (1− t)|A∗|)2dt

∥∥∥,

where S(.) is the Specht’s ratio.

In the next theorem, we try to improve inequality (6).

Theorem 3.3. Let A, B ∈ B(H) and let f : [0,∞) → [0,∞) be an
increasing operator convex function. Also let the positive real numbers
m,m′,M,M ′ satisfy one of the following conditions:

(i) 0 < m′I ≤ |A|2 ≤ mI ≤MI ≤ |B|2 ≤M ′

(ii) 0 < m′I ≤ |B|2 ≤ m ≤MI ≤ |A|2 ≤M ′I,
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with h = M
m and h′ = M ′

m′ . Then

f(ω(B∗A)) ≤ 1
S(
√
h)

sup
(∫ 1

0
f
(∥∥∥(t|A|2 + (1− t)|B|2)

1
2x
∥∥∥2)dt),

where x ∈ H is a unit vector and S(.) is the Specht’s ratio.

Proof. Remark 1.3 and the Schwarz inequality imply that

f(|〈B∗Ax, x〉|) = f(|〈Ax,Bx〉|) ≤ f(‖Ax‖‖Bx‖)

= f
(√
〈|A|2x, x〉〈|B|2x, x〉

)
≤ f

(〈|A|2x, x〉+ 〈|B|2x, x〉
2S(
√
h)

)
≤ 1

S(
√
h)
f
(〈|A|2x, x〉+ 〈|B|2x, x〉

2

)
. (30)

Take a = 〈|A|2x, x〉 and b = 〈|B|2x, x〉 in inequality (7), where x ∈ H is
a unit vector. Hence

f
(〈|A|2x, x〉+ 〈|B|2x, x〉

2

)
≤
∫ 1

0
f
(
〈(t|A|2 + (1− t)|B|2)x, x〉

)
dt. (31)

Next, combining inequalities (30) and (31) leads to

f(|〈B∗Ax, x〉|) ≤ 1

S(
√
h)

∫ 1

0
f
(
〈(t|A|2 + (1− t)|B|2)x, x〉

)
dt

≤ 1

S(
√
h)

∫ 1

0
f
(∥∥∥(t|A|2 + (1− t)|B|2)x

∥∥∥)dt
for every unit vector x ∈ H. Then taking the supremum over x ∈ H
with ‖x‖=1, we reach the desired inequality. �

We get the following result, by using Lemma 2.3 involving an im-
provement of inequality (6).

Corollary 3.4. Under the assumption of Theorem 3.3, if we take ϕ = I
in Lemma 2.3, then

f(ω(B∗A)) ≤ 1
S(
√
h)

∥∥∥∫ 1

0
f(t|A|2 + (1− t)|B|2)dt

∥∥∥.
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In particular, for each 1 ≤ r ≤ 2, it follows that

ωr(B∗A)) ≤ 1
S(
√
h)

∥∥∥∫ 1

0
f(t|A|2 + (1− t)|B|2)rdt

∥∥∥.
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