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Abstract. A Steiner triple system of order v, STS(v), is an ordered
pair S = (V,B), where V is a set of size v and B is a collection of
triples of V such that every pair of V is contained in exactly one triple
of B. A k-block coloring is a partitioning of the set B into k color classes
such that every two blocks in one color class do not intersect. In this
paper, we introduce a construction and use it to show that for every
k-block colorable STS(v) and l-block colorable STS(w), there exists a
(k+lv)-block colorable STS(vw). Moreover, it is shown that for every k-
block colorable STS(v), every STS(2v+1) obtained from the well-known
construction is (k + v)-block colorable.
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1. Introduction

Let G be a graph. We denote the vertex set and the edge set of G by V (G)
and E(G), respectively. The degree of v ∈ V (G) is the number of edges of G
incident with v. The maximum degree of G is denoted by ∆(G). A graph G
called strongly (k, λ, µ)-regular if there are parameters k, λ and µ such that
G is k-regular, every adjacent pair of vertices have λ common neighbors, and
every nonadjacent pair of vertices have µ common neighbors. A proper vertex
coloring ofG is a function c : V (G) −→ L, with this property that if u, v ∈ V (G)
are adjacent, then c(u) and c(v) are different. A vertex k-coloring is a proper
vertex coloring with |L| = k. The chromatic number of G, denoted by χ(G),
is the minimum number k for which G has a vertex k-coloring.
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Theorem 1.1. If G is not an odd cycle or a complete graph, then χ(G) 6 ∆(G).
A (proper) k-edge coloring of a graph G is a function f : E(G) −→ L, where
|L| = k and f(e1) 6= f(e2), for every two adjacent edges of G. A matching in
a graph is a set of non-adjacent edges. A perfect matching of G is a matching
that covers all vertices of G. Given an edge coloring of a graph, a rainbow
matching is a matching whose edges have distinct colors.
An n × n matrix L = (lij) whose entries are taken from a set S of n symbols
is called a latin square of order n on S if each symbol appears precisely once
in each row and in each column of L. A pair of latin squares L = (lij) and
L′ = (l′ij) are called orthogonal latin squares if and only if the ordered pairs
(lij , l′ij) are distinct for all i and j. Here we say that L is orthogonal to L′. The
following theorem states the condition for existence orthogonal latin squares of
order n.

Theorem 1.2. ([2]) For every natural number n 6= 2, 6, there is a pair of
orthogonal latin squares of order n.
A Steiner triple system of order v, STS(v), is an ordered pair S = (V,B),
where V is a set of size v and B is a set of size b which is a collection of
triples of V such that every pair of V is contained in exactly one triple of B.
Every triple of STS(v) called a block. The number of times that each v ∈ V
appears in the blocks is denoted by r. One can easily see that for every STS(v),
r = v−1

2 . It is not hard to see that a STS(v) exists if and only if the edges of the
complete graph Kv partitions into triangles. It is well known that a necessary
and sufficient condition for existing a STS(v), v > 3 is v ≡ 1 or 3 (mod 6) (see
[1]). Such a v is said to be admissible.
A Steiner triple system (V,B) is called resolvable if the triples of B can be
partitioned into b

r classes, where each class is a partition of V . By Lemma
9.1.1 of [2], a resolvable STS(v) can exist only if v ≡ 3, (mod 6).
Let S = (V,B) be a Steiner triple system. A color class is a system of pairwise
disjoint triples. A k-block coloring is a partitioning of the set B into k color
classes. Here we say that (V,B) is k-block colorable. The chromatic index,
χ′(S), of a Steiner triple system S is the least k for which a k-block coloring
exists. We say two blocks are adjacent if they have an element of S in common.
A block intersection graph of a Steiner triple system S = (V,B), denoted by
GS, is a graph with the vertex set B; the vertices are adjacent if and only if
the respective blocks are adjacent. Moreover, it is not hard to see that GS is a
strongly (3r− 3, r+2, 9)-regular graph. So, by Theorem 1.1, χ′(S) 6 3r− 3 for
v > 7. Also, since the the clique number of GS is r, χ′(S) > r if v ≡ 3 (mod
6). The following well known theorem states that in what conditions χ′(S) = r.

Theorem 1.3. Let S be a STS(v). Then χ′(S) = r if and only if S is resolvable.
Now, By Theorem 1.1 and Theorem 1.3, we conclude that r 6 χ′(S) 6 3r − 3
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if v ≡ 3 (mod 6) and r + 1 6 χ′(S) 6 3r − 3 if v ≡ 1 (mod 6).
The upper bound χ′(S) 6 3r − 3 seems to be weak in general. In fact, using
probabilistic methods Pippenger and Spencer in [7] proved that χ′(STS(v)) is
asymptotic to v

2 . For more information on the chromatic index of Steiner
triple systems the reader is referred to Chapter 18 of [4]. For some classes of
STS(v) the upper bound was improved. In particular, Colbourn in [3] improved
it for cyclic STS(v) by proving χ′(STS(v))6 v. Block coloring of Steiner triple
systems studied by several authors (For more information see [4, 5, 6]).
In this paper, we introduce a construction and use it to show that for every
k-block colorable STS(v) and l-block colorable STS(w), there exists a (k + lv)-
block colorable STS(vw). Moreover, it is shown that for every k-block colorable
STS(v), every STS(2v+1) obtained from the well-known construction is (k+v)-
block colorable.

2. Block Coloring of Steiner Triple Systems of
Order vw

In this section, we introduce a block coloring of a Steiner triple system STS(vw)
obtained from two Steiner triple systems STS(v) and STS(w). For this purpose,
first we establish the following Construction. In particular, we introduce some
resolvable STS(vw) of STS(v) and STS(w).

Construction 2.1.
Let (V,B) be a STS(v) on the set V := {x1, . . . , xv} and (W,B′) be a STS(w)
on the set W := {y1, . . . , yw}. Then define (Z, S) as a STS(vw) on the set
Z := {zij , 1 6 i 6 v, 1 6 j 6 w} with two types of blocks as follows:
For every j, 1 6 j 6 w, consider a copy of the complete graph Kv, Kj

v ,
with the vertex set {z1j , . . . , zvj}. Using (V,B) one can partition the edges
of each Kj

v , for every 1 6 j 6 w, into triangles. Call the blocks made by
these triangles, Type 1. Now, consider the complete graph Kw with the vertex
set {Kj

v , 1 6 j 6 w}. Using (W,B′) one can partition the edges of Kw into
triangles. Let us call this partition by F . For every i, j, 1 6 i, j 6 w, i 6= j,
join every vertex of Ki

v to every vertex of Kj
v . So, every triangle in the Kw is

corresponding to 3v2 edges. Now, for each triangle of F such as {Kp
v ,K

s
v ,K

t
v},

1 6 p, s, t 6 w, consider a latin square L of order v on the set {z1t, . . . , zvt} such
that the rows and the columns are indexed by {z1p, . . . , zvp} and {z1s, . . . , zvs},
respectively. For every zip and zjs, 1 6 i, j 6 v, {zip, zjs, Lzipzjs} is considered
as a block of Type 2. It is not hard to see that all blocks of Type 1 and Type 2
form a STS(vw). Call a Steiner triple Systems obtained from this Construction
such that every used latin square has an orthogonal latin square, by OLS(vw).
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Note that by Theorem 1.2, OLS(vw) 6= ∅ for each admissible v and w.

Theorem 2.2. For every k-block colorable STS(v) and l-block colorable STS(w),
there exists a (k + lv)-block colorable OLS(vw).

Proof. Let (V,B) be a k-block colorable STS(v) and f : B −→ {1, . . . , k} be
a such coloring and (W,B′) be a l-block colorable STS(w) with the function
f ′ : B′ −→ {1, . . . , l}. Moreover, let (Z, S) be an OLS(vw). Now, define
c : S −→ {1, . . . , lv + k} as follows. First, we color the blocks of Type 1. For
all 1 6 j 6 w and {xm, xn, xp} ∈ B, let c({zmj , znj , zpj}) = f({xm, xn, xp}).
Next, to color the blocks of Type 2, consider a triangle t = {Kp

v ,K
s
v ,K

t
v} of

partition F in Construction ??. Note that t is corresponding to a block of
(W,B′), say b. Let L be a latin square used to partition the edges of t and L′

be a latin square on the set {k+ (f ′(b)− 1)v+ 1, . . . , k+ f ′(b)v} orthogonal to
L. Then, let c({zip, zjs, Lzipzjs

}) = L′zipzjs
and repeat this procedure for every

triangle of F . We show that c is a (k+ lv)-block coloring of (Z, S). First, note
that if two adjacent blocks call b1 and b2 have the same color, since the set of
colors used to color the blocks of Type 1 and Type 2 have no color in common,
then b1 and b2 belong to the same type. First, suppose that b1 and b2 are the
blocks of Type 1. Since f is a k-block coloring of (V,B), c(b1) 6= c(b2). Now,
suppose that b1 and b2 are the blocks of Type 2. Two cases may be assumed.
Suppose that b1 = {m,n,Lmn} and b2 = {p, q, Lpq} are obtained from the
same triangle of partition F . If m = p or n = q, since L′ is a latin square, then
c(b1) 6= c(b2). If Lmn = Lpq, since L and L′ are orthogonal latin squares, then
L′mn 6= L′pq. So, in this case c(b1) 6= c(b2). Now, assume that b1 and b2 belong
to different triangles, call t1 and t2. The adjacency of b1 and b2 concludes the
adjacency of t1 and t2. So, t1 and t2 are corresponding to two adjacent blocks
in B′. Since f ′ is a block coloring of B′, the sets of colors used to color the
blocks obtained from t1 and t2 have no color in common. Thus c(b1) 6= c(b2)
and the proof is complete. �

Corollary 2.3. If there exists a resolvable STS(v) and a resolvable STS(w),
then there exists a resolvable STS(vw).

Proof. Let (V,B) and (W,B′) be a resolvable STS(v) and a resolvable STS(w).
Moreover, let (Z, S) be an OLS(vw). By Theorem 2.2, (Z, S) is ( vw−1

2 )-block
colorable. Since the chromatic index of (Z, S) is at least vw−1

2 , by Theorem 1.3
we are done. �

Theorem 2.4. If (Z, S) is a resolvable STS(vw) obtained from Construction
2.1, then (Z, S) is an OLS(vw).

Proof. Let f : Z −→ {1, . . . , vw−1
2 } be a ( vw−1

2 )-block coloring of (Z, S).



ON THE BLOCK COLORING OF STEINER TRIPLE SYSTEMS 75

First we claim that exactly v colors are appeared in the coloring of the blocks
obtained from each used latin square. Note that for every x ∈ Z, x appears
in v−1

2 blocks of Type 1 and v(w−1)
2 blocks of Type 2. Call q = w−1

2 latin
square used in Construction 2.1, by L1, . . . , Lq. Note that x appears in v
blocks obtained from Li for eah 1 6 i 6 q. Thus for every 1 6 i, j 6 q, i 6= j,
there are v colors appeared in the blocks obtained from Li not in the blocks
obtained from Lj . Moreover, since f is a ( vw−1

2 )-block coloring, for each latin
square exactly v colors are used in f . Now, for each latin square L define L′

be a square of size v such that L′ij = f({i, j, Lij}). The properties of block
coloring conclude that L′ is orthogonal to L and the proof is complete. �

3. Block Coloring of Steiner Triple Systems of
Order 2v + 1

In this section, we study the block chromatic index of STS(2v + 1). We show
that there exists (k+v)-block colorable STS(2v+1) for every k-block colorable
STS(v). Before stating the main result, we need the following definition and
theorems.

Definition 3.1. ([2]) Let S be a set of n + 1 elements (symbols). A Room
square of side n (on symbol set S), RS(n), is an n× n array, F , that satisfies
the following properties:
(1) every cell of F either is empty or contains an unordered pair of symbols
from S.
(2) Each symbol of S occurs once in each row and column of F .
(3) Every unordered pair of symbols occurs in precisely one cell of F .

Theorem 3.2. ([2]) A Room square of side n exists if and only if n is odd and
n 6= 3, 5.

Corollary 3.3. Let n be an even integer where n 6= 4, 6. Then there exists
a (n − 1)-edge coloring of Kn such that partition the edges of Kn to (n − 1)
rainbow perfect matchings.

Proof. Let S = V (Kn) = {v1, . . . , vn}. Since n 6= 4, 6 is an even integer, by
Theorem 3.2, there exists a room square F of side n− 1 on S. Note that each
unordered pair appeared in each cell of F is corresponding to an edge of Kn.
Moreover, by Part (2) of Definition 3.1, the union of edges appeared in each
row or column is a perfect matching of Kn. Now, assign color i to all edges
appeared in cells of row i in F , for every i, 1 6 i 6 n − 1. Note that since
every unordered pair of symbols occur in precisely one cell of F , we obtain a
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(n− 1)-edge coloring of Kn. Now, the columns of F partition the edges of Kn

to (n− 1) rainbow perfect matchings. �
In the following, we introduce a construction of STS(2v + 1) obtained from a
STS(v) and use it to find (k+ v)-block colorable STS(2v+1) for every k-block
colorable STS(v).

Construction 3.4. Let (V,B) be a STS(v). Define a STS(2v+1), (W,B′), on
the set W = {x1, . . . , x2v+1} with two types of blocks as follows. The blocks
of Type 1 are the blocks of B on {x1, . . . , xv}. Now, consider the complete
graph Kv+1 with the vertex set {xv+1, . . . , x2v+1}. Since v is odd, the edges
of Kv+1 can be partitioned to v perfect matchings F1, . . . , Fv. Now, every
triangle obtained from vertex xi, 1 6 i 6 v, and two vertices of every edge of
Fi introduce a block. These blocks are blocks of Type 2.

Theorem 3.5. For every k-block colorable STS(v), every STS(2v+1) obtained
from Construction 3.4 is (k + v)-block colorable.

Proof. Let (V,B) be a k-block colorable STS(v) and f : B → {1, . . . , k}
be a such coloring. Moreover, let (W,B′) be a STS(2v + 1) obtained from
Construction 3.4. Define c : B′ → {1, . . . , k + v} as follows. For 1 6 i, j, t 6 v,
let c({xi, xj , xt}) = f({xi, xj , xt}). Since v + 1 is even, by Theorem 3.3, there
exists a v-edge coloring φ of Kv+1 on the vertices {xv+1, . . . , x2v+1} such that
all edges partitions into v rainbow perfect matchings F1, . . . , Fv. Now, for every
block {xi, xj , xt}, 1 6 i 6 v and v + 1 6 j, t 6 2v + 1, let c({xi, xj , xt}) =
φ(xjxt). We claim that c is a (k+v)-block coloring. Notice that if two adjacent
blocks call b1 and b2 have the same color, since the set of colors used to color
the blocks of Type 1 and Type 2 have no color in common, then b1 and b2
belong to the same type. So, two cases may be considered. First, suppose that
b1 and b2 are the blocks of Type 1. Since f is a k-block coloring of (V,B),
c(b1) 6= c(b2). Otherwise, two cases may be considered. First assume that
b1 ∩ b2 = {xi} such that 1 6 i 6 v. Since every perfect matching Fp, 1 6 p 6 v
is rainbow, c(b1) 6= c(b2). Now, suppose that b1∩ b2 = {xi}, v+1 6 i 6 2v+1.
Since φ is a proper edge coloring, we are done and the proof is complete. �

Acknowledgements:
The author would like to express her deep gratitude to the referees for a very
careful reading of the paper, and many valuable comments, which have greatly
improved the presentation of the paper.



ON THE BLOCK COLORING OF STEINER TRIPLE SYSTEMS 77

References

[1] I. Anderson, Combinatorial Designs, Oxford Science Publication, 1990.

[2] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs,
Discrete Math. and its Applications, Second Edition, 2007.

[3] C. J. Colbourn and A. Rosa, Triple Systems, Oxford mathematical mono-
graphs, The clarendon press Oxford university Press (1999).

[4] C. J. Colbourn and M. J. Colbourn, The chromatic index of cyclic Steiner
2-designs, Internat. J. Math. Math. Sci., 5 (1982), 823-825.

[5] M. J. Colbourn and R. A. Mathon, On cyclic Steiner 2-designs, Annals of
Disc. Math., 7 (1980), 215-253.

[6] M. Meszka, R. Nedela, and A. Rosa, Circulants and the chromatic index
of Steiner triple systems, Mathematica Slovaca, 4 (2006), 371-378.

[7] N. Pippenger and J. Spencer, Asymptotic behavior of the chromatic index
for hypergraphs, J. Combin. Theory (A), 51 (1989), 24-42.

[8] D. West, Introduction to Graph Theory, Second Edition, Prentice Hall,
2001.

Raoufeh Manaviyat
Department of Mathematics
Assistant Professor of Mathematics
Payame Noor University
B.o.x: 19395-4697
Tehran, Iran
E-mail: R.Manaviyat@gmail.com




