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Let E be a Banach space and C' be a nonempty subset of F, T :
C — C be a mapping and

F(T)={zeC,Te =z},

denotes the set of fixed points of 7" and w*({zy}) = {x € H : Jx,; — x}
denotes the weak w-limit set of {x,}.

A mapping T, is said to be asymptotically nonexpansive, if there exists
a sequence {k,} of positive numbers with lim,,_,~ k, = 1 such that for
z,y € Candn>1,

[Tz = T"y|| < knllz -yl

In 2011, Ceng et al. [1], introduce the following concept of asymptot-
ically k-strict pseudocontractive type mapping in the intermediate sense
in a Hilbert space H.

Definition 0.1. [I] Let C be a nonempty subset of Hilbert space H.
A mapping T : C — C is called an asymptotically k-strict pseudo-
contractive type mapping in the intermediate sense with sequence {vy,}
if there exist a constant k € [0,1) and a sequence {v,} in [0,00) with
limy,, o0 v = 0 such that

lim sup,, o0 5P, yec (1772 = Ty|* = (14 )|z =y (1)
—kmax{[lz — T"z — (y = T"y)||, |z = T"z + (y — T"y)[|}*) < 0.

Throughout this paper we assume that

O, = max{0,sup, ,eo([[T"z — T"y[|* — (1 4 vn) ||z — yl?
—kmax{[|z — T"z — (y — T"y)|, |l — T"z + (y — T"y)||}*)}.

Then ©,, >0 for alln>1,0, -0 (n— o), and (1) reduces to
1T a—T"y|*
<(L+)llz - yl?
+Ekmax{|lz — Tz — (y = T"y)||, [l = T"x + (y — T"y)[|}?
+ On,

forall z,y € C'and n > 1.
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For an asymptotically k-strict pseudocontractive type mapping 1T°
with sequence {7,}, Ceng et al. [1] defined

Tnt1 = (1 — ap)xn + apnT"xp,

where {a,,} is a sequence in (0,1) with 0 < § <, <1—-k—-6<1
and Y 7, @,0, < oo for all n > 1. They proved the sequence {x,} is
weakly convergent to a fixed point of T'.

In this paper, a new modified iterative processes for the asymptoti-
cally k-strict pseudocontractive type mapping in the intermediate sense
are presented. Finally, some numerical examples are also given.

Now, we collect some lemmas which will be used in the proofs of the
main results.

Lemma 0.2. [/] Suppose {6,}, {Bn} and {v,} are three sequences of
nonnegative numbers satisfying the recursive inequality,

5n+1 < ﬁnén +’Yn; fOT all n > 17
if B > 1, 307 1 (Brn—1) <00 and > 07 n < 00, then limy, o0 Oy, exists.

Lemma 0.3. [10, 1/] Assume {ay} is a sequence of nonnegative num-
bers such that
ant1 < (1 —an)an + 36, n >0,

where {a,} is a sequence in (0,1) and {0,} is a sequence in real number
such that

(I) lim,,— o0 vy = 0 and X952 v, = 0.

(IT) limsup,, c% <0 or X220, < 0.

Then lim,,__, a, = 0.

Lemma 0.4. [11] Let X be a uniformly convex Banach space, {t,}
a sequence of real numbers in (0,1) bounded away from 0 and 1, and
{zn} and {yn} two sequences in X such that limsup,_, ||zn] < a,
limsup,_, ||yl < @ and limsup,,__, [[trzn + (1 — tn)ynll = a, for
some a > 0, then lim,_, ||Xn — ynl|| = 0.

Lemma 0.5. [1] Let {z,,} be a bounded sequence on a reflexive Banach
space X. If w*({x,}) = {zx}, then v — z.
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Lemma 0.6. [/] Let H be a real Hilbert space. Then the following hold:
(i) [z = yl> = llzl? = yl> =2 <z —y,y = for all z,y € H;

(ii) (1 = ) + tyl> = (1 — t)]l2]* + tlyl> — ¢(1 — D}z — yl1* for al
t €10,1] and for all xz,y € H;

(#ii) If {xy} is a sequence in H, such that x,, — x, it follows that,

lim sup [ — y|2 = limsup |z, — 2| + o — y|2, vy € H.

n—o0 n—oo

Lemma 0.7. [/] Let C be a nonempty subset of a Hilbert space H and
T :C — C be an asymptotically k-strict pseudocontractive type map-
ping in the intermediate sense with sequence {7}, then

1
7"~ T sl_k(kux 4l

+ V(11 =Kz —yl? + (1—"“)%(%9))’

for all z,y € C and n > 1, where hy(x,y) = 4k||ly — T"y||||x — T"z +
y — T™y|| + ©n. In particular, if F(T) # ¢, then the above inequality
reduces to the following

77— £ < T (Kl = £+ T+ (0 = B)lle = 72+ (1 = 960,

forallz e C, f € F(T) andn > 1.

Lemma 0.8. [/] Let C be a nonempty subset of a Hilbert space H and
T :C — C be a uniformly continuous asymptotically k-strict pseudo-
contractive type mapping in the intermediate sense with sequence {v,}.
Let {x,,} be a bounded sequence in C such that ||z, — xp41] — 0 and
lxn — T"2zy|| — 0 as n — oo. If F(T) # ¢, then ||x, — Tx,|| — 0 as
n — oo.

Lemma 0.9. [/] Let H be a real Hilbert space. Suppose C is a closed
and convex subset H and point x,y,z € H. Assume a € R. The set
D:={veC:|ly—v|*<|z—v|*+ < z,0v > +a} is convex and closed.

Proposition 0.10. [/] Let C' be a nonempty, closed and convex subset
of a Hilbert space H and T : C' — C be a continuous asymptotically
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k-strict pseudocontractive type mapping in the intermediate sense with
sequence {yn} such that F(T) # ¢. Then I — T is demiclosed at zero
in the sense that if {xyn} is a sequence in C such that z, — x € C and
lim sup,,,_, o limsup,, o |xn — T"xy|| = 0, then (I —T)z = 0.

1 TIterative Approximation Of Asymptotically
k-Strict Pseudocontractive Type Mappings

Let C be a nonempty subset of real Hilbert space H and T; : C' — C be
three uniformly continuous asymptotically k;-strict pseudocontractive
type mappings in the intermediate sense for ¢ = 1,2,3. Consider the
following iterative sequence {x,} by

1€ C '
Uy = %H Z;‘L:o Tz,

Yn = (1= Bp)an + BnT5'zn n > 1,
Tng1 = (1 — op)xn + an Ty, n > 1,

where 0 < ay, Bn, An < 1.

In this section, we prove {x,} generated by (2) is weakly convergent
in a Hilbert space H.

Theorem 1.1. Let H be a real Hilbert space and C' be a nonempty,
closed and convex subset of H. Suppose T; : C'— C' are three uniformly
continuous asymptotically k;-strict pseudocontractive type mappings in
the intermediate sense for i = 1,2,3, such that

1T}z — Tyl
< (14 i) llz — yl?
+kymax{ ||z — Tz — (y = Ty)|, |z — T]'x + (y = T79) |1} + O,
for i = 1,2,3 and for all x,y € C, n > 1 also for all x € C, <
z— Tz, Tiw => 0. Let > o2 v < 00 and {x,} be the sequence de-

fined by (2). If F = (o_, F(T}) # ¢ and 0 < liminf, o a, By A <
lim sup,, o @n, By An < 1, then
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1) limy,— o0 ||@n — f|| exists for all f € F.
2) limy,— oo ||Tn—un| = 0 and lim,,—, ||zn—Tiz,|| =0, (i = 1,2, 3).

3) The sequence {x,} is weakly convergent to a common fized point
of Tr, (i = 1,2,3).

Proof. Let f be an element of F' = ﬂz 1 F(T;). By (ii) of Lemma 0.6,

|2 — fH2 = (T = An)zn + Apun — fH2

(L= Xn) (2 = f) + Anlun — f)]?

= (L= M)lzn = FI? + Anllun — fI?
=M1 = M) l|2n — un .

By Holder inequality,

lion = FI2 = sy Sy T — fI2
< m Yo 1T zn — 1%

for1 <j<mn,
1Tz — FIP < (14 250l — FIP + bl — Tl + €51,
By (i) of Lemma 0.6,

|z = T{zall? = |2 = ) = (T2 = )] , A
lzn = fI? = 1T{2n = fI? = 2 < 2 — T{an, T{2n -,

since < x, — Tj:nn, lea:n >=> 0, then

1TV 20— £1* < L7020 = FIP +kallwn = fIP = ki | T 20— FIIP + €1,

therefore
Tie _ f112 < (1 Vi1 2 4 ]1
T = £ < (1 + T2l = 1P + 75
We have,
lun = FIP < g Ulon = FIP + 2251 1T 20 — £1%)
< gtz (e = FIP + 2250 (U + ) llen — FIP + 1+k1))
< n(n+1)(1+35) 2, _n?
S g7 len = fIP + Gl e
<(1+ k1+1)||xn f||2 + k1+17
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where ¢, = max{vy;1,1 < j < n} and v, = max{0;;,1 < j < n}.
Therefore

lzn = fI? < (1= An)lln = fI

(1 + 220 len — FIP + 5]
(1= Ap) |20 — unH2

also

)‘n(l_>‘n)”xn_un‘|2'
(3)

l2n = f11? < A+ An (G D l2n = FIP+ 2

k—l—l +k1

And
lyn — fI2 = 1[(1 = Bn)an + BuTs 20 — fI?
= H(l_5n)(xn_f)+/8n(T5LZn_f)"2
= (1=Bu)lzn = FI? + Bull T3 20 — fII?
—Bn(1 = Bn)llzn — T2nan2>

by (i) of Lemma 0.6,

n Yn2 2 On2
T: n - 2< 1 n ) 4
175 20— S < (14 T2 = I+ oo @

hence

lyn = FI? < (1= Ba)llzn — £I?
+ﬂn[(1 + 1’3?132){(1 +A (1+k1))Hxn - fI?
AT Ttk — An(L = Az — un?}
+1+k2] /Bn(l_ﬁn)”xn_Tannuza

therefore

lyn — fI? < [(1 = Bn) + Bl + A (5523:) (1 + £22)] |2 — £
B (1 + 788 7 + B
Bl = M) (L + 222 ) 20 — un®
—5n(1 - Bn)Hxn - T2nzn”2-

On the other hand,

[2ni1 = fI? = (1= an)(@n = f) + an(T3yn — )I?
= (1 —an)llzn = fI? + anl| T3yn — fII?
—an(1 —ap) |z, _T:?ynHQ
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since

9113
1+ kga

T — fl12 < (1 Tn3 2
175" yn — fII7 < ( +1+k3)llyn fII7+

then

[zt = fIIP < [(1 = an) + an{(1 = Bn)
+/Bn(1 + )\nlj_inkl)(l + 17:132)}(1 + 17:1?:3 )]Hxn - f||2
FAnBnen (14 280 (1 + 285 18
"’Bnan(l + 1?]23)14:132

t+an ?—nlss
—A\nBnan (14 17:,?2)(1 + 111,33)(1 — A)||Zn — unl?

—Bnan(l = Bn)(1+ 117?3)]@“ — T3 zn|?
—om (1 = an)|zn — T5ynl|?,

hence,
[2n1 = fIP < [(1 = an) + an{(1 = Bn) + Buprp2}pslllzn — fI1?
+)\n5nanp2p3#7ﬂ
+/8n04n,038r7nk22
t+om ?—nls‘s (7)

_)\nﬂnanPZPS(l - )\n)Hun - anZ
—Bnan(1 = Bn)psllzn — ngn||2
—an (1 — ap)|lzn — Tz?ynHz,

where p1 =1+ 3% and p; = 1 + - for i = 2, 3. Therefore

|41 = FII* < pllen — fIP + anmn, (8)

where Hn = (1 - an) + an(l - 5n)p3 + 6nanp1/)2f)3 and M = prSJ_i%l +
pgﬁ—”ki + 12”153' Since lim,, oo i, = 1 and lim,_,n, = 0, therefore
by Lemma 0.2 and inequality (8), we deduce that lim, o ||z, — f|| =7

exists for some r > 0. By inequality (7),

A Bnanp2p3(l — Ap)||zn — un||2 < | n — f||2 — [|Tny1 — f”2 + QnMin,

which implies that lim,, ||z, — u,|| = 0. Since
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then lim,,—, ||zn — 17"y || = 0. By inequality (7),
Bran(1 = Bu)psllzn — T3 2nll? < pinllen — FIIP = lznss — 17 + i,
which implies that lim,,—, ||z, — T5'2, || = 0. By inequality (7),
an(l = an)zn = T8yl < pnllon = FIIP = l2nss = f1? + i,
which implies that lim, o ||z, — T5'yn|| = 0. we have

|zn — zn|| = AnllTn —un|| — 0 as n — oo,

and
lyn — anll = Bullzn — T3'2nll — 0 as n — oo,
and
|Tnt1 — Tnll = anl|lzn — T3'yn|| — 0 as n — oo,
also

[2n — T3 n|| < |l2n = To'2nll + (|15 20 — T2,
and by Lemma 0.7,

115 w0 — T3z

1
< 125 (Fallen =

AT O R m — 2Pt (1= ), >)

where by (X, 2n) = 4kal|zn — T8 zn||||2n — T8 @0 + 20 — T3 2| + Opn2. We
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have,
Hzn_T2nZnH2

=1 = An)(@n — T3'2n) + An(upn — T;ZR)HQ

=(1 = An)llzn — TQRZHHQ + Anllun — TQnZnH2
= (1= )z — unl®

<1 =21+ o) 2 — zall? + kallzn — T3'20]|” + Opa
+ An[(L+ ym2) lun — ZnH2 + kall2n — T2nan2 + On2]
= A1 = An)lzn — un||2

=(1=A)[(1+ ’Yn2)/\121||$n - un||2 + kallzn — T2"an2 + Ona]
+ An[(1 + Yn2) (1 = )‘n)guxn - unH2 + ka2 — Tznan2 + Ona]
= Al = An)[zn — Un”2

=ka||zn — T2nzn|’2 + An (1 = An)vn2llzn — Un||2 + Ona,

therefore
(1 —ko)|lzn — T?ZnHZ <A1 = Xn)vn2l|zn — un”2 + Ona.

This means that ||z, — T5'2,| — 0, hp(zpn,2,) — 0 and ||T5'2, —
T3 wy| — 0, then we have ||z, — T3'zy| — 0. Also,

20 = T3'wnl| < [lzn = T3'ynll + [|T5'yn — T3'zn|,
and by Lemma 0.7,

175" 20 =T5 yn|

1
< - _
S1 ks (kSHQUn Ynl|

AT R m — gl E (1= k3>hn<mn,yn>>,

where hn(xna yn) = 4k3||yn _T??ynH ||$n _Télxn +yn_T§lyn|| +0O5,3. Now
(1= ks)llyn — :?Z/nHZ < Bn(1 = Bn)msllzn — TQnZnHQ + On3.

This means that ||y, — T3y, || — 0, then ||z, — Tz, || — 0. Therefore,
by Lemma 0.8 we have, ||z, — T;x,|| — 0 as n — oo for i = 1,2, 3.
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Assume that x,; — u weakly and z,; — v weakly as n — oo. Then
u,v € F. We prove u = v. If not, by Opial’s condition,

lim; ool Tni — |
limi—soo||Tni — v|
limy—o0||Tn — v
limj—sool|Zn; — ul
llmn—monn - UH)

limp—soo||Tn — ul|

A A

which is a contradiction. O

Corollary 1.2. In Theorem 1.1, suppose {an,}, {Bn} and {\,} are se-
quences in (0,1), such that satisfying the following conditions,

I) lim, o0y =0 and Y07 | ay = 00.

II) 0 < liminf,, o B, < limsup,__,. By < 1.
III) 0 < liminf, o Ay < limsup,,_ . Ay, < 1.
Then

1) limp o0 [|wn — || ewists for all f € F.

2) limy— oo |20 — Tizn|| = 0, (i = 1,2,3).

3) The sequence {z,,} defined by (2), is strongly convergent to a com-
mon fized point of T;, (i = 1,2, 3).

Proof. Using the same argument in the proof of Theorem 1.1, we have
[@n1 — f”2 < ||z — f”2 + Qnlin,
then by Lemma 0.3, lim,,—, ||zn, — f|| = 0. Furthermore,
lim e — fll = lim (1 ) (@ — £) + au(T3yn — Pl

by inequality (6), (5) and by Lemma 0.4, lim, o [|T5'yn — zy| = 0.
Furthermore, by inequality (5),

lim ||z, — fll = lm |y, — fll.
n—»o0 n—>00
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Also
limsup [y, — fI| = limsup ||(1 — ) (20 — f) + Bu(T5' 20 — f)I],
n—-oQ n—-~oo

and by inequalities (4) and (3), and Lemma 0.4,

lim |13z, — xy| = 0.
n—-o0
Similarly, lim,,—, ||z, — f|| = 0 and lim,,— o ||y, — 2, || = 0. The same
argument in the proof of Theorem 1.1 shows that the sequence {z,}

defined by (2), is strongly convergent to a common fixed point of T; for
i=1,2,3. O

Corollary 1.3. Let H be a real Hilbert space and C be a nonempty,
closed and convex subset of H. Suppose T; : C — C' are three uniformly
continuous asymptotically k;-strict pseudocontractive type mappings in
the intermediate sense for i = 1,2,3 and for all x,y € C, n > 1 and
forallz € C, <x —Tix,Tixz >0, 1 =1,2,3. Let Y 7 | Yni < 00 and
{an}, {Bn} and {A\,} are sequences in (0,1). Let {x,,} be the sequence
defined by

T € C
zn =1 —=Xp)zn + AMTT'zy n>1, (©)
Yn = (1 = Bp)xn + B3 20 n > 1,

Tnt1 = (1 —ap)zn + T3y, n>1,
if F=_, F(T;) # ¢, 0 < liminfay,, liminf 3, liminf\,, and
n——ao0 n—ao0 n—-ao0
lim supay,, lim supf,, lim supA, < 1 then

n—aoo n—aoo n—-oo

1) limy,—o0 ||zn — f|| exists for all f € F.
2) lim,— oo ||z — Tizn|| =0, (i =1,2,3).

3) The sequence {xy} is weakly convergent to a common fized point
of T, (1 =1,2,3).

The next theorem is a new generalization of [I, Theorem 4.1] and [7,
Theorem 3.1].
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Theorem 1.4. Let C be a nonempty, bounded, closed and conver subset
of a real Hilbert space H and let T; : C' — C for i = 1,2, be uniformly
continuous asymptotically k;—strict pseudocontractive type mappings in
the intermediate sense with sequence {Vni} such that 270;1 Yri < 0O,
F = F(Th)( F(T) is nonempty and bounded and < x — Tyx, Tyx => 0
for all x € C. Let {t,} and {s,} are real sequence in (0,1), such that
>ty < 00 and {s,} is bounded away from 0 and 1. Suppose the sequence
{zn} is generated by,

(v = x1 € C' chosen arbitrary,
Yn = (1 - tn)xn + tnTQHZna
zn = (1= sp)xy + Sntin,
Up = %H E?:o Ty, (10)
Cn={2€C:|yn— Z||2 < |lzn — 2”2 + M}
Qn={z€C <z, —2z,0v—x, => 0},
Tnt1 = Po,ng,(v), Yn2>1,

where Pk denotes the metric projection from H onto a closed convex

subset K of H, n, = Op + Ay, 6, = Sntn(l + 11"‘,32)13121 + tn1+k2

where v, = max{O;1,1 < j < n} and Ap = [t,(1 + 111/32)(1 + 1+k1)

tn)(dimC)? — 0 as n — oo where g, = max{y;1,1 < j < n}.
Then {xy,} is strongly convergent to Pr(v).

Proof. Lemma 0.9 implies (), is convex. Notice that F' C (), for all n.
Indeed, for all f € F,

[yn _fHZ ”(1_tn)xn+tnT2nZn_fH2
(1 —tn)(xn — f) + (T3 20 — f)||2
= (I=t)llzn — FI? + tal T3 20 — £I?

n
—tn (1 —tn)||lzn — TQnZnH27

using (i) of Lemma 0.6,

On2
T, _ f12 < (1 n2 2 n
1T5n = 717 < (04 1 o = 1P + 175

also
1-— Sn)mn + SnUn — fH2

(

(1= sn)(@n — ) + Sn(un — f)|I2

1= so)l|lzn — FI? + snllun — f||?
—sn(1 = sn)||Tn — unl|*.

lzn = f12 = |
|

=
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The same argument in the proof of Theorem 1.1 shows

v
— zn — sz + Sp—— — sn(1—sn)|zn —unH2-

2
n 1 n
Iz = fII" < (14 5 b
(11)

Sn
14k
Therefore,

lyn = FI2 < (1= ta)ln — FI12 + tal(1 + 72220 — FI2 + S22
~tn(1 — t)l|ln — T3 2>
< (= ta) + L+ 720)(1+ 50 350l — £
—tnsn(1l+ 17:15 )1 - sn)Hxn — up|?
Fsntn (1 + 11113 )1+k1 +1t n1+k2
~tp(1 = tn) |20 — T3'2n*.

Hence
lyn — FIIP < llan — fIP + [t (1 + 11*732()9(1 + 1557) — talllzn — £11?
n Un
+ Sntn(l + 11]32)1-1—]{:1 + tn 1+ko
Then

yn — f||2 < |lan — f||2 + n.-
Hence f € C),,. The same argument as in the proof of [I, Theorem 4.1]
shoes FF C C, N Qy, for all n > 1 and ||z, — zp41]| — 0 as n — 0.
Now, we claim that ||T;z,, — z,| — 0, for ¢ = 1, 2. By definition of ys,,

7 [y — @nll
i Ulyn = ol + |21 — zall),

HTﬁlzn — Zn|

IA I

since Tp41 € O, [|yn — Zoa1|)? < [|2nt1 — 2all? + 70 — 0 as n — oo,
this implies that |75z, — 2, || — 0 as n — oo. Since {z,} is bounded,
there is a subsequence {x,;} of {x,} such that lim; ., ||zn; — f|| =
lim; o0 |yn; — f| = limsup,,__, ||zn— f|| =: 7. Since lim;_,ocnp; =0
and

Ynj2
tngsng(1+ 1 ka)(l — )1 @ng — ung|I” < Nang — FIIP = Yng — FII? 4 g

then lim; oo [|#nj — tnj]| = 0 and also lim; o [|2nj — Tz = 0.
Since ||zn, — Tn|| = sp||Tn — || then lim,_ o ||z, — 25| = 0. We have

|20 — T3 || < o0 — T3 20| + |15 20 — T5'wy ]|
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Since ||z, — zp|| — 0 as n — oo and the same argument in the proof
of Theorem 1.1, we have ||T5'z, — T5'x,|| — 0, then ||z, — T3z, || — 0
as n — 0.

Therefore, by Lemma 0.8, ||z, — T;x,|| — 0 as n — oo for i = 1, 2.
Since H is reflexive and {z,} is bounded we obtain that w*({z,}) is
nonempty. By the fact that |z, —v| < ||f — v|| for all n > 0 where
f = Pr(v) and the weak lower semi-continuity of the norm, we have
|lw—v|| <||f—v] for all w € wy({x,}). However, since w*({z,}) C F,
we have w = f for all w € w*({z,}). Thus w*({z,}) = {f} and then
xn, = f = Pp(v) by

lzn = fI? = llzn =0l +2 < 2n —v,0 = f = +]lv— £

< 20lf —vP+ < zp—v,20—f =) —0

as n — 00. O

2 Some Examples

In this section (based on the similar arguments in [I] and [10]) some
examples are presented to grantee the statement of Theorem 1.1.

Example 2.1. Let X = R the set of real numbers, and C = [0, c0).
T : C — C be defined by [1],

kx if xe€][0,1],

T(@) _{ 0, if z€(l,00), (12)

where 0 < k < %. Then T : C — C' is an asymptotically %—strict pseu-
docontractive type mappings in the intermediate sense. For all z,y € C
and n > 1; we have,

T =Ty < |z =y + jmax{|z — T"z — (y — T"y)|
o= T & (y = T} + 1420,

Example 2.2. Let X = R the set of real numbers, and C' = [0, 00). For
each x € C, we defined,

[ £ if xe0,d],

15
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where 0 < k < 3. Set C; = [0,3] and C» = (3,00). Then for all
xz,y € C; and n > 1 we have;

kx ky
T — Tyl = — — 2 | < klx —
and
kT kT
T2 — T2 = | Y| < kT — Ty| < K2z — g,

1+ Tz 14Ty

then for all n > 1,
T — T"y| < K"z — y).

For all z,y € C and n > 1 we have,
T"z —T"y| =0 < |z —y|.

For x € Cy and y € Cs, we have,

kx
Tx —Ty| = -0/ <l|kx—0
Te~ Tyl = |~ 0] < ke 0],

therefore

[Tz =Tyl < |k"z — 0" = [k™(z — y) + k" y[?

(k"—llw*y2\+k”‘1\yl)2
2OVl —y| + 120Dy + & — Trz) — (2 — Ty)?
|z —y|? + %maxﬂa} — Tz — (y —T"y)|,
2 | 172(n—1
o — TP+ — Ty[}? + 3K,

VA VANR VAN VAN

Therefore T': C' — (' is an asymptotically %—strict pseudocontractive
type mappings in the intermediate sense.

Example 2.3. Let H = R the set of real numbers and C' = [0, 00). Let
T : C — C be defined by Example 2.1, we have F(T) = 0. Let z; = 1,

o = igﬁ and 3, = gZﬂ, for all n € N. Sequence {x,} is defined by

_ 3n+lgm n
Tnt1 = guy1 1 Yn T 351 T

(14)
Un = 51T + 35720
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Since 1 = 1 then Tz, = k, y; = %—ﬁk + ?11 and xo = i—ﬁk(ﬁk +
ﬁ) + ﬁ. Since k € (0, 1), then 25 < 21. By induction

3n—|—1kn(2n—|—1n n )+ n
4n + 1 3n+1 3n+1 4dn +1

for all n > 1. Therefore {x,} is a strictly decreasing sequence and

) =0

Tn+1 = ( ):Ena

3n+1, ,2n+1 n n

li k"
nl—{go(éln—l—l (3n—|—1 3n+1)+4n+1

. -0
Let 7 = limy, 00 | 25|, then
n

3n+l.n/2n+1l1.n n n
li (tk" Gk + ) Y m)oe 1
1Mp—o0o = -

Tn 4

and r = i. Hence, the sequence {z,} is convergent to zero and the rate

of the convergence is %.

Let k = %, then

_ 3n+1lyn n
Tn+l = Inyisn T Ing1¥ns

_ 2n+1zpn n
Yn = 50780 T 31 %0

n T n T,
1 1 16 | 5.067 x 10~10
2 0.2343 17 | 1.247 x 10710
3 0.0529 18 | 3.073 x 10~ 11
4 0.0122 19 | 7.577 x 10712
5 0.0028 20 | 1.869 x 10~12
6 0.0006 21 | 4.617 x 10713
7 0.0001 22 | 1.14 x 10713
8 [3972x10°° |23 |2819x 1014
9 19631 x107% 246973 x 10~
10 | 2.342x107% [ 25 | 1.725 x 10~16
11 | 5.714 x 1077 [ 26 | 4.27 x 10716
12 | 1.396 x 1077 | 27 | 1.057 x 10~ 16
13| 3.42x10°% |28 ]2.619x 10717
14 | 8.39x107Y |29 | 6.49 x 1018

2.06 x 1072 |30 | 1.608 x 1018

—
ot
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Example 2.4. Let H =R and C = [0,00). Assume {z,} is a sequence
defined by (2), where Tywx = 55, Tow = 155 and T3z = Also

_ 6n+1 4n+1 _ 2n+41
Qp = Tn+1° Bn = Bn+1 and )\ = 3n¥1- We have

X
100(14x) *

Un = n+1 > i-0 %3;1
— T
Zn = gpqtn + (inﬁ)“

T
Yn = 5an$-1$" + (5n+1)(100n)2nv

Tn+l = 7n+1mn + (7n+1)T3 Yn,

and (2_, F(T;) = {0}. If 2, = 3., 80

n T n Ty
1 0.5 16 | 6.729 x 10714
2 | 6.319x 1072 | 17 ] 9.529 x 10~1°
3 | 8426 x 1073 | 18] 1.349 x 10~1°
4 | 1.149x 1072 [ 19 | 1.913 x 10716
5 | 1.584 x107% | 20 | 2.712 x 10717
6 | 2.201 x 107° | 21 | 3.848 x 10718
7 | 3.071 x107° | 22 | 5.46 x 10~
8 43x 1077 [ 23] 7.749 x 10-20
9 | 6.035x1078 [ 24| 1.1x10°2%
10 | 8.487 x 1079 | 25 | 1.562 x 10721
11| 1.195 x 1079 | 26 | 2.219 x 10~2?
12 | 1.685 x 10710 | 27 | 3.153 x 10~23
13| 238 x 1071 | 28 | 4.481 x 10=*4
14 | 3.363 x 10712 | 29 | 6.369 x 10~2°
15 | 4.755 x 10713 | 30 | 9.054 x 10~26
Example 2.5. Assume in Example 2.4, o, = 107’ then

Un = n+1 Za 0 505>

cn = 3n+1 n+ @Zﬁ)“m

Yn = 5n11xn + (5211)(101002”7

Tn+l1l = 12%;73711 + (ﬁ)T;yna

amdﬂZ VF(Ty) ={0}. If 21 = £, so
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n Tn n Tn
1 0.5 16 | 0.02502
2 1 0.15055 | 17 | 0.02392
3 10.09786 | 18 | 0.02294
4 1 0.07502 | 19 | 0.02205
5 | 0.06189 | 20 | 0.02123
6 | 0.05323 | 21 | 0.02049
7 | 0.04702 | 22 | 0.01981
8 10.04231 | 23 | 0.01918
9 1 0.03861 | 24 | 0.01859
10 | 0.03561 | 25 | 0.01805
11 | 0.03311 | 26 | 0.01755
12 | 0.03101 | 27 | 0.01707
13 | 0.0292 | 28 | 0.01663
14 | 0.02763 | 29 | 0.01621
15 | 0.02624 | 30 | 0.01582

Conclusion

Here, a new modified iterative processes (2) for the asymptotically k-
strict pseudocontractive type mapping in the intermediate sense is de-
fined. It is shown the sequence {x,} generated by (2) is weakly conver-
gent in the Hilbert space H. The obtained result is a new generalization
of [1, Theorem 4.1] and [7, Theorem 3.1]. Also some numerical examples

are given.
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