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Abstract. We consider the real polynomials of degree d + 1 with a
fixed point of multiplicity d ≥ 2. Such polynomials are conjugate to
fa,d(x) = axd(x − 1) + x, a ∈ R \ {0}. In this family, the point 0 is
always a non-hyperbolic fixed point. We prove that for given d, d′, and
a, where d and d′ are positive even numbers and a belongs to a special
subset of R−, there is a′ < 0 such that fa,d is topologically conjugate
to fa′,d′ . Then we extend the properties that we have studied in case
d = 2 to this family for every even d > 2.
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1 Introduction

Among the C1 multi-modal maps, polynomials are typical. It has been
shown that each C1 l-modal map is semi-conjugate to a polynomial l-
modal map (see [4, Chapter II, Theorem 6.4]). Therefore it is useful to
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investigate the dynamical behavior of polynomials. In [8], the dynamics
of the family of complex polynomials f(z) = z3+az2+z = z2(z+a)+z,
with f ′(0) = 1 is studied. In [1], a family of real polynomials fa(x) =
ax2(x−1)+x is studied. Note that in this case we also have f ′

a(0) = 1. In
this paper we consider the family of polynomials fa,d(x) = axd(x−1)+x
where a < 0 is a real number and d ≥ 2 is an even integer. Each map of
this family is a bimodal polynomials with a non-hyperbolic fixed point.
The main features of fa,d are similar to fa′,2. The question is whether
these similarities make fa,d and fa′,d′ conjugate. The main tool in this
paper is Corollary 3.1 of Chapter II of [4], which states the conditions
under which two l-modal maps are conjugate on a compact interval.

This paper is organized in four sections: In Section 2 we discuss
some common properties of the family fa,d(x) = axd(x−1)+x, for even
d ≥ 2 and a < 0. To determine the position of the orbit of each critical
point, in Section 3, for given even d ≥ 2, the parameter line a < 0 is
partitioned into some subintervals such that the behavior of the critical
points are different in these subintervals. Our information about the
position of the critical orbits respect to each other enables us to define
an order preserving bijection that is applied in Corollary 3.1 of Chapter
II of [4]. In Section 4 we present more observations about the function
fa,d. In these observations, we discuss the topological entropy of this
function by comparing it with fa,2, for special negative a’s.

Here we explain some terminology and preliminaries used in this
paper. Let I be an interval and f : I → I be a continuous map. By
fn we mean f ◦ fn−1, where f0 is the identity map. The orbit of x ∈ I
is the sequence

(
fn(x)

)
n≥0

. A point x0 is called a periodic point of

f of period n if n is the least natural number that fn(x0) = x0. If
n = 1, x0 is a fixed point of f . If x0 is a periodic point of f of period
n, then the set O(x0) =

{
x0, f(x0), · · · , fn−1(x0)

}
is called a cycle of

f of period n. In this case the basin of O(x0) is B(x0) = ∪n−1
i=0 {x :

limk→∞ fkn(x) = f i(x0)}. The immediate basin B0(x0) of O(x0) is the
union of the components of B(x0) which contain points of O(x0). The
cycle is a periodic attractor if B0(x0) contains an open set. It is called
a two-sided periodic attractor if each point of O(x0) is an interior point
of B0(x0), otherwise it is a one-sided attractor. We denote the union of
the immediate basins of periodic attractors of f by B0(f).
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The map f is called l-modal if it has exactly l turning point in the
interior of the compact interval I and f(∂I) ⊂ ∂I, where ∂I is the
boundary of I. The point in which f has a local extremum is called a
turning point.

An interval J ⊆ I is called wandering if all its iterates J, f(J), · · ·
are disjoint and

(
fn(J)

)
n≥0

does not tend to a cycle.

For a C1 function f , the fixed point x0 is called non-hyperbolic if
|f ′(x0)| = 1.

For a C2 map f , the critical point c is called non-flat if there exists
a C2 local diffeomorphism ϕ with ϕ(c) = 0 such that f(x) = ±|ϕ(x)|α+
f(c) for some α ≥ 2. Note that if f is C∞ and some derivative of f is
non-zero at c, then c is a non-flat critical point.

We say f is an increasing (a decreasing) function if x < y, then
f(x) < f(y) (f(x) > f(y)).

In this paper, we always assume that a < 0 is a real number and
d ≥ 2 is an even integer.

2 The Common Properties of fa,d

The common properties of the family fa,d(x) = axd(x − 1) + x, which
are stated in the following propositions, are proved by employing math-
ematical techniques of elementary calculus.

Proposition 2.1. 1. fa,d(x) = 0 has only two non-zero solutions
x0(a, d) and x1(a, d). Moreover, x0(a, d) < 0 < 1 < x1(a, d).

2. f ′
a,d(x) = 0 has only two solutions c0(a, d) and c1(a, d) where
c0(a, d) is a local minimum point and c1(a, d) is a local maximum
point of fa,d. Moreover, x0(a, d) < c0(a, d) < 0 < d

d+1 < c1(a, d) <
x1(a, d).

The following proposition is about the dynamics of fa,d on some
intervals. The proof of this proposition is identical to Lemma 1.2 in [1]
and we do not present it here.

We use the notation I ⊑ J for two intervals I and J when x < y for
all x ∈ I and all y ∈ J .
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Proposition 2.2. Suppose that x0(a, d) < x1(a, d) are the non zero roots
of fa,d. Then there are an increasing bounded sequence

(
x2n+1(a, d)

)
n≥0

in
[
x1(a, d),∞

)
and a decreasing bounded sequence

(
x2n(a, d)

)
n≥0

in(
−∞, x0(a, d)

]
such that (see Figure 1)

fa,d
(
x2n(a, d)

)
= x2n−1(a, d), n ≥ 1, (1)

and

fa,d
(
x2n+3(a, d)

)
= x2n(a, d), n ≥ 0. (2)

Let

J0(a, d) =
[
x0(a, d), 0

]
, I0(a, d) =

(
0, x1(a, d)

)
,

p0(a, d) = lim
n→∞

x2n(a, d), p1(a, d) = lim
n→∞

x2n+1(a, d),

and for n ≥ 1, set

Jn(a, d) =
[
x2n−1(a, d), x2n+1(a, d)

]
, In(a, d) =

(
x2n(a, d), x2n−2(a, d)

)
if n is odd and

Jn(a, d) =
[
x2n(a, d), x2n−2(a, d)

]
, In(a, d) =

(
x2n−1(a, d), x2n+1(a, d)

)
if n is even. Then

fa,d
(
p0(a, d)

)
= p1(a, d), fa,d

(
p1(a, d)

)
= p0(a, d),

fa,d
(
Jn(a, d)

)
= Jn−1(a, d), fa,d

(
In(a, d)

)
= In−1(a, d),

c0(a, d) ∈ J0(a, d), c1(a, d) ∈ I0(a, d),

and

· · · I2n+1(a, d) ⊑ J2n(a, d) ⊑ · · · ⊑ J0(a, d) ⊑
I0(a, d) ⊑ · · · ⊑ I2n(a, d) ⊑ J2n+1(a, d) · · · .

Moreover,
(
p0(a, d), p1(a, d)

)
=

(
∪n≥0 In

)
∪
(
∪n≥0 Jn

)
, and for every

n the orbit of any point of the interval Jn(a, d) converges to 0, and
limn→∞ |fn

a,d(x)| = ∞ for each x /∈
[
p0(a, d), p1(a, d)

]
.
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Figure 1: The images of Ii(a, d)’s and Ji(a, d)’s under fa,d

By (1) and (2), it is straightforward to show that

f2n
a,d

(
x4n(a, d)

)
= f2n+1

a,d

(
x4n+3(a, d)

)
= x0(a, d) (3)

and
f2n
a,d

(
x4n+1(a, d)

)
= f2n+1

a,d

(
x4n+2(a, d)

)
= x1(a, d). (4)

Corollary 2.3. Suppose that fa,d
(
c1(a, d)

)
≤ p1(a, d). Then fa,d :[

p0(a, d), p1(a, d)
]
→

[
p0(a, d), p1(a, d)

]
is a bimodal polynomial.

3 Conjugacy in the Family fa,d

In this section we are going to prove that fa,d’s are conjugate in some
cases. To achieve this, in the first subsection we state the required
theorems, in the second subsection we study some properties of the
family fa,d on the parameter space, and in the third subsection we define
the conjugacy.

3.1 Some known theorems

First, we apply the following theorem to determine when two functions
are conjugate. Note that we can also apply the following theorem when
the domains of f and g are two different intervals.

Theorem 3.1. [4, Chapter II, Corollary 3.1.] Suppose that f, g : I → I
are two l-modal maps with turning points c1 < · · · < cl respectively
c̃1 < · · · < c̃l and assume that

(1) the map
h : ∪l

i=1 ∪n≥0 f
n(ci) → ∪l

i=1 ∪n≥0 g
n(c̃i) (5)

defined by h(fn(ci)) = gn(c̃i) is an order preserving bijection;
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(2) the basin of each periodic attractor of f and g contains a turning
point and each periodic turning point is an attractor;

(3) the immediate basins of two periodic attractors have no boundary
point in common.

Then there exists a one-to-one correspondence between periodic attrac-
tors of f and g. Moreover, if a periodic attractor of f is one-sided if
and only if the same holds for the corresponding periodic attractor of g,
then the monotone bijection h from (5) can be extended to a conjugacy
between f |B0(f) and g|B0(g). In particular, if f and g have no wandering
intervals and have no intervals consisting of periodic points of constant
period, then f and g are conjugate.

We also employ the following theorem to show that fa,d has no wan-
dering interval.

Theorem 3.2. [4, ChapterII, Theorem 6.2.] Let f : I → I be a C2 map
such that each critical point of f is non-flat. Then f has no wandering
interval.

We use the following theorems of complex dynamics to show that,
besides the attractor 0, the function fa,d can have at most one real peri-
odic attractor. Note that if a C3 real function has negative Schwarzian
derivative, then each bounded immediate basin of a periodic attractor
contains a critical point (see [4, 5]), however, for d > 2, the Schwarzian
derivative of fa,d is positive at some points. In the next two theorems
we assume R is a complex function.

Theorem 3.3. [2, Theorem 9.3.1.] Let R be a rational map of degree
at least two. Then the immediate basin of each attracting cycle of R
contains a critical point of R.

Theorem 3.4. [6, Theorem 10.15.] If ẑ is a parabolic fixed point with
multiplier λ = 1 for a rational map R (i.e., R′(ẑ) = 1), then each
immediate basin for ẑ contains at least one critical point of R.

Recall that a cycle O(z0) = {z0, R(z0), · · · , Rn−1(z0)} of a rational
map R, where Rn(z0) = z0, is called
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• an attracting cycle if |(Rn)′(z0)| < 1.

• a rationally indifferent cycle or a parabolic cycle if (Rn)′(z0) =

e
2πip
q , where (p, q) = 1.

• a repelling cycle if |(Rn)′(z0)| > 1.

The immediate basin and the basin of an attracting cycle O(z0) of
a rational map are defined the same as the ones that are introduced in
Introduction.

Suppose that near the origin R(z) = z + azn+1 + · · · , a ̸= 0.
We call a complex number v a repulsion vector for R at the origin
if navn = 1 and an attraction vector if navn = −1. Thus there are
n attraction vectors, U0, U1, · · · , Un−1 at the origin, separated by n

repulsion vectors V0, · · · , Vn−1, such that Uj+1 = Uje
2πi
n and Vj+1 =

Vje
2πi
n for j = 0, 1, · · · , n− 2. The basin of 0 associated with Uj consists

of all z such that Rk(z) → 0 and Rk(z) is asymptotic to
Uj
n√
k
as k → ∞.

The connected component of the basin which maps into itself under R
is called the immediate basin associated with Uj (see [2, 3, 6] for more
information).

3.2 Partitioning the parameter space

Now, the point 0 is a rationally indifferent fixed point of fa,d when it is
considered as a complex map. Thus, there are d − 1 attraction vectors
and d − 1 repulsion vectors at the origin. Therefore there are d − 1
immediate basins at 0 which by Theorem 3.4 contain at least d−1 critical
points. On the other hand since a < 0 and d − 1 is odd, the negative
real axis contains an attraction vector at 0 and the positive real axis
contains a repulsion vector at 0. Now, if fa,d

(
c1(a, d)

)
∈ J2n−1(a, d) for

some n ≥ 1, then f2n
a,d

(
c1(a, d)

)
belongs to J0(a, d) that is the immediate

basin at 0 and if fa,d
(
c1(a, d)

)
= p1(a, d), then c1(a, d) lands on the

repelling periodic point p1(a, d), hence by Theorems 3.3 and 3.4, fa,d(x)
has no other periodic attractor. Also, if fa,d

(
c1(a, d)

)
∈ I2n(a, d) for

some n ≥ 1, and f2n+1
a,d

(
c1(a, d)

)
= c1(a, d), then c1(a, d) is a periodic

attractor whose immediate basin has no common boundary with the
immediate basin of the fixed point zero. Thus, we have the following
lemma.
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(a)
(b)

Figure 2: A schematic diagram of
(a) the locations of the sequence (ai(d))i≥1 and A(d) and

(b) the locations of the sequence
(
aj
2i(d)

)
j≥0

in the interval (a2i(d), a2i−1(d)) .

Lemma 3.5. Let

1. fa,d
(
c1(a, d)

)
∈ J2n−1(a, d) for some n ≥ 1, or

2. fa,d
(
c1(a, d)

)
= p1(a, d), or

3. fa,d
(
c1(a, d)

)
∈ I2n(a, d) for some n ≥ 1, and f2n+1

a,d

(
c1(a, d)

)
=

c1(a, d).

Then conditions (2) and (3) of Theorem 3.1 are satisfied.

In the following we are going to state conditions needed for defining
an order preserving bijection on the union of the orbits of critical points.

Proposition 3.6. For given d, there is a unique a < −1 such that
p1(a, d) = fa,d

(
c1(a, d)

)
. We denote this unique negative number by

A(d) (see Figure 2(a)).

Proof. We know p1(−1, d) > 1 and f−1,d(c1(−1, d)) = c1(−1, d) = 1.
Hence, p1(−1, d) > f−1,d

(
c1(−1, d)

)
. Also, as functions of the variable a,

p1(a, d) is a continuous increasing function and for a < −1, fa,d
(
c1(a, d)

)
is a continuous decreasing function. Moreover, fa,d

(
c1(a, d)

)
tends to

+∞, when a → −∞. Therefore, by the Intermediate Value Theorem,
the graph of fa,d

(
c1(a, d)

)
intersects the graph of p1(a, d) at a unique

point with the a-coordinate called A(d). □
In the following we are going to divide the parameter interval (A(d), 0)

into an infinite number of subintervals. These subintervals determine the
location of fa,d

(
c1(a, d)

)
.
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Proposition 3.7. For given d, there is a decreasing sequence
(
ai(d)

)
i≥1

such that A(d) < ai(d) < −1, fa,d
(
c1(a, d)

)
∈ J2i−1(a, d) if a2i(d) ≤

a ≤ a2i−1(d) and fa,d
(
c1(a, d)

)
∈ I2i(a, d) if a2i+1(d) < a < a2i(d) (see

Figure 2(a)).

Proof. By Proposition 2.2, for i ≥ 1, we have 1 < x2i−1(a, d) < p1(a, d).
On the other hand, we have f−1,d

(
c1(−1, d)

)
= 1 and by Proposition

3.6 we have fA(d),d

(
c1(A(d), d)

)
= p1(A(d), d). Now, since x2i−1(a, d)

is a continuous increasing function and for a < −1, fa,d
(
c1(a, d)

)
is

a continuous decreasing function (as functions of the variable a), by
the Intermediate Value Theorem, the graph of fa,d

(
c1(a, d)

)
intersects

the graph of x2i−1(a, d) at a unique point with the a-coordinate de-
noted by ai(d) such that A(d) < ai(d) < −1. Also, ai+1(d) < ai(d)
since x2i−1(a, d) < x2i+1(a, d). Therefore, if a2i(d) ≤ a ≤ a2i−1(d),
then x4i−3(a, d) ≤ fa,d

(
c1(a, d)

)
≤ x4i−1(a, d) and if a2i+1(d) < a <

a2i(d), then x4i−1(a, d) < fa,d
(
c1(a, d)

)
< x4i+1(a, d). Thus, for i ≥ 1,

in the first case fa,d
(
c1(a, d)

)
∈ J2i−1(a, d) and in the second case

fa,d
(
c1(a, d)

)
∈ I2i(a, d) (see the definitions of In(a, d)’s and Jn(a, d)’s

in the Proposition 2.2). □

Lemma 3.8. Let d be given and ai(d)’s be the ones that are intro-
duced in Proposition 3.7. Then for each i ≥ 1 there is an increasing
sequence

(
aj2i(d)

)
j≥0

in the interval (a2i(d), a2i−1(d)) such that if a ∈(
aj2i(d), a

j+1
2i (d)

)
, then f j

a,d

(
c0(a, d)

)
< f2i

a,d

(
c1(a, d)

)
< f j+1

a,d

(
c0(a, d)

)
(see Figure 2(b)).

Proof. By (3) and (4), we have f2i
a,d

(
c1(a, d)

)
= 0 for a = a2i−1(d) and

f2i
a,d

(
c1(a, d)

)
= x0(a, d) for a = a2i(d). Also, by employing induction on

i, we can show that as a function of the variable a, for i ≥ 0, f2i
a,d

(
c1(a, d)

)
is increasing if a < a2i−1(d) and f2i+1

a,d

(
c1(a, d)

)
is decreasing if a <

a2i(d). On the other hand, as a function of the variable a, fn
a,d

(
c0(a, d)

)
is decreasing and, moreover lima→−∞ fn

a,d

(
c0(a, d)

)
= 0, where n ≥ 0.

Now, since x0(a, d) < f j
a,d

(
c0(a, d)

)
< 0 for j ≥ 0, by employing

the Intermediate Value Theorem, the graph of f2i
a,d

(
c1(a, d)

)
intersects

the graph of f j
a,d

(
c0(a, d)

)
at a unique point with the a-coordinate de-

noted by aj2i(d) such that aj2i(d) ∈ (a2i(d), a2i−1(d)). Also, we know
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that f j
a,d

(
c0(a, d) < f j+1

a,d

(
c0(a, d), therefore we conclude that aj2i(d) <

aj+1
2i (d). □

Definition 3.9. For j ≥ 0, we set Âj
2i(d) =

(
aj2i(d), a

j+1
2i (d)

)
, Ãj

2i(d) =

{aj2i(d)}, A
j
2i(d) = Âj

2i(d) ∪ Ãj
2i(d) and for for j ≥ 1, we set Â−j

2i (d) =

{a ∈
(
a2i(d), a

0
2i(d)

)
: f j

a,d

(
c0(a, d)

)
< f2i+1

a,d

(
c1(a, d)

)
< f j+1

a,d

(
c0(a, d)

)
},

Ã−j
2i (d) = {a ∈

(
a2i(d), a

0
2i(d)

)
: f j

a,d

(
c0(a, d)

)
= f2i+1

a,d

(
c1(a, d)

)
}, and

A−j
2i (d) = Â−j

2i (d) ∪ Ã−j
2i (d).

The graph of f2i+1
a,d

(
c1(a, d)

)
intersects the graph of f j+1

a,d

(
c0(a, d)

)
,

hence Ã−j
2i (d) ̸= ∅ and Â−j

2i (d) contains an interval. For each i ≥ 1, we
have the following corollary that determines the location of f2i+1

a,d (c1(a, d))

among the intervals
(
fn
a,d

(
c0(a, d)

)
, fn+1

a,d

(
c0(a, d)

))
.

Corollary 3.10. Let ai(d)’s be the ones that are introduced in Propo-

sition 3.7. Then for each i ≥ 1 there is a sequence
(
Aj

2i(d)
)
j∈Z

of sets

that partitions the interval (a2i(d), a2i−1(d)) such that if a ∈ Aj
2i(d) for

some j ≥ 0, then f j
a,d

(
c0(a, d)

)
≤ f2i

a,d

(
c1(a, d)

)
< f j+1

a,d

(
c0(a, d)

)
and

if a ∈ A−j
2i (d) for some j ≥ 1, then f j

a,d

(
c0(a, d)

)
≤ f2i+1

a,d

(
c1(a, d)

)
<

f j+1
a,d

(
c0(a, d)

)
.

Proposition 3.11. Suppose that d ≥ 2 is given. For each i ≥ 0 there
is a unique a ∈ (a2i+1(d), a2i(d)) such that f2i+1

a,d

(
c1(a, d)

)
= c1(a, d).

Proof. From (3) and (4) we conclude that f2i+1
a,d

(
c1(a, d)

)
= 0 for

a = a2i(d) and f2i+1
a,d

(
c1(a, d)

)
= x1(a, d) for a = a2i+1(d), when i ≥ 1.

Now, since c1(a, d) is increasing and for a < −1 and fa,d
(
c1(a, d)

)
is

decreasing, by Intermediate Value Theorem, the graph of f2i+1
a,d

(
c1(a, d)

)
intersects the graph of c1(a, d) at a unique point that belongs to the
interval (a2i+1(d), a2i(d)). Note that for i = 0 we have f−1,d(c1(−1, d)) =
c1(−1, d). □
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3.3 Conjugacy

In the following we state three theorems that help us to prove the
Main Theorem. To prove these theorems, first we define a topologi-
cal conjugacy from [p0(a, d), p1(a, d)] to [p0(a

′, d′), p1(a
′, d′)] by employ-

ing Theorem 3.1. Next, to define a topological conjugacy from R \
[p0(a, d), p1(a, d)] to R \ [p0(a

′, d′), p1(a
′, d′)] we consider fundamental

domains in (p1(a, d),+∞) and (p1(a
′, d′),+∞) and define a topologi-

cal conjugacy between them, then we extend this conjugacy from R \
[p0(a, d), p1(a, d)] to R \ [p0(a

′, d′), p1(a
′, d′)] (see [5] for more informa-

tion).

Theorem 3.12. Suppose that the even integers d, d′ ≥ 2 are given. Let
a, a′ ∈ R− satisfy one of the following conditions.

(1) a = ai(d) and a′ = ai(d
′) for some i ≥ 1.

(2) a ∈ Âj
2i(d) and a′ ∈ Âj

2i(d
′) for some i ≥ 1 and some j ∈ Z.

(3) a ∈ Ãj
2i(d) and a′ ∈ Ãj

2i(d
′) for some i ≥ 1 and some j ∈ Z.

Then fa,d and fa′,d′ are conjugate.

Proof. Define h : ∪1
i=0 ∪n≥0 f

n
a,d(ci(a, d)) → ∪1

i=0 ∪n≥0 f
n
a′,d′(ci(a

′, d′))
such that h(fn

a,d(ci(a, d))) = fn
a′,d′(ci(a

′, d′)). By Proposition 3.7 and
Corollary 3.10, h is an order preserving bijection and in all cases, by
Lemma 3.5, the conditions (2) and (3) of Theorem 3.1 are satisfied for
the functions fa,d and fa′,d′ .

Moreover, 0 is a one-sided attractor for both fa,d and fa′,d′ . Also,
fa,d and fa′,d′ have no intervals consisting of periodic points of constant
period and, by Theorem 3.2, have no wandering intervals. Thus, by
Theorem 3.1, fa,d on [p0(a, d), p1(a, d)] and fa′,d′ on [p0(a

′, d′), p1(a
′, d′)]

are conjugate, in all cases.

Now we extend the conjugacy to R by the following method. We
choose t0 > p1(a, d) and t′0 > p1(a

′, d′) arbitrarily. Let F =
(
t0, f

2
a,d(t0)

]
and F ′ =

(
t′0, f

2
a′,d′(t

′
0)
]
. Define K : F → F ′ linearly such that K(t0) =

t′0 and K
(
f2
a,d(t0)

)
= f2

a′,d′(t
′
0). Since f2

a,d and f2
a′,d′ are increasing on(

p1(a, d),∞
)
and

(
p1(a

′, d′),∞
)
, respectively, we can find the sequences
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(t2n)n∈Z and (t′2n)n∈Z such that for j ≥ 0, t2j = f2j
a,d(t0), f

2j
a,d(t−2j) =

t0, t′2j = f2j
a′,d′(t

′
0), and f2j

a′,d′(t
′
−2j) = t′0. Therefore,

(
p1(a, d),∞

)
=

∪j∈Z(t2j , t2(j+1)] and
(
p1(a

′, d′),∞
)
= ∪j∈Z(t

′
2j , t

′
2(j+1)]. For every x ∈(

p1(a, d),∞
)
there is a unique j ∈ Z such that x ∈ (t2j , t2(j+1)]. For

simplicity, we show the function fa,d|(−∞,p0(a,d)
)
∪
(
p1(a,d),∞

) by fa,d and

the function fa′,d′ |(−∞,p0(a′,d′)
)
∪
(
p1(a′,d′),∞

) by fa′,d′ . Then we define

K(x) = f2j
a′,d′

(
K
(
f−2j
a,d (x)

))
. Finally for x ∈

(
−∞, p0(a, d)

)
, we define

K(x) = f−1
a′,d′

(
K(fa,d(x)

)
, K

(
p0(a, d)

)
= p0(a

′, d′), and K
(
p1(a, d)

)
=

p1(a
′, d′). □

Theorem 3.13. Suppose that d, d′ ≥ 2 are even integers, a2i+1(d) <
a < a2i(d), and a2i+1(d

′) < a′ < a2i(d
′), for some i ≥ 0, where a0(d) =

a0(d
′) = 0. If a and a′ are such that f2i+1

a,d

(
c1(a, d)

)
= c1(a, d), and

f2i+1
a′,d′

(
c1(a

′, d′)
)
= c1(a

′, d′), then fa,d and fa′,d′ are conjugate.

Proof. For i ≥ 1, one can define the order preserving bijection h as
Theorem 3.12. By Lemma 3.5 all the conditions of Theorem 3.1 are sat-
isfied. Hence, h : [p0(a, d), p1(a, d)] → [p0(a

′, d′), p1(a
′, d′)] is a conjugacy

that can be extended to R.
For i = 0 the immediate basins of c1(a, d) and the non-hyperbolic

fixed point 0 have common boundary, so, we consider the fundamental
domains in (0, c1(a, d)), (c0(a, d), 0), (0, c1(a

′, d′)), and (c0(a
′, d′), 0) and

define a topological conjugacy from (0, c1(a, d)) to (0, c1(a
′, d′)) and a

topological conjugacy from (c0(a, d), 0) to (c0(a
′, d′), 0). Then we extend

it to a topological conjugacy from [p0(a, d), p1(a, d)] to [p0(a
′, d′), p1(a

′, d′)].
To extend the topological conjugacy to R, we consider fundamental do-
mains in (p1(a, d),+∞) and (p1(a

′, d′),+∞). □

Theorem 3.14. Suppose that d, d′ ≥ 2 are given. Then fA(d),d and
fA(d′),d′ are conjugate.

Proof. In this case, also, by Lemma 3.5 all the conditions of Theo-
rem 3.1 are satisfied. Similar to Theorem 3.12 we can construct the
conjugacy. □

Now we are ready to state and prove the Main Theorem.
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Theorem 3.15. (Main Theorem) Suppose that even integers d, d′ ≥ 2
are given and for a ∈ R− one of the following conditions is satisfied.

1. fa,d(c1(a, d)) ∈ J2i−1(a, d) for some i ≥ 1.

2. fa,d(c1(a, d)) ∈ I2i(a, d) and f2i+1
a,d

(
c1(a, d)

)
= c1(a, d) for some

i ≥ 0.

3. fa,d(c1(a, d)) = p1(a, d).

Then there is an a′ ∈ R− such that fa,d and fa′,d′ are topologically con-
jugate.

Proof. Let even integers d, d′ ≥ 2 are given and condition (3) of the
Main Theorem is satisfied. By Proposition 3.6, a = A(d). We set
a′ = A(d′). Now, by employing Theorem 3.14, the Main Theorem holds
in this case.

Next, we partition (A(d), 0) and (A(d′), 0) into subsets defined in
Proposition 3.7 and Corollary 3.10. Now if a satisfies condition (1) of
the Main Theorem, then a = ai(d) for some i ≥ 1, or there are i ≥ 1
and j ∈ Z such that a ∈ Aj

2i(d). In the first case we set a′ = ai(d
′) and

in the second case we choose a′ ∈ Aj
2i(d

′), then by Theorem 3.12, the
Main Theorem holds in this case, as well.

Finally, let a satisfies condition (2) of the Main Theorem. We choose
a′ by Proposition 3.11. Then Theorem 3.13 guarantees that fa,d and
fa′,d′ are conjugate. □

4 Topological Entropy in This Family

In [7] for a < 0, we presented some algorithms for computing the topo-
logical entropy of fa,2 in the following cases

(1) fa,2
(
c1(a, 2)

)
∈ J2n−1(a, 2) for some n ≥ 1.

(2) fa,2
(
c1(a, 2)

)
∈ I2n(a, 2) and f2n+1

a,2

(
c1(a, 2)

)
= c1(a, 2) for some

n ≥ 1.

(3) fa,2
(
c1(a, 2)

)
= p1(a, 2).
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Table 1: The estimation of the topological entropy of fa,d, for 1 ≤ n ≤ 5.

n = 1 n = 2 n = 3 n = 4 n = 5

fa,d
(
c1(a, d) ∈ J2n−1(a, d) log 2 log 2.360 log 2.406 log 2.413 log 2.415

fa,d
(
c1(a, d)

)
∈ I2n(a, d) log 2.207 log 2.384 log 2.410 log 2.414 log 2.415

f2n+1
a,d

(
c1(a, d)

)
= c1(a, d)

We employ the Main Theorem of this paper and Corollaries 3.3, 3.4, and
Proposition 1 of [7] and conclude the following corollary.

Corollary 4.1. Let d ≥ 2 be an even integer and a be a negative real
number.

1. If fa,d(c1(a, d)) ∈ J1(a, d), then the entropy of fa,d is log 2.

2. For each n ≥ 1, the entropy of fa,d is constant when fa,d(c1(a, d)) ∈
J2n−1(a, d).

3. If fa,d(c1(a, d)) = p1(a, d), then the entropy of fa,d is log(1 +
√
2).

Table 1 represented in [7] that shows an estimation of the topological
entropy of fa,2, in different cases for 1 ≤ n ≤ 5, can be used for fa,d when
d ≥ 2 is an even number.
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