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Abstract. The asymptotic distribution for the ratio of sample vari-
ances in two independent populations is established. The presented
method can be used to derive the asymptotic confidence interval and hy-
pothesis testing for the ratio of population variances. The performance
of the new interval is comparable with similar confidence intervals in
the large sample cases. Then the simulation study is provided to com-
pare our confidence interval with F-statistic method. The proposed
confidence set has a good coverage probability witha shorter length.
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1. Introduction

It is of interest to make inference about the ratio of variances of two in-
dependent populations. The classical tests for comparing variances of k
variables were designed for independent variables. These are Bartlett’s
test, Cochran’s test and Hartley’s test, all of which were found to be
sensitive to departures from normality (Winer, 1971). As an alternative,
Box (1953) suggested a test which is fairly robust with respect to de-
partures from normality. This test, also discussed by Scheffe (1959), is

Received October 2012; Accepted: February 2013
∗Corresponding author

83



84 M. R. MAHMOUDI AND M. MAHMOUDI

based on an analysis of variance of the logarithms of the variances. When
the variance of a group of items before a treatment is to be compared
with the variance of the same group after treatment, the independence
is quite apparently not met. As an example, Cochran considered a char-
acteristic was measured both before and after aging. It was of interest to
determine whether the variability is changed by aging. When the vari-
ables are known to be correlated, Pitman (1939) and Morgan (1939)
considered the comparison of variances for bivariate normal variables.
The comparison of variances for k > 2 jointly normal correlated variables
was discussed by Han (1968, 1969). Choi and Wette (1972) suggested a
method for testing the equality of variances of several correlated normal
variables when the covariances are unknown. Levy (1976) suggested a
test for k > 2 jointly normal correlated variables without any restric-
tive assumptions on the correlation structure. Cohen (1986) considered
the comparison of variances for correlated variables. Cacoullos (2001),
using the F-representation of t, showed the Pitman-Morgan t-test for ho-
moscedasticity under a bivariate normal setup is equivalent to an F-test
on n-2 and n-2 degrees of freedom. This yields an F-test of independence
under normality. Brownie and Boos (2004) reviewed the difference be-
tween asymptotic properties of normal-theory tests for variances and
for means and described several specific methods for the two and k -
samples problems. Ojbasic and Tomovich (2007) suggested confidence
intervals for the population variance and the difference invariances of
two populations based on the ordinary t-statistics combined with the
bootstrap method. Guajardo and Lubiano (2012), on the basis of Lev-
ene’s classical procedure, developed a test for the equality of variances
of k fuzzy-valued random elements.Bhandary and Dai (2013) considered
the problem of homogeneity of variance in Randomized Complete Block
Design (RCBD) and developed a new test for the equality of variances
in RCBD.
In this work, the asymptotic distribution for the ratio of sample vari-
ances is presented. It will be applied to construct confidence interval
and perform test statistics. This method is the most efficient way in
comparison with other method, specially when sample size is large.
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2. Large Samples Inference

Let X and Y be two random variables with means µX and µY , vari-
ances σ2

X and σ2
Y , Third moments µ3X and µ3Y , and finite fourth mo-

ments µ4X and µ4Y , respectively. Also assume that (X, Y ) has the
finite central product moments µij = E

[
(X − µX)i(Y − µY )j

]
; (i, j) ∈

{(1, 1) , (1, 3) , (3, 1) , (2, 2)} . We are interested to inference about the
parameter σ = σ2

X

σ2
Y

. Since S2
X = X2 − X

2 and S2
Y =Y 2 − Y

2 are con-

sistent estimators for σ2
X and σ2

Y , S = S2
X

S2
Y

seems to be a reasonable
estimator for the parameter σ. There is no loss in assuming m = n.
Also, since the variance doesn’t depend on locations, we may as well
assume µX = µY = 0 (otherwise work with X − µX and Y − µY ).
In the following theorem that is the main theorem of this article, we will
give the asymptotic distribution of S.

Theorem 2.1. Under the above assumptions,

√
n (S − σ) L−→N

(
0, γ2

)
as n →∞,

where

γ2 =
µ4Y σ2 − 2µ22σ + µ4X

σ4
Y

.

Proof. Define Mn = (X, Y , X2, Y 2)
T
.Then by central limit theorem,

√
n (Mn − µ) L−→N(0,Σ),

where µ = (0, 0, σ2
X , σ2

Y )T and

Σ =


σ2

X µ11 σ3X σ12

µ2
Y µ21 µ3Y

σ4X − µ4
X σ22 − σ2

Xσ2
Y

σ4Y − µ4
Y


Now, we apply Cramer’s theorem(see Ferguson(1996)) for function

g (Mn) = (X2 −X
2)/(Y 2 − Y

2).
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We define g : R4 → R as g (x1, x2, x3, x4) = x3−x12
x4−x22 .

Then the gradient function with respect to g is

∇g (x1, x2, x3, x4) =


−2x1
x4 − x22

,
2x2

�
x3 − x12



(x4 − x22)2
,

1
x4 − x22

,
x1
2 − x3

(x4 − x22)2


.

Also ∇g
�
0, 0, σ2X , σ

2
Y


Ó
�
∇g

�
0, 0, σ2X , σ

2
Y

T = γ2.
Since ∇g is continuous in neighborhood of

�
0, 0, σ2X , σ

2
Y


, therefore, by

Cramer’s rule we have

√
n

g

X, Y , X2, Y 2


− g

�
0, 0, σ2X , σ

2
Y



=
√
n (S − σ) L−→N

�
0, γ2


as n→∞. 

Corollary 2.2. If X and Y are independent, then

γ2 =

µ4Y
σ4Y

− 2

σ2 +

µ4X
σ4Y
.

Furthermore, by normality assumption, we have

γ2 = 4σ2.

Proof. Note that for independent populations µ22 = σ2Xσ
2
Y and for

normal populations, µ4X = 3σ4X and µ4Y = 3σ4Y . 

By the theorem we have just proved

Tn =
√
n


S − σ
γ


L−→N (0, 1) as n→∞ (1)

This result can be used to construct asymptotic confidence interval and
hypothesis testing.

2.1 Asymptotic Confidence Interval

Since the parameter γ in Tn depends on the unknown parameter σ, it
can not be used as a pivotal quantity for the parameter σ.
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Theorem 2.3. If X and Y are independent, then

T ∗
n =

√
n

(
S − σ

γ̂n

)
L−→N (0, 1) as n →∞, (2)

where

γ̂n =
(

m4Y

S4
Y

− 2
)

S2 +
m4X

S4
Y

,

and m4X and m4Y are the fourth sample moments of X and Y , respec-
tively.

Proof. By the weak law of large numbers,

S2
X

P→σ2
X , S2

Y
P→σ2

Y , m4X
P→µ4X , m4Y

P→µ4Y , as n →∞.

From this and the Slutsky’stheorem we have,
S2

X

S2
Y

m4X

m4Y

 P→


σ2

X

σ2
Y

µ4X

µ4Y

 as n →∞.

By Slutsky’stheorem γ̂n
P→γ, as n → ∞. The proof is completed by

using Theorem 2.1. �

Corollary 2.4. By normality assumption, we have

γ̂n = 2S.

Now, T ∗
n can be used as a pivotal quantity to construct asymptotic con-

fidence interval for σ,(
S − γ̂n√

n
Zα/2, S +

γ̂n√
n

Zα/2

)
. (3)

Hypothesis Testing
Hypothesis testing about σ is important in practice. For instance, the
assumption σ = 1 is equivalent to the assumption σ2

X = σ2
Y . In general,

to test H0 : σ = σ0, the test statistic can be

T0 =
√

n

(
S − σ0

σ∗

)
, (4)
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where

σ∗ =

√
m4Y σ2

0 − 2σ0m22 −m4X

S4
Y

.

By similar methodology applied in Theorem 2.3, it can be shown that
under null hypothesis, T0 has asymptotic standard normal distribution.
Note that, in the case n 6= m, it is sufficient to replace n by n∗ =
min(m,n) in the above results.

Remark 2.5. By normality assumption,

T ∗
n =

√
n(

S − σ

2S
) L−→N (0, 1) , as n →∞. (5)

This result can be used to construct asymptotic confidence interval and
hypothesis testing for the parameter σ, in two independent normal pop-
ulations, i.e.,

S ± 2S√
n

Zα/2 (6)

Also, to test H0 : σ = σ0, in two independent normal populations, we
can use the test statistic

T0 =
S − σ0

2σ0
, (7)

which has asymptotic standard normal distribution.
In the case σ0 = 1, which is equivalent to σ2

X = σ2
Y , we can also use

Fisher statistic as follows:

F =
S2

X

s2
Y

,

which has the exact distribution F with degrees of freedom m-1 and n-1,
i.e., F(m-1,n-1).

3. Simulation

In this section, we provide the simulation study to compare our confi-
dence interval (CI-1) with confidence interval based on F -statistic (CI-
2), i.e., (

S2
X

s2
Y

F1−α/2 (n− 1, m− 1) ,
S2

X

s2
Y

Fα/2(n− 1, m− 1)
)

,
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Table 1: The empirical probability coverage and the length of the intervals for normal popula-

tions
�2X = 8 ,�

2
Y = 32 �2X = 8 ,�

2
Y = 10 �2X = 10 ,�

2
Y = 8 �2X = 32 ,�

2
Y = 8

n CI coverage length coverage length coverage length coverage length
50 CI-1 0.9536 0.2469 0.9536 0.7912 0.9511 1.2356 0.9487 3.9521

CI-2 0.9512 0.2475 0.9509 0.7920 0.9503 1.2375 0.9509 3.9600
100 CI-1 0.9498 0.1639 0.9498 0.5309 0.9589 0.8256 0.9496 2.6613

CI-2 0.9499 0.1675 0.9501 0.5360 0.9511 0.8375 0.9502 2.6800
200 CI-1 0.9499 0.1098 0.9503 0.3615 0.9498 0.5698 0.9501 1.7957

CI-2 0.9507 0.1175 0.9501 0.3760 0.9504 0.5875 0.9500 1.8800
500 CI-1 0.9499 0.0523 0.9499 0.2034 0.9501 0.3256 0.9499 1.0985

CI-2 0.9500 0.0750 0.9501 0.2400 0.9501 0.3750 0.9499 1.2000

Table 2: The empirical powers of the tests
�2X = 8 �2X = 8 �2X = 10 �2X = 32 �2X = 8

n Critical Region �2Y = 32 �2Y = 10 �2Y = 8 �2Y = 8 �2Y = 32

50 T-1 0.9930 0.9284 0.9610 0.9503 0.9518
T-2 0.9102 0.8927 0.8880 0.8871 0.8990

75 T-1 0.9994 0.9858 0.9433 0.9902 0.9711
T-2 0.8986 0.9168 0.8825 0.9156 0.9072

100 T-1 1 0.9969 0.9728 0.9980 0.98094
T-2 0.9599 0.9247 0.9523 0.9248 0.9272

150 T-1 1 0.9999 0.9965 0.9999 0.9952
T-2 1 0.9298 0.9556 0.9698 0.9335

in view of the empirical coverage and average length.

We simulate 50000 times of the above con�dence intervals for normal populations with

m=n=50, 100, 200 and 500 for di¤erent values of �2X and �2Y . The empirical coverage and

mean lengths are summarized in the Table 1.

As can be seen, in terms of the empirical probability coverage, two methods have the same

empirical probability coverage. In terms of the length of the interval, our method is better.

Also, the critical region which is constructed by inverting our con�dence interval (T-1) has

more power than the critical regions corresponding to the other con�dence interval (T-2). This

subject can be seen by a simulation study for test H0: �= 1 , the empirical powers of the tests

are presented in Table 2.

The power of the presented method is more than the other method and it can be stated

that the test statistic (5) has a reasonable power in comparison with competing method.

Acknowledgment

6

Table 1: The empirical probability coverage and the length of the intervals for normal popula-

tions
�2X = 8 ,�

2
Y = 32 �2X = 8 ,�

2
Y = 10 �2X = 10 ,�

2
Y = 8 �2X = 32 ,�

2
Y = 8

n CI coverage length coverage length coverage length coverage length
50 CI-1 0.9536 0.2469 0.9536 0.7912 0.9511 1.2356 0.9487 3.9521

CI-2 0.9512 0.2475 0.9509 0.7920 0.9503 1.2375 0.9509 3.9600
100 CI-1 0.9498 0.1639 0.9498 0.5309 0.9589 0.8256 0.9496 2.6613

CI-2 0.9499 0.1675 0.9501 0.5360 0.9511 0.8375 0.9502 2.6800
200 CI-1 0.9499 0.1098 0.9503 0.3615 0.9498 0.5698 0.9501 1.7957

CI-2 0.9507 0.1175 0.9501 0.3760 0.9504 0.5875 0.9500 1.8800
500 CI-1 0.9499 0.0523 0.9499 0.2034 0.9501 0.3256 0.9499 1.0985

CI-2 0.9500 0.0750 0.9501 0.2400 0.9501 0.3750 0.9499 1.2000

Table 2: The empirical powers of the tests
�2X = 8 �2X = 8 �2X = 10 �2X = 32 �2X = 8

n Critical Region �2Y = 32 �2Y = 10 �2Y = 8 �2Y = 8 �2Y = 32

50 T-1 0.9930 0.9284 0.9610 0.9503 0.9518
T-2 0.9102 0.8927 0.8880 0.8871 0.8990

75 T-1 0.9994 0.9858 0.9433 0.9902 0.9711
T-2 0.8986 0.9168 0.8825 0.9156 0.9072

100 T-1 1 0.9969 0.9728 0.9980 0.98094
T-2 0.9599 0.9247 0.9523 0.9248 0.9272

150 T-1 1 0.9999 0.9965 0.9999 0.9952
T-2 1 0.9298 0.9556 0.9698 0.9335

in view of the empirical coverage and average length.

We simulate 50000 times of the above con�dence intervals for normal populations with

m=n=50, 100, 200 and 500 for di¤erent values of �2X and �2Y . The empirical coverage and

mean lengths are summarized in the Table 1.

As can be seen, in terms of the empirical probability coverage, two methods have the same

empirical probability coverage. In terms of the length of the interval, our method is better.

Also, the critical region which is constructed by inverting our con�dence interval (T-1) has

more power than the critical regions corresponding to the other con�dence interval (T-2). This

subject can be seen by a simulation study for test H0: �= 1 , the empirical powers of the tests

are presented in Table 2.

The power of the presented method is more than the other method and it can be stated

that the test statistic (5) has a reasonable power in comparison with competing method.

Acknowledgment

6



90 M. R. MAHMOUDI AND M. MAHMOUDI

The power of the presented method is more than the other method and
it can be stated that the test statistic (5) has a reasonable power in
comparison with competing method.
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