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1 Introduction

In late 2019, a new virus from the corona virus, called the Novel Corona
virus, was identified in Wuhan, China, and spread rapidly in several
parts of China. It was initially reported that the virus had spread from
the seafood market, now, it has been almost a year and a half since
the virus was identified and its origin has not been determined. The
SARS-CoV-2 quickly spread to other countries and spread widely, with
the World Health Organization announcing a pandemic and informing
all countries of rapid measures to control the spread of COVID-19, such
as hand washing, mask use and social distancing. COVID-19, which
is caused by SARSCOV-2, has different symptoms in different people.
The most common symptoms are fever, lethargy, dry cough, and lung
involvement, some other symptoms such as sore throat, body aches, di-
gestive problems, and skin and heart problems, etc... can add to symp-
toms of the disease.At the beginning of the outbreak of COVID-19, it
was announced that children and adolescents would not be infected, but
by mutations in the SARSCOV-2 virus, new strains of the virus have
identified that is more rapidly transmitted and infect children.Various
vaccines have already been developed for COVID-19 and vaccination has
begun in many countries, however, the spread of the disease continues
and it is unclear whether vaccinated individuals will be resistant to the
new strains of SARACOV-2, or no?

The theory of fractional calculus, especially differential equations of
fractional order derivatives have a significance important in the modeling
of many real world problems arising in science and engineering (see e.g.
[2, 5, 6, 12, 18, 20, 27, 28, 32, 33, 35, 36] and references therein). Frac-
tional derivative due to Riemann-Liouville and Caputo were used widely
in the early literature. But due to the presence of singularities in their
kernels, some new fractional derivatives were introduced which settled
the arisen problem, for details, we refer [1, 3, 4, 10, 19, 21, 24, 29, 31, 37].
More precisely, to study the complex biological systems and diseases,
fractional calculus played an important role as it provides better results
than the integer order models (see e.g. [7, 14, 15, 16, 17, 22].

In the past, the integer-order derivative was used for modeling that
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did not preserve the system’s historical memory, but in recent decades,
with the expansion of the use of the fractional order derivative that pre-
serves the system’s historical memory, researchers have begun to use the
fractional order derivative instead of ordinary derivative. With the out-
break of COVID-19, mathematicians and biologists studied the spread
of the disease. Depending on the behaviour of the SARSCOV-2 virus
and how the disease spreads, various mathematical models have been
written (see e.g. [8, 13, 23, 26, 34]).
Due to the nature of the prevalence of COVID-19, the number of infected
people at any time depends on the number of infected people in previ-
ous times, and the disease transmission system has historical memory.
So we use the fractional-order derivative, which preserves the historical
memory of the system, to investigate the spread of COVID-19. On the
other hand, because some fraction-order derivatives have a singularity
in their kernels, we use the Atangana-Baleanu-Caputo fractional-order
derivative whose kernel has no singularity. We also present a numerical
simulation to better investigate the COVID- 19 transmission.
The structure of the paper will be as follows: In the next section, some
basic definitions and concepts are recalled. The fractional order model
is presented in Section 3 to investigate the release of COVID-19. The
equilibrium points of the system and its stability conditions are deter-
mined in Section 4. The existence of the system solution is proved using
the fixed point theory in Section 5. Using Shehu transform, a specific so-
lution for the system is determined in Section 6, and the stability of the
method in Section 7 is demonstrated. Numerical results and conclusions
are presented in sections 8 and 9, respectively.

2 Preliminaries

In present section, we recall the some basic definitions of fractional cal-
culus. We start with the definition of Caputo fractional-order derivative
which can be found in many books (see, e.g., [18]).

Definition 2.1. For a differentiable function h, the Caputo derivative
of order δ ∈ (0, 1) is defined by

CDδh(t) =
1

Γ(1− δ)

∫ t

0
h
′
(s)

1

(t− s)δ
ds.
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Definition 2.2. [3] Let h ∈ H1(0, 1) and δ ∈ [0, 1] then the Atangana-
Baleanu-Caputo (ABC) fractional derivative is defined by

ABCDδh(t) =
M(δ)

(1− δ)

∫ t

0
h
′
(ω)Eδ[−

δ

1− δ
(t− ω)δ]dω.

Definition 2.3. [3] The integral operator associated with ABC-fractional
derivative is defined by

ABCIδh(t) =
(1− δ)
M(δ)

h(t) +
δ

M(δ)Γ(δ)

∫ t

0
h(ω)(t− ω)δ−1dω,

where M(δ) is the normalization function.

Definition 2.4. [25] For a function ξ(t) in

A = {ξ(t) : there exist χ, t1, t2 > 0, |ξ(t)| < χexp

(
|t|
ti

)
, if t ∈ (−1)j × [0,∞)},

the Shehu transform of ξ(t) ∈ A is given by

Sh(ξ(t)) =

∞∫
0

exp

(
−st
u

)
ξ(t)dt u ∈ (−t1, t2).

Lemma 2.5. [9] Assume h ∈ H1(a, b), b > a, γ ∈ (0, 1) and h(t) ∈ A,
the Shehu transform (Sh) of Atangana-Baleanu fractional derivative in
Caputo sense is

Sh(ABCDδh(t)) =
M(γ)

1− γ + γ
(
u
s

)γ (Sh(h(t))− u

s
h(0)).

3 Fractional Model in Atangana-Baleanu Sense

In this section, we present a fractional-order mathematical model for the
transmission of COVID-19, using the idea in the work of Chen et al. [11].
In this model, the people are divided into five compartments: susceptible
people (Sp), exposed people (Ep), symptomatic infected people (Ip),
asymptomatic infected people (Ap), and removed people (Rp) including
recovered and dead people. Also, the virus repository from which the
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virus starts spreading is indicated by M. We consider the desired model
as follows:

dSp

dt
=

∐
p

−ωpSp − ζpSp(Ip + ΨAp)− ωwSpM,

dEp
dt

= ζpSp(Ip + ΨAp) + ωwSpM− (1− Φp)ηpEp − Φp%pEp − ωpEp,

dIp
dt

= (1− Φp)ηpEp − (τp + ωp)Ip, (1)

dAp
dt

= Φp%PEp − (τap + ωp)Ap,

dRp

dt
= τpIp + τapAp − ωpRp,

dM

dt
= φpIp +$pAp − ϕM,

with the initial conditions

Sp(0) = Sp(0) ≥ 0,Ep(0) = Ep(0) ≥ 0, Ip(0) = Ip(0) ≥ 0,

Ap(0) = Ap(0) ≥ 0,Rp(0) = Rp(0) ≥ 0,M(0) = M(0) ≥ 0.

The parameters of the model are: the birth rate
∐
p, the death rate

ωp, the transmission rate from Ip to Sp as ζp, the transmission rate of
Ap to that of Ip as Ψ, the transmission rate from M to Sp as ωw, the
proportion of asymptomatic infection rate of people Φp, the incubation
period of people 1

ηp
, The latent period of people %p, the infectious period

of symptomatic infection of people 1
τp

, the infectious period of asymp-
tomatic infection of people τap, the shedding coefficients from Ip to M
as φp, the shedding coefficients from Ap to M as $p,the lifetime of the
virus in M as 1

ϕ .

We generalize the model (1) to a fractional order model using the
Atangana-Baleanu derivative in Caputo sense as follows:

ABCDδSp =
∐
p

−ωpSp − ζpSp(Ip + ΨAp)− ωwSpM,

ABCDδEp = ζpSp(Ip + ΨAp) + ωwSpM− (1− Φp)ηpEp − Φp%pEp − ωpEp,
ABCDδIp = (1− Φp)ηpEp − (τp + ωp)Ip, (2)
ABCDδAp = Φp%PEp − (τap + ωp)Ap,
ABCDδRp = τpIp + τapAp − ωpRp,
ABCDδM = φpIp +$pAp − ϕM,
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where δ denotes the the fractional order parameter and the model vari-
ables in (2) are nonnegative and the initial conditions are given by

Sp(0) = Sp(0) ≥ 0,Ep(0) = Ep(0) ≥ 0, Ip(0) = Ip(0) ≥ 0,

Ap(0) = Ap(0) ≥ 0,Rp(0) = Rp(0) ≥ 0,M(0) = M(0) ≥ 0.

4 Equilibrium Points

To determine the equilibrium points of the fractional order system (2),
we solve the following equations

ABCDδSp =ABC DδEp =ABC DδIp =ABC DδAp =ABC DδRp =ABC DδM = 0.

By solving the algebraic equations we obtain equilibrium points of sys-
tem. The disease-free equilibrium point, the point where there is no

disease, given by E0 = (
∐
p

ωp
, 0, 0, 0, 0, 0). In addition, if R0 > 1,then the

system (2) has a positive endemic equilibrium

E∗1 = (S∗P , E
∗
P , I

∗
P , A

∗
P , R

∗
P ,M

∗),

S∗ =
xyzϕ

τapΦpϕψζpy + τapϕpωwΦpy − ωwΦpφpηpz − Φpϕηpζpz + ωwφpηpz + ϕηpζpz
,

E∗ =
G1
a,p,w

x(τapΦpϕψpy + τapϕpωwΦpy − ωwΦpφpηpz − Φpϕηpζpz + ωwφpηpz + ϕηpζpz)

with

G1
a,p,w = τap

∐
p

Φpϕψζpy + τap
∐
p

ϕpωwΦpy −
∐
p

ωwΦpφpηpz

−
∐
p

Φpϕηpζpz +
∐
p

ωwφpηpz +
∐
p

ϕηpζpz − ϕωpxyz,

I∗ = −
G2
a,p,w

x(τapΦpϕψζpy + τapϕpωwΦpy − ωwΦpφpηpz − Φpϕηpζpz + ωwφpηpz + ϕηpζpz)y

with
G2
a,p,w = ηp(τap

∐
p

y(Φpϕψζp + ϕpωwΦp)
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−
∐
p

ηp(ωwΦpφpz − Φpϕζpz + ζpφpz + ϕζpz)− ϕωpxyz)(Φp − 1),

A∗ =
G3
a,p,w

x(τapΦpϕψζpy + τapϕpωwΦpy − ωwΦpφpηpz − Φpϕηpζpz + ωwφpηpz + ϕηpζpz)z

with

G3
a,p,w = Φpτap(τap

∐
p

Φpϕψζpy + τap
∐
p

ϕpωwΦpy −
∐
p

ωwΦpφpηpz

−
∐
p

Φpϕηpζpz +
∐
p

ωwφpηpz +
∐
p

ϕηpζpz − ϕωpxyz),

R∗ =
G4
a,p,w

x(τapΦpϕψζpy + τapaωwΦpy − ωwΦpφpηpz − Φpϕηpζpz + ωwφpηpz + ϕηpζpz)ωpyz

with

G4
a,p,w = (τap

∐
p

Φpy(ϕψζp + ϕpωw) + (−
∐
p

Φpηpz

+
∐
p

ηpz)(ωwφp + ϕζp)− ϕωpxyz)(τapΦpyΥ− τpηpz(Φp − 1)),

W ∗ =
G5
a,p,w

x(τapΦpϕψζpy + τapϕpβΦpy − βΦpφpηpz − Φpϕηpζpz + ζpφpηpz + ϕηpζpz)ϕyz

with

G5
a,p,w = (τap

∐
p

Φpy(ϕψζp + ϕpωw)− (
∐
p

Φpηpz

−
∐
p

ηpz)(ωwφp + ϕζp)− ϕωpxyz)(τapϕpΦpy − φpηpz(Φp − 1)),

where y = (τp+ωp), x = (1−Φp)ηp+Φp%p+ωp, z = τap+ωp. Also, R0 is
the basic reproduction number and is obtained using the next generation
method. To find R0, we first consider the system as follows

ABCDδΨ(t) = F (Ψ(t))− V (Ψ(t)),
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where

F (Ψ(t)) =


ζpS(t)(I(t) + ψA(t)) + ωwS(t)W (t)

0
0
0


and

V (Ψ(t)) =


(1− Φp)ηpE(t) + Φp%pE(t) + ωpE(t)
−(1− Φp)ηpE(t) + (τp + ωp)I(t)
−Φp%pE(t) + (τap + ωp)A(t)
−φpI(t)− ϕpA(t) + εW (t)


At E0, the Jacobian matrix for F and V are obtained as

JF (E0) =

[
0 N3×3

0 0

]
, N3×3 =

ζpS ζpψS ωwS
0 0 0
0 0 0


and

Jv(E
0) =


(1− Φp)ηp + Φp%p + ωp 0 0 0

−(1− Φp)ηp τp + ωp 0 0
−Φp%p 0 τap + ωp 0

0 −φp −ϕp ε


FV −1 is the next generation matrix for system (2), then the basic re-
production number is

R0 = ρ(FV −1)

=
ζp
∐
p(1− Φp)ηp(ωp + τap) + ζpψ

∐
p Φpηp(ωp + τp)

ωp(ωp + ηp)(ωp + τp)(ωp + τap)

+
ωw
∐
p φpηp(1− Φp)(ωp + τap) + ωw

∐
p Φpηpϕp(ωp + τp)

ωpε(ωp + ηp)(ωp + τp)(ωp + τap)
.

This basic reproduction number R0, is an epidemiologic metric used to
describe the contagiousness or transmissibility of infectious agents.
In the next section we investigate the existence and uniqueness of the
solution for system (2) by fixed point theory.
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5 Existence of Solution

Using the initial conditions and fractional integral operator, we convert
model (2) into integral equations

Sp(t)−Sp(0) = ABCIδ

[∐
p

−ωpSp − ζpSp(Ip + ΨAp)− ωwSpM

]
,

Ep(t)− Ep(0) = ABCIδ
[
ζpSp(Ip + ΨAp) + ωwSpM− (1− Φp)ηpEp

−Φp%pEp − ωpEp
]
,

Ip(t)− Ip(0) = ABCIδ[(1− Φp)ηpEp − (τp + ωp)Ip], (3)

Ap(t)− Ap(0) = ABCIδ[Φp%PEp − (τap + ωp)Ap],

Rp(t)−Rp(0) = ABCIδ[τpIp + τapAp − ωpRp],

M(t)−M(0) = ABCIδ[φpIp +$pAp − ϕM].

For simplicity, we write the kernels

F1(t,Sp(t)) =
∐
p

−ωpSp(t)− ζpSp(t)(Ip(t) + ΨAp(t))− ωwSp(t)M(t),

F2(t,Ep(t)) = ζpSp(t)(Ip(t) + ΨAp(t)) + ωwSp(t)M(t)− (1− Φp)ηpEp(t)

−Φp%pEp(t)− ωpEp(t),
F3(t, Ip(t)) = (1− Φp)ηpEp(t)− (τp + ωp)Ip(t), (4)

F4(t,Ap(t)) = Φp%PEp(t)− (τap + ωp)Ap(t),

F5(t,Rp(t)) = τpIp(t) + τapAp(t)− ωpRp(t),

F6(t,M(t)) = φpIp(t) +$pAp(t)− ϕM(t)

and the functions

Υ(δ) =
1− δ
M(δ)

, Λ(δ) =
δ

Γ(δ)M(δ)
. (5)
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Applying (4) and (5) in (3) and writing state variables in terms of ker-
nels, we obtain

Sp(t) = Sp(0) + Υ(δ)F1(t,Sp(t)) + Λ(δ)

∫ t

0

F1(x,Sp(x))(t− x)δ−1dx,

Ep(t) = Ep(0) + Υ(δ)F2(t,Ep(t)) + Λ(δ)

∫ t

0

F2(x,Ep(x))(t− x)δ−1dx,

Ip(t) = Ip(0) + Υ(δ)F3(t, Ip(t)) + Λ(δ)

∫ t

0

F3(x, Ip(x))(t− x)δ−1dx, (6)

Ap(t) = Ap(0) + Υ(δ)F4(t,Ap(t)) + Λ(δ)

∫ t

0

F4(x,Ap(x))(t− x)δ−1dx,

Rp(t) = Rp(0) + Υ(δ)F5(t,Rp(t)) + Λ(δ)

∫ t

0

F5(x,Rp(x))(t− x)δ−1dx,

M(t) = M(0) + Υ(δ)F6(t,M(t)) + Λ(δ)

∫ t

0

F6(x,M(x))(t− x)δ−1dx.

The Picard iterations are given by

Sj+1
p (t) = Υ(δ)F1(t,Sj

p(t)) + Λ(δ1)

∫ t

0

F1(x,Sj
p(x))(t− x)δ−1dx,

Ej+1
p (t) = Υ(δ)F2(t,Ejp(t)) + Λ(δ2)

∫ t

0

F2(x,Ejp(x))(t− x)δ−1dx,

Ij+1
p (t) = Υ(δ)F3(t, Ijp(t)) + Λ(δ3)

∫ t

0

F3(x, Ijp(x))(t− x)δ−1dx,

Aj+1
p (t) = Υ(δ)F4(t,Ajp(t)) + Λ(δ4)

∫ t

0

F4(x,Ajp(x))(t− x)δ−1dx, (7)

Rj+1
p (t) = Υ(δ)F5(t,Rj

p(t)) + Λ(δ5)

∫ t

0

F5(x,Rj
p(x))(t− x)δ−1dx,

Mj+1(t) = Υ(δ)F6(t,Mj(t)) + Λ(δ6)

∫ t

0

F6(x,Mj(x))(t− x)δ−1dx.

In order to show the existence and uniqueness of solution of the model
(2), we make use of fixed point theory. First, we re-write the model (2)
in the following way:{

ABCDδζ(t) = F(t, ζ(t)),

ζ(0) = ζ0, 0 < t < T <∞.
(8)
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The vector ζ(t) = (Sp,Ep, Ip,Ap,Rp,M) and F in (8) represent the
state variables and a continuous vector function respectively defined as
follows:

F =


F1

F2

F3

F4

F6

F6

 =



∐
p−ωpSp(t)− ζpSp(t)(Ip(t) + ΨAp(t))− ωwSp(t)M(t)

ζpSp(t)(Ip(t) + ΨAp(t)) + ωwSp(t)M(t)− (1− Φp)ηpEp(t)
−Φp%pEp(t)− ωpEp(t)

(1− Φp)ηpEp(t)− (τp + ωp)Ip(t)
Φp%PEp(t)− (τap + ωp)Ap(t)
τpIp(t) + τapAp(t)− ωpRp(t)
φpIp(t) +$pAp(t)− ϕM(t)


(9)

with initial conditions ζ0(t) = (Sp(0),Ep(0), Ip(0),Ap(0),Rp(0),M(0)).
Corresponding to (8), the integral equation is give by

ζ(t) = ζ0 + Υ(δ)F(t, ζ(t)) + Λ(δ)

∫ t

0
F(x, ζ(x))(t− x)δ−1dx. (10)

5.1 The Existence of Unique Solution

Consider A = [0, T ], E = C(A,R6) and the Picard operator P : E → E
be given by

P[ζ(t)] = ζ0 + Υ(δ)F(t, ζ(t)) + Λ(δ)

∫ t

0
F(x, ζ(x))(t− x)δ−1dx. (11)

Together with the supremum norm ‖ · ‖C , on ζ is defined by

‖ζ(t)‖C = sup
t∈A
‖ζ(t)‖, ζ(t) ∈ E , (12)

E defines a Banach space. Assume the following

[A1 ] Let F : A× R6 → R6 is continuous.

[A2 ] There exists CF > 0 such that

|F(t, ζ)− F(x, ζ ′)| ≤ CF|ζ − ζ ′|

for all ζ, ζ ′ ∈ R6, t ∈ A.
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[A3 ] There exist a constant L > 0 such that |F(x, ζ)| ≤ L(1 + |ζ|) for
each x ∈ A and all ζ ∈ R6.

We prove the existence of solution of (8) by Schaefer’s fixed point theo-
rem.

Theorem 5.1. If [A1]-[A3] together with 1−Υ(δ)L > 0 hold, then (8)
has at least one solution.

Proof. We first show that the operator P given in (11) is continuous.
Consider a sequence (ζj) such that ζj → ζ in E . Now

|Pζj(t)− Pζ(t)| =
∣∣∣∣Υ(δ)F(t, ζj(t)) + Λ(δ)

∫ t

0

F(x, ζj(x))(t− x)δ−1dx

−Υ(δ)F(t, ζ(t))− Λ(δ)

∫ t

0

F(x, ζ(x))(t− x)δ−1dx

∣∣∣∣
≤ Υ(δ)

∣∣∣∣(F(t, ζj(t))− F(t, ζ(t)))

∣∣∣∣
+Λ(δ)

∣∣∣∣ ∫ t

0

F(x, ζj(x))(t− x)δ−1dx−
∫ t

0

F(x, ζ(x))(t− x)δ−1dx

∣∣∣∣
≤ Υ(δ)

∣∣∣∣(F(t, ζj(t))− F(t, ζ(t)))

∣∣∣∣+ Λ(δ)

∫ t

0

|F(x, ζj(x))− F(x, ζ(x))|(t− x)δ−1dx

≤ Υ(δ)CF‖F(x, ζj(x))− F(x, ζ(x))‖C + Λ(δ)CF‖F(x, ζj(x))− F(x, ζ(x))‖C
tδ

δ

≤
(

Υ(δ) +
Λ(δ)T δ

δ

)
CF‖F(x, ζj(x))− F(x, ζ(x))‖C.

Continuity of F implies the continuity of P.

Now suppose that W = {ζ ∈ E : ‖ζ‖ ≤ c > 0}. We now show that
P[W ] is bounded, i.e. there exists d > 0 such that for every ζ ∈ W ,
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‖Pζ‖ ≤ d. For any t ∈ A, we have

|Pζ(t)| =
∣∣∣∣ζ0 + Υ(δ)F(t, ζj(t)) + Λ(δ)

∫ t

0

F(x, ζj(x))(t− x)δ−1dx

∣∣∣∣
≤ |ζ0|+ Υ(δ)|F(t, ζ(t))|+ Λ(δ)

∣∣∣∣ ∫ t

0

F(x, ζ(x))(t− x)δ−1dx

∣∣∣∣
≤ |ζ0|+ Υ(δ)|F(t, ζ(t))|+ Λ(δ)

∫ t

0

|F(x, ζ(x))|(t− x)δ−1dx

≤ |ζ0|+ Υ(δ)L(1 + |ζ|) + Λ(δ)L

∫ t

0

(1 + |ζ(x)|)(t− x)δ−1dx

≤ |ζ0|+ Υ(δ)L(1 + ‖ζ‖) + Λ(δ)L(1 + ‖ζ‖)T
δ

δ

≤ |ζ0|+ Υ(δ)L(1 + c) + Λ(δ)L(1 + c)
T δ

δ

= |ζ0|+
(

Υ(δ) + Λ(δ)
T δ

δ

)
L(1 + c) = d,

which implies |Pζ(t)| ≤ d. For the equicontinuity of P, let t1, t2 ∈ A
with 0 ≤ t1, t2 ≤ T and ζ ∈W . Utilizing [A3], we have

|Pζ(t1)− Pζ(t2)| =
∣∣∣∣Υ(δ)F(t1, ζ(t1)) + Λ(δ)

∫ t1

0
F(x, ζ(x))(t1 − x)δ−1dx

−Υ(δ)F(t2, ζ(t2))− Λ(δ)

∫ t2

0
F(x, ζ(x))(t2 − x)δ−1dx

∣∣∣∣
≤ Υ(δ)

∣∣∣∣(F(t1, ζ(t1))− F(t2, ζ(t2)))

∣∣∣∣
+ Λ(δ)

∣∣∣∣ ∫ t1

0
F(x, ζ(x))(t1 − x)δ−1dx−

∫ t2

0
F(x, ζ(x))(t2 − x)δ−1dx

∣∣∣∣
≤ Υ(δ)

∣∣∣∣(F(t1, ζ(t1))− F(t2, ζ(t2)))

∣∣∣∣+ Λ(δ)

∣∣∣∣ ∫ t1

0
F(x, ζ(x))(t1 − x)δ−1dx

−
∫ t1

0
F(x, ζ(x))(t2 − x)δ−1dx−

∫ t2

t1

F(x, ζ(x))(t2 − x)δ−1dx

∣∣∣∣
≤ Υ(δ)

∣∣∣∣(F(t1, ζ(t1))− F(t2, ζ(t2)))

∣∣∣∣+ Λ(δ)

∣∣∣∣ ∫ t1

0
F(x, ζ(x))[(t1 − x)δ−1 − (t2 − x)δ−1]dx

∣∣∣∣
+ Λ(δ)

∣∣∣∣ ∫ t2

t1

F(x, ζ(x))(t2 − x)δ−1dx

∣∣∣∣ ≤ Υ(δ)

∣∣∣∣(F(t1, ζ(t1))− F(t2, ζ(t2)))

∣∣∣∣
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+ Λ(δ)

∣∣∣∣ ∫ t1

0
F(x, ζ(x))[(t1 − x)δ−1 − (t2 − x)δ−1]dx

∣∣∣∣+ Λ(δ)L(1 + |ζ|)
∫ t2

t1

|(t2 − x)δ−1|dx

≤ Υ(δ)

∣∣∣∣(F(t1, ζ(t1))− F(t2, ζ(t2)))

∣∣∣∣+ Λ(δ)

∣∣∣∣ ∫ t1

0
F(x, ζ(x))[(t1 − x)δ−1 − (t2 − x)δ−1]dx

∣∣∣∣
+ Λ(δ)L(1 + d)

(t2 − t1)δ

δ
.

As t1 tends to t2, continuity of F tends R.H.S of above inequality to
zero. Hence P is equicontinuous. Therefore, we conclude by Arzela-
Ascoli Theorem that P is completely continuous.
Finally, we show that the set Q(P) = {ζ ∈ E : ζ = ϑPζ} is bounded for
some ϑ ∈ (0, 1). For each t ∈ A, we have

|Pζ(t)| =
∣∣∣∣ζ0 + Υ(δ)F(t, ζj(t)) + Λ(δ)

∫ t

0

F(x, ζj(x))(t− x)δ−1dx

∣∣∣∣
≤ |ζ0|+ Υ(δ)|F(t, ζ(t))|+ Λ(δ)

∣∣∣∣ ∫ t

0

F(x, ζ(x))(t− x)δ−1dx

∣∣∣∣
≤ |ζ0|+ Υ(δ)|F(t, ζ(t))|+ Λ(δ)

∫ t

0

|F(x, ζ(x))|(t− x)δ−1dx

≤ |ζ0|+ Υ(δ)L(1 + |ζ(t)|) + Λ(δ)L

∫ t

0

(1 + |ζ(x)|)(t− x)δ−1dx

≤ |ζ0|+ Υ(δ)L(1 + |ζ(t)|) + Λ(δ)L
T δ

δ
+ Λ(δ)L

∫ t

0

|ζ(x)|(t− x)δ−1dx

= |ζ0|+ Υ(δ)L+ Υ(δ)L|ζ(t)|+ Λ(δ)L
T δ

δ
+ Λ(δ)L

∫ t

0

|ζ(x)|(t− x)δ−1dx.

Writing S = |ζ0|+ Υ(δ)L+ Λ(δ)LT
δ

δ and since 1−Υ(δ)L > 0, we can
have

|Pζ(t)| ≤ S

1−Υ(δ)L
+

Λ(δ)L

1−Υ(δ)L

∫ t

0
|ζ(x)|(t− x)δ−1dx,

utilizing Gronwall’s inequality, we obtain

|Pζ(t)| ≤ S

1−Υ(δ)L
exp

(
Λ(δ)LT δ

(1−Υ(δ)L)δ

)
.

Therefore Q(P) is bounded. Consequently, by Schaefer’s theorem P has
a fixed point which is infact a solution of (8). �

We now show by using Banach contraction principle that solution of
(8) is unique.
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Theorem 5.2. If [A1]-[A2] together with
(

Υ(δ) + Λ(δ)T δ

δ

)
CF < 1 hold,

then there exists a unique solution of (8).

Proof. Considering the equation together with (8), we have

ζ(t) = P[ζ(t)]. (13)

The operator P given in (11), is well defined by [A1]. Now for all ζ, ζ ′ ∈
E , we have

|P[ζ(t)]− P[ζ′(t)]|

=

∣∣∣∣Υ(δ)(F(t, ζ(t))− F(t, ζ′(t))) + Λ(δ)

∫ t

0

(F(x, ζ(x))− F(x, ζ′(x)))(t− x)δ−1dx

∣∣∣∣
≤ Υ(δ)|F(t, ζ(t))− F(t, ζ′(t))|+ Λ(δ)

∫ t

0

|F(x, ζ(x))− F(x, ζ(x))|(t− x)δ−1dx

≤ Υ(δ)CF|ζ(t)− ζ′(t)|+ Λ(δ)CF

∫ t

0

|ζ(x)− ζ′(x)|(t− x)δ−1dx

≤ Υ(δ)CF‖ζ − ζ′‖C + Λ(δ)CF‖ζ − ζ′‖C
∫ t

0

(t− x)δ−1dx

≤ (Υ(δ) +
Λ(δ)T δ

δ
)CF‖ζ − ζ′‖C

= A‖ζ − ζ′‖C,

where

A =

(
Υ(δ) +

Λ(δ)T δ

δ

)
CF.

This implies

‖P[ζ(t)]− P[ζ ′(t)]‖C ≤ A‖ζ − ζ ′‖C , (14)

Thus the defined operator P is a contraction, and hence Banach con-
traction principle guarantees that P has a unique fixed point which is
the solution model (8). �
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6 Special Solution by Iterative Approach

We obtain iterative solution of the model (2). Apply Shehu transforms
(Sh) on both sides of (2), we get

Sh[
ABC

D
δ
Sp] = Sh

∐
p

−ωpSp − ζpSp(Ip + ΨAp)− ωwSpM

 ,
Sh[

ABC
D
δ
Ep] = Sh

[
ζpSp(Ip + ΨAp) + ωwSpM− (1− Φp)ηpEp − Φp%pEp − ωpEp

]
,

Sh[
ABC

D
δ
Ip] = Sh[(1− Φp)ηpEp − (τp + ωp)Ip], (15)

Sh[
ABC

D
δ
Ap] = Sh[Φp%PEp − (τap + ωp)Ap],

Sh[
ABC

D
δ
Rp] = Sh[τpIp + τapAp − ωpRp],

Sh[
ABC

D
δ
M] = Sh[φpIp +$pAp − ϕM].

Using definition of Shehu transforms of ABC-derivative, we get

M(δ)

1− δ + δ
(
u
s

)δ
[
Sh(Sp)−

(
u

s

)
Sp(0)

]
= Sh

∐
p

−ωpSp − ζpSp(Ip + ΨAp)− ωwSpM

 ,
M(δ)

1− δ + δ
(
u
s

)δ
[
Sh(Ep)−

(
u

s

)
Ep(0)

]
= Sh

[
ζpSp(Ip + ΨAp) + ωwSpM− (1− Φp)ηpEp

−Φp%pEp − ωpEp
]
,

M(δ)

1− δ + δ
(
u
s

)δ
[
Sh(Ip)−

(
u

s

)
Ip(0)

]
= Sh[(1− Φp)ηpEp − (τp + ωp)Ip],

M(δ)

1− δ + δ
(
u
s

)δ
[
Sh(Ap)−

(
u

s

)
Ap(0)

]
= Sh[Φp%PEp − (τap + ωp)Ap],

M(δ)

1− δ + δ
(
u
s

)δ
[
Sh(Rp)−

(
u

s

)
Rp(0)

]
= Sh[τpIp + τapAp − ωpRp],

M(δ)

1− δ + δ
(
u
s

)δ
[
Sh(Mp)−

(
u

s

)
Mp(0)

]
= Sh[φpIp +$pAp − ϕM],

On rearranging

Sh(Sp) =

(
u

s

)
Sp(0) +

1− δ + δ
(
u
s

)δ
M(δ)

Sh

∐
p

−ωpSp − ζpSp(Ip + ΨAp)− ωwSpM

 ,
Sh(Ep) =

(
u

s

)
Ep(0) +

1− δ + δ
(
u
s

)δ
M(δ)

Sh

[
ζpSp(Ip + ΨAp) + ωwSpM− (1− Φp)ηpEp

−Φp%pEp − ωpEp
]
,

Sh(Ip) =

(
u

s

)
Ip(0) +

1− δ + δ
(
u
s

)δ
M(δ)

Sh[(1− Φp)ηpEp − (τp + ωp)Ip], (16)

Sh(Ap) =

(
u

s

)
Ap(0) +

1− δ + δ
(
u
s

)δ
M(δ)

Sh[Φp%PEp − (τap + ωp)Ap],

Sh(Rp) =

(
u

s

)
Rp(0) +

1− δ + δ
(
u
s

)δ
M(δ)

Sh[τpIp + τapAp − ωpRp],

Sh(Mp) =

(
u

s

)
Mp(0) +

1− δ + δ
(
u
s

)δ
M(δ)

Sh[φpIp +$pAp − ϕM],
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Operating S−1
h on both sides of (16) and taking into account that

S−1
h

(
u
s

)
= 1, we get

Sp = Sp(0) + S
−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh

∐
p

−ωpSp − ζpSp(Ip + ΨAp)− ωwSpM


 ,

Ep = Ep(0) + S
−1
h

{ 1− δ + δ
(
u
s

)δ
M(δ)

Sh

[
ζpSp(Ip + ΨAp) + ωwSpM− (1− Φp)ηpEp

−Φp%pEp − ωpEp
]}
,

Ip = Ip(0) + S
−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[(1− Φp)ηpEp − (τp + ωp)Ip]

 , (17)

Ap = Ap(0) + S
−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[Φp%PEp − (τap + ωp)Ap]

 ,

Rp = Rp(0) + S
−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[τpIp + τapAp − ωpRp]

 ,

Mp = Mp(0) + S
−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[φpIp +$pAp − ϕM]

 ,
The recursive formula is given by

S
n+1
p = S

n
p (0) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh

∐
p

−ωpSnp − ζpS
n
p (Ip + ΨA

n
p )− ωwS

n
pM

n


 ,

E
n+1
p = E

n
p (0) + S

−1
h

{ 1− δ + δ
(
u
s

)δ
M(δ)

Sh

[
ζpS

n
p (I

n
p + ΨA

n
p ) + ωwS

n
pM

n − (1− Φp)ηpE
n
p

−Φp%pE
n
p − ωpE

n
p

]}
,

I
n+1
p = I

n
p (0) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[(1− Φp)ηpE
n
p − (τp + ωp)I

n
p ]

 , (18)

A
n+1
p = A

n
p (0) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[Φp%PE
n
p − (τap + ωp)A

n
p ]

 ,

R
n+1
p = R

n
p (0) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[τpI
n
p + τapA

n
p − ωpR

n
p ]

 ,

M
n+1
p = M

n
p (0) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[φpI
n
p +$pA

n
p − ϕM

n
]

 ,

The approximate solution of (18) is given by

Sp = lim
n→∞

Sn
p , Ep = lim

n→∞
Enp , Ip = lim

n→∞
Inp ,

Ap = lim
n→∞

Anp , Rp = lim
n→∞

Rn
p , Mp = lim

n→∞
Mn

p .
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7 Stability Analysis and Iterative Solution

Consider a Banach space X together with norm ‖x‖ = max
t∈[a,b]

|x(t)|, x ∈ X

and F a self map on X . The recursive procedure is
Sn+1 = h(F , Sn). (19)

The set of fixed points Fix(F) of F is nonempty and Sn converges to
a point of Fix(F). Choose a sequence (fn) in X and en = ‖fn+1 −
h(F , Sn)‖. The recursive procedure (19) is F-stable if lim

n→∞
en = 0. We

suppose that the sequence (fn) is bounded above, else it will diverge.
Under these conditions, Sn+1 = FSn is Picard’s iteration as described
in [38], implies it is F-stable.

Theorem 7.1. Let (X , ‖ · ‖) be a Banach space and F be a self map on
X satisfying

‖Fx −Fy‖ ≤ R‖x−Fx‖+ r‖x− y‖ (20)

for all x, y ∈ X , where R ≥ 0 and 0 ≤ r < 1. Then F is Picard F-stable.
Theorem 7.2. A self map F given by

F(S
n
p (t)) = S

n+1
p (t)

= S
n
p (t) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh

∐
p

−ωpSnp − ζpS
n
p (I

n
p + ΨA

n
p )− ωwS

n
pM

n




F(E
n
p (t)) = E

n+1
p (t)

= E
n
p (t) + S

−1
h

{ 1− δ + δ
(
u
s

)δ
M(δ)

Sh

[
ζpS

n
p (I

n
p + ΨA

n
p ) + ωwS

n
pM

n − (1− Φp)ηpE
n
p

−Φp%pE
n
p − ωpE

n
p

]}
F(I

n
p (t)) = I

n+1
p (t)

= I
n
p (t) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[(1− Φp)ηpE
n
p − (τp + ωp)I

n
p ]


F(A

n
p (t)) = A

n+1
p (t)

= A
n
p (t) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[Φp%PE
n
p − (τap + ωp)A

n
p ]


F(R

n
p (t)) = R

n+1
p (t)

= R
n
p (t) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[τpI
n
p + τapA

n
p − ωpR

n
p ]


F(M

n
(t)) = M

n+1
(t)

= M
n
p (t) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[φpI
n
p +$pA

n
p − ϕM

n
]


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is F-stable in H1(a, b) if the following conditions holds:



1− ωpf1(κ)− ζp
Np

(L1 + L′3 + ΨL1 + ΨL′4)f2(κ)− ωw(L1 + L′6)}f3(κ) < 1

1 +
ζp
Np

(L1 + L′3 + ψL1 + ψL′4)f4(κ) + ωw(L1 + L′6)f5(κ)− {(1− Φp)ηp + Φp%p + ωp}f6(κ) < 1

1 + (1− Φp)ηpf7(κ)− (τp + ωp)f8(κ) < 1

1 + Φp%P f9(κ)− (τap + ωp)f10(κ) < 1

1 + τpf11(κ) + τapf12(κ)− ωpf13(κ) < 1

1 + φpf14(κ) +$pf15(κ)− ϕp(κ)f16(κ) < 1.

Proof. We first show that F has a fixed point. For m,n ∈ N, we have

F(S
n
p (t))− F(S

m
p (t))

= S
n
p (t)−S

m
p (t) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh

∐
p

−ωpSnp − ζpS
n
p (I

n
p + ΨA

n
p )− ωwS

n
pM

n




− S−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh

∐
p

−ωpSmp − ζpS
m
p (I

m
p + ΨA

m
p )− ωwS

m
p M

m




F(E
n
p (t))− F(E

m
p (t))

= E
n
p (t)− E

m
p (t) + S

−1
h

{ 1− δ + δ
(
u
s

)δ
M(δ)

Sh

[
ζpS

n
p (I

n
p + ΨA

n
p ) + ωwS

n
pM

n − (1− Φp)ηpE
n
p

− Φp%pE
n
p − ωpE

n
p

]}

− S−1
h

{ 1− δ + δ
(
u
s

)δ
M(δ)

Sh

[
ζpS

m
p (I

m
p + ΨA

m
p ) + ωwS

m
p M

m − (1− Φp)ηpE
m
p

− Φp%pE
m
p − ωpE

m
p

]}
F(I

n
p (t))− F(I

m
p (t))

= I
n
p (t)− I

m
p (t) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[(1− Φp)ηpE
n
p − (τp + ωp)I

n
p ]


− S−1

h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[(1− Φp)ηpE
m
p − (τp + ωp)I

m
p ]


F(A

n
p (t))− F(A

m
p (t))

= A
n
p (t)− A

m
p (t) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[Φp%PE
n
p − (τap + ωp)A

n
p ]


− S−1

h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[Φp%PE
m
p − (τap + ωp)A

m
p ]


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F(R
n
p (t))− F(R

m
p (t))

= R
n
p (t)−R

m
p (t) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[τpI
n
p + τapA

n
p − ωpR

n
p ]


− S−1

h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[τpI
m
p + τapA

m
p − ωpR

m
p ]


F(M

n
(t))− F(M

m
(t))

= M
n
p (t)−M

m
p (t) + S

−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[φpI
n
p +$pA

n
p − ϕM

n
]


− S−1

h


1− δ + δ

(
u
s

)δ
M(δ)

Sh[φpI
m
p +$pA

m
p − ϕM

m
]


Taking norm, we have

‖F(S
n
p (t))− F(S

m
p (t))‖

≤ ‖Snp (t)−S
m
p (t)‖ +

∥∥∥∥S−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh

∐
p

−ωpSnp − ζpS
n
p (I

n
p + ΨA

n
p )− ωwS

n
pM

n




−S−1
h


1− δ + δ

(
u
s

)δ
M(δ)

Sh

∐
p

−ωpSmp − ζpS
m
p (I

m
p + ΨA

m
p )− ωwS

m
p M

m



∥∥∥∥

≤ ‖Snp (t)−S
m
p (t)‖ + S

−1
h

{ 1− δ + δ
(
u
s

)δ
M(δ)

Sh

[
− ‖ωp(S

n
p −S

m
p )‖ − ‖ζpSnp (I

n
p − I

m
p )‖

−‖ζpImp (S
n
p −S

m
p )‖ − ‖ΨζpSnp (A

n
p − A

m
p )‖ − ‖ΨζpAmp (S

n
p −S

m
p )‖ − ‖ωwS

n
p (M

n −M
m‖

−‖ωwM
m

(S
n
p −S

m
p ‖
]}
. (21)

Due to similar functioning of both solutions, we have

‖Sn
p (t)−Sm

p (t)‖ ∼= ‖Enp (t)− Emp (t)‖
∼= ‖Inp (t)− Imp (t)‖
∼= ‖Anp (t)− Amp (t)‖ (22)
∼= ‖Rn

p (t)−Rm
p (t)‖

∼= ‖Mn(t)−Mm(t)‖.

Replacing (22) in (21), we get

‖F(S
n
p (t))− F(S

m
p (t))‖

≤ ‖Snp (t)−S
m
p (t)‖ + S

−1
h

{ 1− δ + δ
(
u
s

)δ
M(δ)

Sh

[
− ‖ωp(S

n
p −S

m
p )‖ − ‖ζpSnp (S

n
p −S

m
p )‖

−‖ζpImp (S
n
p −S

m
p )‖ − ‖ΨζpSnp (S

n
p −S

m
p )‖ − ‖ΨζpAmp (S

n
p −S

m
p )‖ − ‖ωwS

n
p (S

n −S
m‖

−‖ωwM
m

(S
n
p −S

m
p ‖
]}
. (23)
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The sequences Sn
p , I

m
p ,A

m
p ,M

m are bounded being convergent, so there
exist L1, L

′
3, L

′
4, L

′
6 for all t such that

‖Sn
p‖ < L1, ‖Imp ‖ < L′3, ‖Amp ‖ < L′4, ‖Mm‖ < L′6.

Together with this, (23) become

‖F(Snp (t))−F(Smp (t))‖

≤ {1− ωpf1(κ)− ζp(L1 + L′3 + ΨL1 + ΨL′4)f2(κ)− ωw(L1 + L′6)}f3(κ)‖Snp −Smp ‖,(24)

where fi are the functions obtained by S−1
h

{
1−δ+δ(us )

δ

M(δ) Sh[·]
}

. In a

similar fashion, we can have

‖F(E
n
p (t))− F(E

m
p (t))‖ ≤

[
1 + ζp(L1 + L

′
3 + ΨL1 + ΨL

′
4)f4(κ) + ωw(L1 + L

′
6)f5(κ)

−{(1− Φp)ηp + Φp%p + ωp}f6(κ)

]
‖Enp − E

m
p ‖ (25)

‖F(I
n
p (t))− F(I

m
p (t))‖ ≤ {1 + (1− Φp)ηpf7(κ)− (τp + ωp)f8(κ)}‖Inp − I

m
p ‖ (26)

‖F(A
n
p (t))− F(A

m
p (t))‖ ≤ {1 + Φp%pf9(κ)− (τap + ωp)f10(κ)}‖Anp − A

m
p ‖ (27)

‖F(R
n
p (t))− F(R

m
p (t))‖ ≤ {1 + τpf11(κ) + τapf12(κ)− ωpf13(κ)}‖Rnp −R

m
p ‖ (28)

‖F(M
n

(t))− F(M
m

(t))‖ ≤ {1 + φpf14(κ) +$pf15(κ)− ϕp(κ)f16(κ)}‖Mn −M
m‖, (29)

where

1− ωpf1(κ)− ζp(L1 + L′3 + ΨL1 + ΨL′4)f2(κ)− ωw(L1 + L′6)}f3(κ) < 1

1 + ζp(L1 + L′3 + ΨL1 + ΨL′4)f4(κ) + ωw(L1 + L′6)f5(κ)− {(1− Φp)ηp + Φp%p + ωp}f6(κ) < 1

1 + (1− Φp)ηpf7(κ)− (τp + ωp)f8(κ) < 1

1 + Φp%P f9(κ)− (τap + ωp)f10(κ) < 1

1 + τpf11(κ) + τapf12(κ)− ωpf13(κ) < 1

1 + φpf14(κ) +$pf15(κ)− ϕp(κ)f16(κ) < 1.

Hence, F possesses a fixed point. Thus to prove that the assumptions of
Theorem 7.1 are satisfied by F , we assume inequalities (24)-(29) holds,
denote r = (0, 0, 0, 0, 0, 0) and

R =



1− ωpf1(κ)− ζp(L1 + L′3 + ΨL1 + ΨL′4)f2(κ)− ωw(L1 + L′6)}f3(κ) < 1

1 + ζp(L1 + L′3 + ΨL1 + ΨL′4)f4(κ) + ωw(L1 + L′6)f5(κ)− {(1− Φp)ηp + Φp%p + ωp}f6(κ) < 1

1 + (1− Φp)ηpf7(κ)− (τp + ωp)f8(κ) < 1

1 + Φp%P f9(κ)− (τap + ωp)f10(κ) < 1

1 + τpf11(κ) + τapf12(κ)− ωpf13(κ) < 1

1 + φpf14(κ) +$pf15(κ)− ϕp(κ)f16(κ) < 1.

Hence all the conditions of Theorem 7.1 are satisfied, therefor F is
Picard F-stable. �
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8 Numerical Results

In this section, using the three-step Adams method, we solve the system
of equations (2) and present an approximate solution and perform a
simulation for forecasting of transmission of COVID-19 in Iran.

8.1 Numerical Method

Using the Adams-Bashforth scheme, we present a numerical solution
for the COVID-19 transmission model (2). Owolabi and Atangana in-
troduced the three-step Adams-Bashforth scheme with the Atangana-
Baleanu-Caputo fractional derivative [30], we use this method to find
three step Adams-Bashforth scheme for fractional order system (2).
Consider the fractional differential equation with the Atangana-Baleanu-
Caputo fractional derivative

ABCDδ
t z(t) = f(t, z(t)), 0 < δ < 1. (30)

Using the fundamental calculus theorem, we get

z(t)− z(0) =
(1− δ)
AB(δ)

f(t, z(t)) +
δ

AB(δ)Γ(δ)

∫ t

0
(t− τ)δ−1f(τ, z(τ))dτ.

(31)
By discretize the time interval [0,t] in steps of h, we obtain the sequence
t0 = 0, tm+1 = tm + h,m = 0, 1, 2, ..., n − 1, tn = t. By replacing t =
tm+1 and t = tm in above equation and computing the difference of the
resulting equations, we obtain

z(tm+1)− z(tm) =
(1− δ)
AB(δ)

[f(tm, x(tm))− f(tm−1, x(tm−1))] +
δ

AB(δ)Γ(δ)

×
∫ tm+1

0

(tm+1 − τ)δ−1f(τ, z(τ))dτ − δ

AB(δ)Γ(δ)

∫ tm

0

(tm − τ)δ−1f(τ, z(τ))dτ.

By putting tm = mh and tm+1 = (m+ 1)h and z(tm) = zm, z(tm+1) =
zm+1, we simplify the last equation as follows

zm+1 = zm+f(tm, zm){ 1− δ
AB(δ)

− δ

AB(δ)Γ(δ)
hδ[

2(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
]

− δ

AB(δ)Γ(δ)
hδ[

mδ

δ
− mδ+1

δ + 1
]}+ f(tm−1, zm−1){ δ − 1

AB(δ)
− δ

AB(δ)Γ(δ)
hδ
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×[
(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
+

mδ+1

AB(δ)Γ(δ)h
]}.

Using this method, we can obtain the solution of the system (2) as
follows

Sp,m+1 = Sp,m+f(tm,Sp,m){ 1− δ
AB(δ)

− δ

AB(δ)Γ(δ)
hδ[

2(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
]

− δ

AB(δ)Γ(δ)
hδ[

mδ

δ
− mδ+1

δ + 1
]}+ f(tm−1,Sp,m−1){ δ − 1

AB(δ)
− δ

AB(δ)Γ(δ)
hδ

×[
(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
+

mδ+1

AB(δ)Γ(δ)h
]},

Ep,m+1 = Ep,m+f(tm,Ep,m){ 1− δ
AB(δ)

− δ

AB(δ)Γ(δ)
hδ[

2(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
]

− δ

AB(δ)Γ(δ)
hδ[

mδ

δ
− mδ+1

δ + 1
]}+ f(tm−1,Ep,m−1){ δ − 1

AB(δ)
− δ

AB(δ)Γ(δ)
hδ

×[
(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
+

mδ+1

AB(δ)Γ(δ)h
]},

Ip,m+1 = Ip,m + f(tm, Ip,m){ 1− δ
AB(δ)

− δ

AB(δ)Γ(δ)
hδ[

2(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
]

− δ

AB(δ)Γ(δ)
hδ[

mδ

δ
− mδ+1

δ + 1
]}+ f(tm−1, Ip,m−1){ δ − 1

AB(δ)
− δ

AB(δ)Γ(δ)
hδ

×[
(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
+

mδ+1

AB(δ)Γ(δ)h
]},

Ap,m+1 = Ap,m+f(tm,Ap,m){ 1− δ
AB(δ)

− δ

AB(δ)Γ(δ)
hδ[

2(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
]

− δ

AB(δ)Γ(δ)
hδ[

mδ

δ
− mδ+1

δ + 1
]}+ f(tm−1,Ap,m−1){ δ − 1

AB(δ)
− δ

AB(δ)Γ(δ)
hδ

×[
(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
+

mδ+1

AB(δ)Γ(δ)h
]},

Rp,m+1 = Rp,m+f(tm,Rp,m){ 1− δ
AB(δ)

− δ

AB(δ)Γ(δ)
hδ[

2(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
]

− δ

AB(δ)Γ(δ)
hδ[

mδ

δ
− mδ+1

δ + 1
]}+ f(tm−1,Rp,m−1){ δ − 1

AB(δ)
− δ

AB(δ)Γ(δ)
hδ
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×[
(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
+

mδ+1

AB(δ)Γ(δ)h
]},

Mm+1 = Mm + f(tm,Mm){ 1− δ
AB(δ)

− δ

AB(δ)Γ(δ)
hδ[

2(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
]

− δ

AB(δ)Γ(δ)
hδ[

mδ

δ
− mδ+1

δ + 1
]}+ f(tm−1,Mm−1){ δ − 1

AB(δ)
− δ

AB(δ)Γ(δ)
hδ

×[
(m+ 1)δ

δ
− (m+ 1)δ+1

δ + 1
+

mδ+1

AB(δ)Γ(δ)h
]}.

8.2 Simulation

In Indonesia, a new wave of the release of Covid 19 has started and the
number of patients is increasing, so we present a numerical simulation to
predict the release of Covid 19 in this country. To this end we assumed
ρ = 0.99, some parameters are estimated, and the rest parameters are
fitted by the least curve fitting technique. According to report of WHO,
The total population of the Indonesia in 25-June 2021 is N = 276351443,
the birth rate for the Indonesia in 2020 was 17.45 births per 1000 people,
and the death rate was 6.6 per 1000 people. Thus for every day, we have
Λ = n×N

365 = 13211.87 and m = 0.0066
365 = 0.0000180821. Given that

in Indonesia, have no connection with the reservoir , so we considered
βw = 0, µ = 0, µ

′
= 0. For the fitting, we use the information provided

by the World Health Organization for COVID-19. The fitted curve and
the reported cases of COVID-19 in 2021 at the Indonesia from 18 May
to 23 June 2021 are plotted in Figure (1), so that every part is 3 days.
Using this method, we obtain the parameters as follows

Λ = 13211.87,m = 18.0821× 10−6, βp = 2.4× 10−6, κ = 0.001, δ = 0.05,

ω = 1.1× 10−4, ω
′

= 3.4× 10−4, γ = 0.03, γ
′

= 0.07, ε = 0.01

In Figures (2)-(4), we plotted the results of the system of COVID-19
transmission (2). As you can see in Figure (2)-(4), the variables have
different results in different amounts of δ but exhibit the same behavior.
Figure (2) shows that two months after the virus is released, almost
the entire population is at risk for the disease. Figure (3) shows that
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Figure 1: The fitted curve and the reported cases of COVID-19 in the In-
donesia from 18 May to 23 June 2021.

the number of people with COVID-19 increases until 300 days. Also,
the forecast is that the number of infected people could rise to 800,000.
Figure (4) shows that the number of people who have recovered or died
also increases over time and the number of virus in reservoir decreases.
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Figure 2: Plots of Sp and Ep for different values of δ = 0.95, 0.9, 0.85, 0.8.
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Figure 3: Plots of Ip and Ap for different values of δ = 0.95, 0.9, 0.85, 0.8.
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Figure 4: Plots of Rp and M(t) for different values of δ = 0.95, 0.9, 0.85, 0.8.

9 Conclusion

In this paper, considering fractional order derivative due to Atangana
and Baleanu we have studied mathematical model of COVID-19 trans-
mission. We presented the existence and uniqueness of the related frac-
tional differential equation of the model utilizing Schaefer’s and Banach
fixed point theorems respectively. Making use of Shehu transform and
Picard iterative procedure, we presented iterative solutions and proved
the stability of iterative method. Also, the equilibrium points of the
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system and its stability conditions are determined.The resulting differ-
ential system is solved using two-step Adams-Bashforth method, and
we have obtained approximate solutions. A simulation of COVID-19
transmission based of real data in Indonesia is presented.
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