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Abstract. In this article we introduce the concepts of minimal prime
z-filter, essential z-filter and r-filter. We investigate and study the be-
havior of minimal prime z-filters and compare them with minimal prime
ideals and coz-ultrafilters. We show that X is a P -space if and only if
every fixed prime z-filter is minimal prime. It is observed that if X is
a ∂-space then X is a P -space if and only if Z[Mf ] is an r-filter, for
every f ∈ C(X). The collection of all minimal prime z-filters will be
topologized and it is proved that the space of minimal prime z-filters is
homeomorphic with the space of coz-ultrafilters. Finally, it is obtained
several properties and relations between the space of minimal prime
z-filters and the space of minimal prime ideals in C(X).
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1 Introduction

We consider X to be a completely regular Hausdorff space and also all
rings are commutative with identity. We denote by C(X) the ring of all
real-valued continuous functions on the space X. For each f ∈ C(X),
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the set Z(f) = {x ∈ X : f(x) = 0} is the zero-set of f and the set
coz(f) = {x ∈ X : f(x) 6= 0} is the cozero-set of f . Also f ∈ C(X)
is a zero divisor if and only if Z◦(f) = intXZ(f) 6= ∅. Denote the
collection of all zero-sets of X as Z(X) and the collection of all cozero-
sets of X by Coz(X). For each f ∈ C(X) let Mf be the intersection
of all maximal ideals containing f . It is easy to see that Mf = {g ∈
C(X) : Z(f) ⊆ Z(g)}. If I is an ideal in C(X) and F is a z-filter on
X, then we note Z[I] = {Z(f) : f ∈ I} and Z−1[F ] = {f : Z(f) ∈ F}.
An ideal I of C(X) is a z-ideal if Z(f) ∈ Z[I] implies f ∈ I, that is
to say, if I = Z−1[Z[I]]. Every minimal prime ideal, every maximal
ideal in C(X) and every Mf , for each f ∈ C(X), are z-ideals. Note
F = Z[Z−1[F ]] is always true for a z-filter F . For x ∈ X, we have
a z-ideal Ox = {f ∈ C(X) : x ∈ Z◦(f)} contained in the maximal
ideal Mx = {f ∈ C(X) : x ∈ Z(f)}. A space X is said to be P -space
if Ox = Mx, for any x ∈ X or equivalently, Z(f) = Z◦(f), for every
f ∈ C(X) or equivalently, every prime ideal in C(X) is a minimal prime
ideal. For more details and undefined terms and notations, see [6], [7].

In Section 2, we introduce the concept of minimal prime z-filter
and compare them with minimal prime ideal. In Section 3, we intro-
duce the concept of r-filter and compare them with r-ideal. Section 4,
devoted to coz-ultrafilters. Finally, in Section 5 we investigate the rela-
tionship between the space of minimal prime z-filters and the space of
coz-ultrafilters.

2 Minimal Prime z-filters

In this section we introduce the concept of minimal prime z-filter. We
begin with the following definitions.

Definition 2.1. a) A prime z-filter F is called minimal prime if it does
not properly contain any other prime z-filter.
b) If F is a z-filter on X, then Ann(F) = {Z ∈ Z(X) : Z ∪ Z ′ =
X for any Z ′ ∈ F} is called the annihilator of F .

One can easily show that if F is a nontrivial z-filter on X, then
Ann(F) is a z-filter on X, too. The following result shows that the
minimal prime z-filters behave like the prime z-filters and z-ultrafilters.
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Proposition 2.2. The following statements hold.
a) If F is a minimal prime z-filter on X, then Z−1[F ] is a minimal
prime ideal in C(X).
b) If P is a minimal prime ideal of C(X), then Z[P ] is a minimal prime
z-filter on X.

Proof. a) It is known that Z−1[F ] is a prime ideal. Now suppose that
P0 is a minimal prime ideal such that P0 ⊆ Z−1[F ]. Hence Z[P0] ⊆
ZZ−1[F ] = F . By hypothesis we have Z[P0] = F . Since P0 is a z-ideal,
it follows that P0 = Z−1Z[P0] = Z−1[F ], that is Z−1[F ] is a minimal
prime ideal.
b) Clearly Z[P ] is a prime z-filter. Assume that F is a minimal prime
z-filter such that F ⊆ Z[P ]. Thus Z−1[F ] ⊆ Z−1Z[P ] = P , for P is a
z-ideal. Since P is minimal prime, it conclude that Z−1[F ] = P , and
hence F = Z[P ], i.e., Z[P ] is a minimal prime z-filter. �

Recall that in reduced ring R a prime ideal P is minimal if and only
if for every x ∈ P there exists an r /∈ P such that xr = 0, see [9]. The
following proposition is a counterpart of the previous result for minimal
prime z-filters.

Proposition 2.3. A prime z-filter F on X is minimal prime if and
only if for every Z ∈ F there exists Z ′ /∈ F such that Z ∪ Z ′ = X.

Proof. Suppose that F is minimal prime z-filter and Z = Z(f) ∈ F .
Hence f ∈ Z−1[F ] and so by part (a) of the previous proposition there
is a g /∈ Z−1[F ] such that fg = 0. Therefore Z ′ = Z(g) /∈ F and it is
obvious that Z ∪Z ′ = X. Conversely, let E be a minimal prime z-filter,
E ⊆ F and Z ∈ F be an arbitrary zero-set. By hypothesis there is a
Z ′ /∈ F such that Z ∪ Z ′ = X. Now X ∈ E and Z ′ /∈ E implies that
Z ∈ E . Consequently, E = F , that is F is a minimal prime z-filter. �

It is well-known that if I be a finitely generated ideal in reduced
ring R, then I is contained in a minimal prime ideal if and only if
Ann(I) 6= (0), see [9]. The following proposition is a counterpart of the
previous statement for minimal prime z-filters.
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Proposition 2.4. Suppose that I be a finitely generated ideal in C(X).
Then z-filter Z[I] is contained in a minimal prime z-filter if and only if
Ann(Z[I]) 6= {X}.

Proof. Let Z[I] ⊆ F , which F is a minimal prime z-filter on X. Hence
I ⊆ Z−1Z[I] ⊆ Z−1[F ]. Since Z−1[F ] is a minimal prime ideal, we have
Ann(I) 6= (0) and so Ann(Z[I]) 6= {X}, for Ann(Z[I]) = Z[Ann(I)].
For the converse, assume that Ann(Z[I]) 6= {X}, hence Ann(I) 6= (0).
Thus there exists minimal prime ideal P such that I ⊆ P . It implies
that Z[I] ⊆ Z[P ] and Z[P ] by part (b) of Proposition 2.2 is a minimal
prime z-filter on X. �

A subset S of a ring R is called a multiplicatively closed set if 1 ∈ S
and for all a, b ∈ S the product ab ∈ S. Let I be an ideal and S be
multiplicatively closed set in R whit I ∩ S = ∅. Then there exists a
prime ideal P such that I ⊆ P and P ∩ S = ∅, see [12]. The following
proposition is a counterpart of the previous result for prime z-filters.
First we need the next definition.

Definition 2.5. A nonempty subfamily S ⊆ Z(X) is called a z- mul-
tiplicatively closed set if Z(1) ∈ S and for all Z(f), Z(g) ∈ S we have
Z(fg) ∈ S.

Proposition 2.6. Let F be a z-filter and S be a z-multiplicatively closed
set with F ∩S = ∅. Then there exists a prime z-filter E such that F ⊆ E
and E ∩ S = ∅.

Proof. It is clear that Z−1[S] is a multiplicatively closed set in C(X)
and Z−1[S ∩F ] = Z−1[S]∩Z−1[F ] = ∅. Now there exists a prime ideal
P such that Z−1[F ] ⊆ P and Z−1[S] ∩ P = ∅. Hence F ⊆ Z[P ] and
S ∩ Z[P ] = ∅. It suffices that E = Z[P ], and we are done. �

For each f ∈ C(X) let pos(f) = {x ∈ X : f(x) > 0} and neg(f) =
{x ∈ X : f(x) < 0}. The next proposition is similar to Theorem 2.9 in
[7], which is about prime z-ideals.

Proposition 2.7. For a z-filter F , the following statements are equiv-
alent:
a) F is prime.
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b) F contains a prime z-filter.
c) If Z1 ∪ Z2 = X, then Z1 ∈ F or Z2 ∈ F , for any Z1, Z2 ∈ Z(X).
d) For every Z(f) ∈ Z(X), there is a Z ∈ Fsuch that Z ⊆ Z(f)∪pos(f)
or Z ⊆ Z(f) ∪ neg(f).

Proof. The implications (a ⇒ b ⇒ c ⇒ d) are clear. We prove that
(d ⇒ a). Consider Z(gh) ∈ F . Suppose, without loss of generality,
that Z ∈ F exists with Z ⊆ Z(|g| − |h|) ∪ pos(|g| − |h|). Therefore
Z ∩ Z(g) ⊆ Z ∩ Z(h) and so Z ∩ Z(gh) = Z ∩ Z(h) ⊆ Z(h). Since
Z ∩ Z(gh) ∈ F , it implies that Z(h) ∈ F . �

We should remind the reader that a z-filter F on X is fixed if
∩ZZ∈F 6= ∅. Clearly Z[Mx] is a fixed z-filter on X, for any x ∈ X.
Now by using minimal prime z-filters we obtain an equivalent condition
for P -spaces, which is one of the main results of this paper. For more
details about P -spaces, see [7].

Theorem 2.8. X is a P -space if and only if every fixed prime z-filter
is minimal prime.

Proof. First, assume that X is a P -space and let F be a fixed prime
z-filter. Hence Z−1[F ] is a prime ideal and so is a minimal prime ideal.
Therefore by part (b) of Proposition 2.2, Z[Z−1[F ]] = F is a minimal
prime z-filter. Conversely, suppose that x ∈ X be an arbitrary element
and on the contrary let Ox 6= Mx. Hence by Exercise 4I.5 of [7] there is
a prime ideal P which is not a z-ideal and Ox ( P (Mx. Now Z[P ] is
a fixed prime z-filter which is not minimal prime, for P is not a minimal
prime ideal. This is a contradiction. �

A nonzero ideal I in a ring R is called essential if it intersects every
nonzero ideal nontrivially. It is shown that an ideal I in a reduced ring
is essential if and only if Ann(I) = (0), where Ann(I) = {r ∈ R : rI =
(0)}. Recall that from [2] a z-filter F is called essential if F ∩ E 6= {X}
for every z-filter E 6= {X}.

Proposition 2.9. The following statements hold.
a) F is an essential z-filter on X if and only if Z−1[F ] is an essential
ideal in C(X).



6 R. MOHAMADIAN

b) I is an essential ideal in C(X) if and only if Z[I] is an essential
z-filter on X.

Proof. a) Let J 6= (0) be an ideal and assume that 0 6= f ∈ J . Hence
X 6= Z(f) ∈ Z[J ]. Therefore by hypothesis there exists X 6= Z(g) ∈ F∩
Z[J ]. Thus g ∈ Z−1[F ] and Z(g) = Z(h), for some 0 6= h ∈ J . Now it is
clear that 0 6= gh ∈ Z−1[F ]∩J . For the converse, suppose that E 6= {X}
be a z-filter. Hence there is a X 6= Z(f) ∈ E and so 0 6= f ∈ Z−1[E ].
Now since Z−1[F ] ∩ Z−1[E ] 6= ∅ there exists 0 6= g ∈ Z−1[F ] ∩ Z−1[E ].
It implies that X 6= Z(g) ∈ F ∩ E .
b) It is similar to part (a). �

Proposition 2.10. If I is an ideal in C(X) and F is a z-filter on X,
the following statements hold.
a) Ann(F) = Z[Ann(Z−1[F ])], for any z-filter F .
b) A z-filter F 6= {X} is essential if and only if Ann(F) = {X}.
c) An ideal I is essential if and only if Ann(Z[I]) = {X}.

Proof. a) It is clear that, Ann(F) ⊆ Z[Ann(Z−1[F ])]. Let Z(f) ∈
Z[Ann(Z−1[F ])] be an arbitrary zero-set. Since Ann(Z−1[F ]) is a z-
ideal it follows that f ∈ Ann(Z−1[F ]). Now if Z(g) ∈ F , then g ∈
Z−1[F ]. Clearly, fg = 0 and so Z(fg) = X. It consequence that
Z(f) ∈ Ann(F).
b) If F 6= {X} is an essential z-filter then by part (a) of the Proposition
2.9 Z−1[F ] is an essential ideal. Hence by Theorem 3.1 of [2] we have
Ann(Z−1[F ]) = (0) and so by part (a) Ann(F) = Z[(0)] = {X}. For the
converse, if Ann(F) = {X} then by part (a) we have Z[Ann(Z−1[F ])] =
{X} and hence Ann(Z−1[F ]) = (0). Therefore Z−1[F ] is an essential
ideal and so by part (a) of Proposition 2.9, F is an essential z-filter.
c) If I is an essential ideal, then Ann(I) = (0). Hence Ann(Z[I]) =
Z[Ann(I)] = Z[(0)] = {X}. Conversely, if Ann(Z[I]) = {X} then
Z[Ann(I)] = {X} and hence Ann(I) = (0). Thus I is an essential ideal.
�

Example 2.11. a) z-filter F = {Z(f) : (0, 1) ⊆ Z(f)} on R is not
essential. Suppose that g ∈ C(R) such that Z(g) = (−∞, 0] ∪ [1,∞).
Clearly, fg = 0, for every Z(f) ∈ F . Hence X 6= Z(g) ∈ Ann(F).
b) z-filter F = {Z(f) : [0, ε) ⊆ Z(f) for some ε > 0} on X = [0,∞) is
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essential. On the contrary, assume that X 6= Z(g) ∈ Ann(F). Hence
there is x0 ∈ X such that g(x0) 6= 0. Since g ∈ C(X), without loss of
generality we assume that x0 > 0. Consider Z(f) = [0, x02 ], then f ∈ F ,
for it is sufficient put ε = x0

3 . Furthermore, it is clear that fg 6= 0 and
this is a desired contradiction.

3 r-filters

An ideal I of a ring R is called an r-ideal if for each non zerodivisor
a ∈ R and each b ∈ R, ab ∈ I implies that b ∈ I. Every minimal
prime ideal in R is an r-ideal. Also an ideal I in R is called nonregular
if contains entirely of zerodivisors. Every r-ideal is a nonregular ideal.
For more information about r-ideals and nonregular ideals see [10] and
[4], respectively. In this section we introduce the concepts of r-filter and
nonregular z-filter. We begin with the following definition.

Definition 3.1. a) A z-filter F on X is called r-filter, whenever Z1 ∪
Z2 ∈ F and Z◦1 = ∅ then Z2 ∈ F , for any Z1, Z2 ∈ Z(X).
b) A z-filter F on X is called nonregular if Z◦ 6= ∅, for any Z ∈ F .

It is clear that an ideal I in C(X) is nonregular if and only if Z[I]
is a nonregular z-filter on X. Also, if I is a z-ideal, then I is an r-ideal
if and only if Z[I] is an r-filter on X. For instance, if P is a minimal
prime ideal of C(X), then Z[P ] is an r-filter. Furthermore, if x ∈ X is
an isolated point of X then it is easy to see that Ax = {Z(f) : x ∈ Z(f)}
is an r-filter. The converse of this statement is true if X is a perfectly
normal space. Recall that a space X is called perfectly normal space if
every closed set is a zero-set. For example, every metric space is perfectly
normal. For more details about these spaces, see [6]. Clearly, every r-
filter is nonregular but the converse is not true. For example, we consider
F = {Z(f) ∈ Z(R) : [0, 1] ∪ {2} ⊆ Z(f)}. Clearly, F is a nonregular
z-filter on R. Now suppose that Z(g) = [0, 1] and Z(h) = {2}, where
g, h ∈ C(R). It is obvious that Z(gh) ∈ F , Z◦(h) = ∅ and Z(g) /∈ F . It
implies that F is not an r-filter.

Recall that X is a ∂-space if for every zero-set Z ∈ Z(X) there
exists a zero-set F ∈ Z(X) such that ∂(Z) ⊆ F and F ◦ = ∅, where
∂(Z) = Z − Z◦ is the boundary of Z. Also X is an almost P -space if
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Z(f) is regular closed set in X for any f ∈ C(X), that is Z◦(f) = Z(f)
or equivalently if Z(f) 6= ∅, then Z◦(f) 6= ∅ for any f ∈ C(X). It is
easy to see that the space X is an almost P -space and a ∂-space if and
only if X is a P -space. Clearly, X is an almost P -space if and only if
every z-filter is an r-filter. For more information about these spaces see
[3] and [4].

Proposition 3.2. Let X is a ∂-space and f ∈ C(X). Then Z(f) is a
regular closed set if and only if Z[Mf ] is an r-filter.

Proof. First, assume that Z1 ∪Z2 ∈ Z[Mf ] and Z◦1 = ∅. Hence Z(f) ⊆
Z1 ∪ Z2 and so Z◦(f) ⊆ Z2 therefore Z◦(f) = Z(f) ⊆ Z2. Thus Z2 ∈
Z[Mf ], that is Z[Mf ] is an r-filter. Conversely, and on the contrary

suppose that there exists x ∈ Z(f) and x /∈ Z◦(f). Hence there exist
g, h ∈ C(X) such that x ∈ Z(g), Z◦(f) ⊆ Z(h) and Z(g) ∩ Z(h) = ∅.
On the other hand there is k ∈ C(X) such that ∂(Z(f)) ⊆ Z(k) and
Z◦(k) = ∅. Clearly, Z(f) = Z◦(f) ∪ ∂(Z(f)) ⊆ Z(h) ∪ Z(k) and hence
Z(h) ∪ Z(k) ∈ Z[Mf ]. Now by hypothesis we infer that Z(h) ∈ Z[Mf ]
that is Z(f) ⊆ Z(h) which is a contradiction and we are done. �

Corollary 3.3. Let X is a ∂-space. The following statements are equiv-
alent:
a) X is a P -space.
b) Mf is an r-ideal, for any f ∈ C(X).
c) Z[Mf ] is an r-filter, for any f ∈ C(X).

Proof. The implications (a ⇒ b ⇒ c) are clear. In fact, they are valid
for any space.
(c ⇒ a) By Proposition 3.2 we conclude that X is an almost P -space.
Therefore X both an almost P -space and a ∂-space. This implies that
X is a P -space. �

4 coz-ultrafilters

Recall that from [5], a nonempty subfamily E of Coz(X) is called a coz-
filter on X, if ∅ /∈ E , the intersection of any two members of E is again
a member of E , and any member of Coz(X) containing a member of E
also belongs to E . A coz-filter E is called prime if coz(f) ∪ coz(g) ∈ E ,
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implies that coz(f) ∈ E or coz(g) ∈ E . A coz-filter E ⊆ Coz(X) is a
coz-ultrafiler if whenever E ⊆ U and E 6= U , where U is a coz-filter, then
U = Coz(X). For more details see [5], [11].

Let F be a z-filter and E be a coz-filter. Then we note c(Fc) =
{coz(f) : Z(f) ∈ Fc}, where Fc = Z(X) \ F and z(Ec) = {Z(f) :
coz(f) ∈ Ec}, where Ec = Coz(X) \ E .

Proposition 4.1. The following statements hold.
a) If F is a prime z-filter, then c(Fc) is a prime coz-filter.
b) If E is a prime coz-filter, then z(Ec) is a prime z-filter.

Proof. It is evident. �

Proposition 4.2. The following statements hold.
a) If F is a minimal prime z-filter, then c(Fc) is a coz-ultrafilter.
b) If U is a coz-ultrafilter, then z(Uc) is a minimal prime z-filter.

Proof. a) Assume that coz(f) /∈ c(Fc). Hence Z(f) ∈ F and therefore
there exists Z(g) /∈ F such that fg = 0. Thus coz(g) ∈ c(Fc). Now
Proposition 1.2 of [5] implies that c(Fc) is a coz-ultrafilter.
b) It is similar to part (a). �

Remark 4.3. Three notations coz(P c), Bp and Cp have used in [5]. By
the above notation we have:
a) coz(P c) = c(Z[P ]c) and z(coz(P c)c) = Z[P ].
b) Bp = c(Acp) and Ap = z(Bc

p).
c) Cp = c(Z[Op]

c) and Z[Op] = z(Ccp).

Recall that when Ox is a prime ideal, it is a minimal prime ideal.
Similarly, if Z[Ox] is a prime z-filter then it is a minimal prime z-filter.
Now by using the above two propositions and remark, Theorem 2.12,
Proposition 2.13 and Theorem 2.14 in [5] is clear.
A subset S of a ring R is called a saturated multiplicatively closed set
if it is a multiplicatively closed set and if ab ∈ S then a, b ∈ S, for
every a, b ∈ R. Let S ⊆ C(X) and E is a coz-filter. Then we note
coz[S] = {coz(f) : f ∈ S} and coz−1[E ] = {f : coz(f) ∈ E}. The next
two results is generalization of Theorems 2.3, 2.5, 2.7 and 2.11 of [5].

Proposition 4.4. The following statements hold.
a) If S is a saturated multiplicatively closed set in C(X), then coz[S] is



10 R. MOHAMADIAN

a coz-filter on X.
b) If E is a coz-filter on X, then S = coz−1[E ] is a saturated multiplica-
tively closed set in C(X).

Proof. a) It is known that S = R \ ∪α∈APα, which Pα is a prime
ideal of C(X) for every α ∈ A. The first two axioms of being a coz-
filter can be easily verified. To show that the third axiom suppose that
coz(f) ⊆ coz(g) and f ∈ S. Hence coz(f2 + g2) = coz(g) and so it
suffices to show that f2 + g2 ∈ S. On the contrary, there exists α0 ∈ A
such that f2 + g2 ∈ Pα0 . Therefore f ∈ Pα0 , which is a contradiction,
for f ∈ R \ Pα0 .
b) Suppose that f, g ∈ C(X). Then f, g ∈ S if and only if coz(fg) =
coz(f) ∩ coz(g) ∈ E if and only if fg ∈ S. �

Proposition 4.5. E is a prime coz-filter on X if and only if S =
coz−1[E ] is a saturated multiplicatively closed set and I = C(X) \ S
is an ideal in C(X).

Proof. Let E is a prime coz-filter. By the above proposition it is
sufficient to show that I is an ideal. Suppose that f, g ∈ I. Then f, g /∈
S, that is coz(f), coz(g) /∈ E . Note that coz(f−g) ⊆ coz(f)∪coz(g) /∈ E .
This implies that coz(f − g) /∈ E and hence f − g /∈ S. Consequently,
f − g ∈ I. Now let f ∈ I and g ∈ C(X). Since coz(f) /∈ E and
coz(fg) ⊆ coz(f), therefore coz(fg) /∈ E . It consequence that fg /∈ S
and so fg ∈ I. On the other hand, it suffices to show that E is prime.
Let coz(f2 + g2) = coz(f) ∪ coz(g) ∈ E . Hence f2 + g2 ∈ S and so
f2 + g2 /∈ I. Since I is an ideal, therefore f /∈ I or g /∈ I. Thus f ∈ S or
g ∈ S. This implies that coz(f) ∈ E or coz(g) ∈ E . �

5 The Space of Minimal Prime z-filters

In this section we investigate the relationship between the space of min-
imal prime z-filters and the space of coz-ultrafilters. Recall that from
[5], U(X) denote the collection of all coz-ultrafilters and the collection
{UU (f) : f ∈ C(X)} forms a basis for open sets a topology on U(X),
which UU (f) = {E ∈ U(X) : coz(f) /∈ E}.

We denote by MF (X) the collection of all minimal prime z-filters.
For each f ∈ C(X), let us use the notation UMF (f) = {F : Z(f) ∈ F}.
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Lemma 5.1. For f, g ∈ C(X) we have:
a) UMF (f) ∪ UMF (g) = UMF (fg).
b) UMF (f) ∩ UMF (g) = UMF (f2 + g2).
c) UMF (f) = MF (X) if and only if f = 0.
d) UMF (f) = ∅ if and only if Z◦(f) = ∅.

Proof. It is similar to Proposition 3.1 in [5]. �

The collection {UMF (f) : f ∈ C(X)} forms a basis for open sets a
topology on MF (X).

We conclude this section by the main result which is as follows.

Theorem 5.2. The space MF (X) is homeomorphic with the space
U(X).

Proof. Let φ : MF (X)→ U(X) be defined by φ(F) = c(Fc), it is clear
that φ is a well-defined. By Proposition 4.2, φ is a bijection. We claim
that φ is a continuous function. To see this we show that φ−1(UU (f)) =
UMF (f). Consider F ∈ MF (X). It is obvious that F ∈ φ−1(UU (f))
if and only if φ(F) ∈ UU (f) if and only if c(Fc) ∈ UU (f) if and only
if coz(f) /∈ c(Fc) if and only if Z(f) ∈ F if and only if F ∈ UMF (f).
Finally, we show that φ is an open map. To see this we claim that
φ(UMF (f)) = UU (f). Consider E ∈ UU (f), then coz(f) ∈ Ec and hence
Z(f) ∈ z(Ec) = F . It follows that F ∈ UMF (f). Furthermore, we have
φ(F) = c(Fc) = c(z(Ec)c) = E . It implies that E ∈ φ(UMF (f)). On the
other hand, suppose that E ∈ φ(UMF (f)), so there exists F ∈ UMF (f)
such that E = φ(F). Since Z(f) ∈ F , therefore coz(f) /∈ c(Fc) = E and
hence E ∈ UU (f). Therefore φ is a homeomorphism and we are done.
�

Using the above theorem we can replaced the space U(X) by the
space MF (X) throughout Section 3 of [5]. Indeed, we obtain several
properties of them and relations between the space of minimal prime z-
filters and the space of minimal prime ideals in C(X), i.e., Min(C(X)).
But to avoid the repetition, we leave it to the reader. The interested
reader can refer to that section. For more information about the space
of minimal prime ideals see also [8].



12 R. MOHAMADIAN

Acknowledgements
The author would like to thank the referee for reading the article care-
fully and giving useful comments. Also the author is grateful to the
Research Council of Shahid Chamran University of Ahvaz financial sup-
port (GN:SCU.MM400.648).

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative
Algebra, Addison-Wesely, Reading Mass, 1969.

[2] F. Azarpanah, Essential ideals in C(X), Period. Math. Hunger.,
3(12)(1995), 105-112.

[3] F. Azarpanah, On almost P -spaces, Far East J. Math. Sci., Special
Volume (2000), 121-132.

[4] F. Azarpanah and M. Karavan, On nonregular ideals and z◦-ideals
in C(X), Cech. Math., 55(130)(2005), 397-407.

[5] P. Bhattacharjee, K. M. Drees, Filters of Coz(X), Categ. General
Alg. Structures Appl., 7 (2017), 107-123.

[6] R. Engelking, General Topology, Helerman Verlag, 1989.

[7] l. Gillman, M. Jerison, Rings of Continuous Functions, Springer-
Verlag, 1976.

[8] M. Henriksen, M. Jerison, The space of minimal prime ideals of a
commutative ring, Trans. Amer. Math. Soc., 115 (1965), 110-130.

[9] J. A. Huckabo, Commutative Ring With Zero Divisors, Marcel
Dekker Inc, 1988.

[10] R. Mohamadian, r-ideals in commutative rings, Turk. J. Math., 39
(2015), 733-749.

[11] P. Samuel, Ultrafilters and compactification of uniform spaces,
Trans. Amer. Math. Soc., 64 (1948), 100-132.



ON z-FILTERS AND coz-ULTRAFILTERS 13

[12] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University
Press, 1990.

Rostam Mohamadian
Department of Mathematics
Associate Professor of Mathematics
Shahid Chamran University of Ahvaz
Ahvaz, Iran

E-mail: mohamadian r@scu.ac.ir


	1 Introduction
	2 Minimal Prime z-filters
	3 r-filters
	4 coz-ultrafilters
	5 The Space of Minimal Prime z-filters
	References

