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1 Introduction

The concept fractional calculus is the generalization of traditional cal-
culus into non-integer differential and integral order. It has found very
important due to its various applications in the fields of science and
engineering such as physical sciences, chemical science and life sciences.
Due to the fact that fractional-order derivatives and integrals are ca-
pable to characterize the properties of memory effects as an essential
aspect in many real-world phenomena, see [3, 4, 5, 6, 26]. Recently,
some studies have been conducted on the mathematical analysis of frac-
tional calculus and its applications such as p-Laplacian non periodic
nonlinear boundary value problems [20], the discrete fractional three-
point BVP for the elastic beam equation [1], existence analysis of quan-
tum integro-difference FBVPs [25], Kuratowski MNC technique [15].
Fractional integral inequalities play a very important role due to their
multiple applications in the theory of differential and integral equations,
such as continuous dependence solution, uniqueness of solutions, exis-
tence and stability of solutions.
During the last few years, many researchers have been concerned with
several generalizations, variants and extensions of fractional integral in-
equalities and their applications by involving the Riemann-Liouville,
Erdelyi-Kober, Saigo, Hadamard, k-fractional integral operator and gen-
eralized k-fractional integral operators, see [2, 7, 8, 9, 10, 11, 12, 13,
14, 16], and the reference cited therein. In this sense, V.L. Chinchane
et al. [9, 10] have presented fractional integral inequalities involving
convex functions using the Hadamard and Saigo fractional integral op-
erators. Also, A.B. Nale et al. and G. Rahaman et al. [22, 24] have
obtained some fractional integral inequalities involving convex functions
by considering generalized Katugampola fractional integral and gener-
alized proportional Hadamard operator. Recently, A. Tassaddiq et al.
[32] have established some Minkowski-type fractional integral inequali-
ties using Marichev-Saigo-Maeda fractional operator. Then, S. Joshi et
al. [17, 18] have presented new Gruss and Chebyshev type inequalities
using Marichev-Saigo-Maeda fractional integral operator. We cite also
the paper of O. I. Marichev where it has been introduced new generaliza-
tions of the hypergeometric fractional integral including Saigo operator,
see [19] (also [30]). In [29], Saigo and Maeda have been concerned with
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the hypergeometric fractional integral in terms of any complex order
with Appell function in the kernel. In [23], S.D. Purohit et al. have intro-
duced generalized operators of fractional integration involving Appell’s
function F3(.) due to Marichev-Saigo-Maeda. In [21], V.N. Mishra has
presented a work on the Marichev-Saigo-Maeda fractional calculus op-
erator, Srivastava polynomials and generalized Mittag-Leffler function.
In comparison to other researches on the fractional integral inequalities
that were published in the literature, we here deal with the Marichev-
Saigo-Maeda fractional integral operator. Our aim is to propose some
new fractional integral inequalities involving convex functions with the
help of Marichev-Saigo-Maeda fractional integral operator.
The paper is organized as follows. In section 2, we give basic definitions
and propositions related to Marichev-Saigo-Maeda fractional approach.
In section 3, we present some fractional integral inequalities involving
convex functions by using the introduced approach. In section 4, we
prove other fractional inequalities using Marichev-Saigo-Maeda integral
operators. In section 5, some concluding remarks follow. Our results
have some relationships with the papers [10, 11, 13]. Some interested
inequalities of these papers can be deduced as some special cases of the
present work.

2 Preliminaries

Here, we present some basic notation, definitions and lemmas of Marichev-
Saigo-Maeda fractional integral operators which are useful later.

Definition 2.1. A real valued function f(t) (t ≥ 0) is said be in the
space Cµ, µ ∈ R if there exist real number p > µ such that f(t) = tpf1(t),
where f1(t) ∈ C[0,∞) and C[0,∞) is the set of all continuous functions
in the interval [0,∞).

Definition 2.2. [18, 23, 29, 32] Let v, v
′
, ξ, ξ

′
, ϑ ∈ C, x > 0 and R(ϑ) >

0 , then Marichev-Saigo-Maeda (MSM) fractional integral is defined by

(Jv,v
′
,ξ,ξ
′
,ϑ

0,x f)(x) =
x−v

Γ(ϑ)

∫ x

0
(x−t)ϑ−1t−v

′
F3(v, v

′
, ξ, ξ

′
;ϑ; 1− t

x
, 1−x

t
)f(t)dt,

(1)



4 A. NALE, et al.

where F3(.) is the Appel function defined in [31] as follows:

pFq(v, v
′
, ξ, ξ

′
; γ;x; y) =

∞∑
m,n=0

(v)m(v
′
)m(ξ)m(ξ)

′
n

(γ)m+n

xmyn

m!n!
,max(x, y) < 1,

and (v)m = v(v + 1)...(v +m− 1) is Pochhammer symbol.

Lemma 2.3. Let v, v
′
, ξ, ξ

′
, ϑ, ρ ∈ C, x > 0 be such that R(ϑ) > 0 and

R(τ) > max{0,R(v − v
′ − ξ − ϑ),R(v

′ − ξ
′
)}. Then there exist the

relation

Jv,v
′
,ξ,ξ
′
,ϑ

0,x xρ−1(x) =
Γ(ρ)Γ(ρ+ ϑ− v − v′ − ξ)Γ(ρ+ ξ

′ − v′)
Γ(ρ+ ξ′)Γ(ρ+ ϑ− v − v′)Γ(ρ+ ϑ− v′ − ξ)

× xρ−v−v
′
+ϑ−1.

(2)

If we consider ρ = 1 in Lemma 2.3, then we get following relation

(Jv,v
′
,ξ,ξ
′
,ϑ

0,x [1])(x) =
Γ(1 + ϑ− v − v′ − ξ)Γ(1 + ξ

′ − v′)
Γ(1 + ξ′)Γ(1 + ϑ− v − v′)Γ(1 + ϑ− v′ − ξ)

x−v−v
′
+ϑ.

(3)

Consider the following function

J(x, t) =
x−v

Γ(ϑ)
(x− t)ϑ−1t−v

′
F3(v, v

′
, ξ, ξ

′
;ϑ; 1− t

x
, 1− x

t
)

=
x−v

Γ(ϑ)
(x− t)ϑ−1t−v

′
[

(1 +
v
′
(ξ)

ϑ
)
1− x
t

+
v(ξ)

ϑ

1− t
x

+ ...

]
,

(4)

Clearly, the function J(x, t) is positive.

3 Fractional order inequalities for convex func-
tions

We prove the following theorem.
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Theorem 3.1. Let u, z be two positive continuous functions on [0,∞)
and u ≤ z on [0,∞). Suppose that u

z is decreasing, u is increasing on
[0,∞) and for any convex function ψ, ψ(0) = 0. Then for all x > 0,
v, v

′
, ξ, ξ

′
, ϑ ∈ C, R(ϑ) > 0, we have

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [u(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [z(x)]
≥

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [ψ(u(x))]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [ψ(z(x))]
, (5)

where v
′
> −1, 1 > max

{
0,R(v,+v

′
+ ξ − ϑ),R(v

′ − ξ′)
}

(ϑ− v′) > max (1− ξ, 1− v).

Proof:- If ψ is convex with ψ(0) = 0, then ψ(x)
x is increasing. Since

u is increasing, then ψ(u(x))
z(x) is also increasing. Clearly u(x)

z(x) is decreasing,

for all τ, σ ∈ [0,∞), and(
ψ(u(τ))

u(τ)
− ψ(u(σ))

u(σ)

)(
u(σ)

z(σ)
− u(τ)

z(τ)

)
≥ 0, (6)

which gives us

ψ(u(τ))

u(τ)

u(σ)

z(σ)
+
ψ(u(σ))

u(σ)

u(τ)

z(τ)
− ψ(u(τ))

u(τ)

u(τ)

z(τ)
− ψ(u(σ))

u(σ)

u(σ)

z(σ)
≥ 0. (7)

Multiplying (7) by z(τ)z(σ), yields

ψ(u(τ))

u(τ)
u(σ)z(τ) +

ψ(u(σ))

u(σ)
u(τ)z(σ)

− ψ(u(τ))

u(τ)
u(τ)z(σ)− ψ(u(σ))

u(σ)
u(σ)z(τ) ≥ 0.

(8)

Multiplying both sides of (8) by J(x, τ), τ ∈ (0, x), x > 0, then by
integration, one can see that

u(σ)Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
z(x)

]
+
ψ(u(σ))

u(σ)
z(σ)Jv,v

′
,ξ,ξ
′
,ϑ

0,x [u(x)]

− z(σ)Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
u(x)

]
− ψ(u(σ))

u(σ)
u(σ)Jv,v

′
,ξ,ξ
′
,ϑ

0,x [z(x)] ≥ 0.

(9)
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Also, it is clear that

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [u(x)] Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
z(x)

]
+

Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
z(x)

]
Jv,v

′
,ξ,ξ
′
,ϑ

0,x [u(x)]

≥ Jv,v
′
,ξ,ξ
′
,ϑ

0,x [z(x)] Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
u(x)

]
+ Jv,v

′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
u(x)

]
Jv,v

′
,ξ,ξ
′
,ϑ

0,x [z(x)] .

(10)

So, it follows that

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [u(x)] Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)z(x)

]
≥ Jv,v

′
,ξ,ξ
′
,ϑ

0,x [z(x)] Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
u(x)

]
,

(11)

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [u(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [z(x)]
≥

Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))
u(x) u(x)

]
Jv,v

′ ,ξ,ξ′ ,ϑ
0,x

[
ψ(u(x))
u(x) z(x)

] . (12)

Now, since u ≤ z on [0,∞) and ψ(x)
x is increasing, then for any τ, σ ∈

[0,∞), we can write
ψ(u(τ))

u(τ)
≤ ψ(z(τ))

z(τ)
. (13)

Multiplying (13) by J(x, τ)z(τ), we can state that

J(x, τ)
ψ(u(τ))

u(τ)
≤ J(x, τ)

ψ(z(τ))

z(τ)
. (14)

Thus,

Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
z(x)

]
≤ Jv,v

′
,ξ,ξ
′
,ϑ

0,x

[
ψ(z(x))

z(x)
z(x)

]
. (15)

By (12) and (15), we obtain (6).
Let us now prove the result:
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Theorem 3.2. Let u, z be two positive continuous functions on [0,∞)
and u ≤ z on [0,∞). Suppose that u

z is decreasing, u is increasing on
[0,∞) and for any convex function ψ, ψ(0) = 0. Then for all x > 0,
v, α, v

′
, α
′
, ξ, β, ξ

′
, β
′
, ϑ, θ ∈ C, R(ϑ),R(θ) > 0, we have

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [u(x)] Jα,α
′
,β,β

′
,θ

0,x [ψ(z(x))] + Jα,α
′
,β,β

′
,θ

0,x [u(x)] Jv,v
′
,ξ,ξ
′
,ϑ

0,x [ψ(z(x))]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [z(x)] Jα,α
′ ,β,β′ ,θ

0,x [ψ(u(x))] + Jα,α
′ ,β,β′ ,θ

0,x [z(x)] Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [ψ(u(x))]

≥ 1,

(16)

where v
′
, α
′
> −1, 1 > max

{
0,R(v + v

′
+ ξ − ϑ),R(v

′ − ξ′)
}
, (ϑ −

v
′
) > max (1− ξ, 1− v), 1 > max

{
0,R(α+ α

′
+ β − θ),R(α

′ − β′)
}

(θ − α′) > max (1− β, 1− α).

Proof:- Since ψ is convex with ψ(0) = 0, then ψ(x)
x is increasing.

Also, u is increasing, then ψ(u(x))
u(x) is also increasing. Clearly u(x)

z(x) is

decreasing, for all τ, σ ∈ [0, x) x > 0. So, if we multiply (9) by J(x, σ)
(σ ∈ (0, x), x > 0), and then, by integration, we can see that

Jα,α
′
,β,β

′
,θ

0,x [u(x)] Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
z(x)

]
+ Jα,α

′
,β,β

′
,θ

0,x

[
ψ(u(x))

u(x)
z(x)

]
Jv,v

′
,ξ,ξ
′
,ϑ

0,x [u(x)]

≥ Jv,v
′
,ξ,ξ
′
,ϑ

0,x [z(x)] Jα,α
′
,β,β

′
,θ

0,x [ψ(u(x))]

+ Jv,v
′
,ξ,ξ
′
,ϑ

0,x [ψ(u(x))] Jα,α
′
,β,β

′
,θ

0,x [z(x)] .

(17)

Knowing that u ≤ z on [0,∞) and ψ(x)
x is increasing, for τ, σ ∈ [0, x) x >

0, then one can observe that

ψ(u(τ))

u(τ)
≤ ψ(z(τ))

z(τ)
. (18)

Therefore,

Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
z(x)

]
≤ Jv,v

′
,ξ,ξ
′
,ϑ

0,x [ψ(u(x))] . (19)
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Thanks to (17) and (19), we obtain (16).
We have to prove the following result:

Theorem 3.3. Let u, z and w be positive continuous functions on [0,∞)
and u ≤ z on [0,∞). Under the condition of u

z decreasing, u and w
increasing functions on [0,∞), and for any convex function ψ such that
ψ(0) = 0, then for all x > 0, v, v

′
, ξ, ξ

′
, ϑ ∈ C, R(ϑ) > 0, we have

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [u(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [z(x)]
≥

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [ψ(u(x))w(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [ψ(z(x))w(x)]
, (20)

where v
′
> −1, 1 > max

{
0,R(v,+v

′
+ ξ − ϑ),R(v

′ − ξ′)
}

(ϑ− v′) > max (1− ξ, 1− v).

Proof : Since u ≤ z on [0,∞) and ψ(x)
x is increasing, thus, for τ, σ ∈

[0, x), x > 0, we have

ψ(u(τ))

u(τ)
≤ ψ(z(τ))

z(τ)
. (21)

Therefore, we write

Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
z(x)w(x)

]
≤ Jv,v

′
,ξ,ξ
′
,ϑ

0,x [ψ(z(x))w(x)] . (22)

Also, since ψ is convex with ψ(0) = 0, thus ψ(x)
x is increasing. Also,

since u is increasing, then ψ(u(x))
u(x) is also increasing. Clearly, we can say

that u(x)
z(x) is decreasing, for all τ, σ ∈ [0, x) x > 0(
ψ(u(τ))

u(τ)
w(τ)− ψ(u(σ))

u(σ)
w(σ)

)
(u(σ)z(τ)− u(τ)z(σ)) ≥ 0, (23)

hence,

ψ(u(τ))w(τ)

u(τ)
u(σ)z(τ) +

ψ(u(σ))w(σ)

u(σ)
u(τ)z(σ)

− ψ(u(τ))w(τ)

u(τ)
u(τ)z(σ)− ψ(u(σ))w(σ)

u(σ)
u(σ)z(τ) ≥ 0.

(24)
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So, it yields that

u(σ)Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))

u(x)
z(x)w(x)

]
+
ψ(u(σ))

u(σ)
z(σ)w(σ) Jv,v

′
,ξ,ξ
′
,ϑ

0,x [u(x)]

− z(σ)Jv,v
′
,ξ,ξ
′
,ϑ

0,x [ψ(u(x))w(x)]− ψ(u(σ))

u(σ)
u(σ)w(σ) Jv,v

′
,ξ,ξ
′
,ϑ

0,x [z(x)] ≥ 0.

(25)

We have also

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [u(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [z(x)]
≥

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [ψ(u(x))w(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x

[
ψ(u(x))
u(x) z(x)w(x)

] . (26)

By (22) and (26), we obtain (20).
Now, we pass to prove a generalization for Theorem 3.3.

Theorem 3.4. Let u, z and w be three positive continuous functions on
[0,∞) and u ≤ z on [0,∞). Suppose that u

z is decreasing, u and w are
increasing functions on [0,∞), and for any convex function ψ such that

ψ(0) = 0, x > 0, v, α, v
′
, α
′
, ξ, β, ξ

′
, β
′
, ϑ, θ ∈ C, R(ϑ),R(θ) > 0. Then

we have

Jv,v
′
,ξ,ξ

′
,ϑ

0,x [u(x)] Jα,α
′
,β,β

′
,θ

0,x [ψ(z(x))w(x)] + Jα,α
′
,β,β

′
,θ

0,x [u(x)] Jv,v
′
,ξ,ξ

′
,ϑ

0,x [ψ(z(x))w(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [z(x)] Jα,α
′ ,β,β′ ,θ

0,x [ψ(u(x))w(x)] + Jα,α
′ ,β,β′ ,θ

0,x [z(x)] Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [ψ(u(x))w(x)]

≥ 1,

(27)

where v
′
, α
′
> −1, 1 > max

{
0,R(v + v

′
+ ξ − ϑ),R(v

′ − ξ′)
}
, (ϑ −

v
′
) > max (1− ξ, 1− v), 1 > max

{
0,R(α+ α

′
+ β − θ),R(α

′ − β′)
}

(θ − α′) > max (1− β, 1− α) .

Proof:- Multiplying (25) by J(x, σ) (σ ∈ (0, x), x > 0), we have

Jα,α
′
,β,β

′
,θ

0,x [u(x)] Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))w(x)

u(x)
z(t)

]
+ Jα,α

′
,β,β

′
,θ

0,x

[
ψ(u(x))w(x)

u(x)
z(x)

]
× Jv,v

′
,ξ,ξ
′
,ϑ

0,x [u(x)]

≥ Jv,v
′
,ξ,ξ
′
,ϑ

0,x [z(x)] Jα,α
′
,β,β

′
,θ

0,x [ψ(u(x))w(x)]

+ Jv,v
′
,ξ,ξ
′
,ϑ

0,x [ψ(u(x))w(x)] Jα,α
′
,β,β

′
,θ

0,x [z(x)] ,

(28)
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and knowing that u ≤ z on [0,∞) and using the fact that ψ(x)w(x)
x is

increasing, we state that

Jv,v
′
,ξ,ξ
′
,ϑ

0,x

[
ψ(u(x))w(x)

u(x)
z(x)

]
≤ Jv,v

′
,ξ,ξ
′
,ϑ

0,x [ψ(z(x))w(x)] , (29)

and

Jα,α
′
,β,β

′
,θ

0,x

[
ψ(u(x))w(x)

u(x)
z(x)

]
≤ Jα,α

′
,β,β

′
,θ

0,x [ψ(z(x))w(x)] . (30)

Hence, from equation (28), (29) and (30), we obtain (27).

4 Other fractional integral inequalities

In [13], the authors have proved the inequalities using Riemann-Liouville
fractional integral. Here, we investigate some other inequalities using
Marichev-Saigo-Maeda integral operators.

Theorem 4.1. Let u, w be two positive and continuous functions on
[0,∞) such that u is decreasing and w is increasing on [0,∞), then for
all x > 0, v, v

′
, ξ, ξ

′
, ϑ ∈ C, R(ϑ) > 0, l ≥ m > 0, and n > 0, we have

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [ul(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [um(t)]
≥

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [wnul(t)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [wnum(t)]
, (31)

where v
′
> −1, 1 > max

{
0,R(v,+v

′
+ ξ − ϑ),R(v

′ − ξ′)
}

(ϑ− v′) > max (1− ξ, 1− v).

Proof:- By considering σ, τ ∈ (0, x), we can observe that

(wn(σ)− wn(τ))
(
ul(τ)um(σ)− um(τ)ul(σ)

)
≥ 0,

which means that

wn(σ)ul(τ)um(σ)+wm(τ)um(τ)ul(σ) ≥ wm(σ)um(τ)ul(σ)+wm(τ)um(σ)ul(τ).
(32)
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Also, we have

wn(σ)ul(σ)Jv,v
′
,ξ,ξ
′
,ϑ

0,x [ul(x)] + ul(σ)Jv,v
′
,ξ,ξ
′
,ϑ

0,x [wnum(x)]

≥ wm(σ)ul(σ)Jv,v
′
,ξ,ξ
′
,ϑ

0,x [um(x)] + um(σ)Jv,v
′
,ξ,ξ
′
,ϑ

0,x [wmul(x)].
(33)

It is clear also that

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [wnum(x)]Jv,v
′
,ξ,ξ
′
,ϑ

0,x [ul(x)] ≥ Jv,v
′
,ξ,ξ
′
,ϑ

0,x [wnul(x)]Jv,v
′
,ξ,ξ
′
,ϑ

0,x [um(x)],
(34)

which gives (31).
Now, we present the following result:

Theorem 4.2. Let u, w be two positive and continuous functions on
[0,∞) such that u is decreasing and w is increasing on [0,∞), then for

all x > 0, v, v
′
, ξ, ξ

′
, ϑ ∈ C, R(ϑ) > 0, l ≥ m > 0, and n > 0, we have

Jv,v
′
,ξ,ξ

′
,ϑ

0,x [ul(x)]Jα,α
′
,β,β

′
,θ

0,x [wnum(x)] + Jα,α
′
,β,β

′
,θ

0,x [ul(x)]Jv,v
′
,ξ,ξ

′
,ϑ

0,x [wnum(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [um(x)]Jα,α
′ ,β,β′ ,θ

0,x [wnum(x)] + Jα,α
′ ,β,β′ ,θ

0,x [um(x)]Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [wnum(x)]

≥ 1,

(35)

where v
′
, α
′
> −1, 1 > max

{
0,R(v + v

′
+ ξ − ϑ),R(v

′ − ξ′)
}
, (ϑ −

v
′
) > max (1− ξ, 1− v), 1 > max

{
0,R(α+ α

′
+ β − θ),R(α

′ − β′)
}

(θ − α′) > max (1− β, 1− α) .

Proof:- Multiplying inequality (33) by J(x, σ) (σ ∈ (0, x), x > 0)
which remains positive. Then integrate the resulting identity with re-
spect to σ from 0 to x, we obtain the result (35).

Theorem 4.3. Let u, w be two positive and continuous functions on
[0,∞) such that u is decreasing and w is increasing on [0,∞), then for
all x > 0, v, v

′
, ξ, ξ

′
, ϑ ∈ C, R(ϑ) > 0, l ≥ m > 0, and n > 0, we have

(un(τ)wn(σ)− un(σ)wn(τ))
(
um(σ)ul(τ)− um(τ)ul(σ)

)
≥ 0.

Then we have

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [un+l(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [un+m(x)]
≥

Jv,v
′
,ξ,ξ
′
,ϑ

0,x [wnul(x)]

Jv,v
′ ,ξ,ξ′ ,ϑ

0,x [wnum(x)]
, (36)
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where v
′
> −1, 1 > max

{
0,R(v,+v

′
+ ξ − ϑ),R(v

′ − ξ′)
}

(ϑ− v′) > max (1− ξ, 1− v).

Proof:- Consider τ, σ ∈ (0, t), we get

(un(τ)wn(σ)− un(σ)wn(τ))
(
um(σ)ul(τ)− um(τ)ul(σ)

)
≥ 0,

and using the same arguments as the proof of Theorem 4.1.

5 Concluding Remarks

In this paper, we have applied Marichev-Saigo-Maeda integral operators
to establish new integral inequalities for convex functions. Some other
inequalities for positive monotone functions have also been studied. It
is to note that:
If we set v

′
= 0 in (1), then it will be reduced to Saigo operators [17,

23, 27, 28] and then we have:(
Jv,0,ξ,ξ

′
,ϑ

0,x f

)
(x) =

(
Jϑ,v−ϑ,−ξ0,x f

)
(x), (37)

where the hypergeometric operator that appears in the right hand side
is defined as

Jv,v
′
,ϑ

0,x f(x) =
x−v−ξ

Γ(ϑ)

∫ x

0
(x−t)v−12 F1(v+ξ; v; 1− t

x
)f(t)dt, (ϑ > 0, v, ξ ∈ C).

(38)
Further, we can reduce (1) to Erdelyi-Kober and Riemann-Liouville
type operators which are special cases of Saigo fractional operators (38).
Thus, the obtained fractional inequalities in this paper present to the
reader new contribution for Marichev-Saigo-Maeda integral operator ap-
plications.
We propose to interested researchers to study fractional differential equa-
tions using the inverse operator of the present MSM integral approach.
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