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Abstract. In this paper, an efficient algorithm is proposed to approx-
imate all real solutions of a nonlinear equation. This algorithm is based
on convergence conditions of Adomian decomposition method (ADM)
for solving functional equations. The presented algorithm is well done,
particularly, when we desire to obtain more than one solution of a non-
linear equation with using only one initial solution. The scheme is tested
for some examples and the obtained results demonstrate reliability and
efficiency of the proposed algorithm.
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1. Introduction

One of the oldest and most basic problems in mathematics is that of solving a
nonlinear equations f(x) = 0. This problem has motivated many theoretical
developments including the fact that solution formulas do not in general exist.
Thus, the development of algorithms for finding solutions has historically been
an important enterprise. Newton-Raphson method [1] is the most popular tech-
nique for solving nonlinear equations. Many topics related to Newton’s method
still attract attention from researchers. As is well known, a disadvantage of the
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method is that the initial approximation xg, must be chosen sufficiently close
to a true solution in order to guarantee their convergence. Finding a criterion
for choosing z is quite difficult and therefore effective and globally convergent
algorithms are needed [2]. In recent years, the study of numerical methods
has provided an attractive field for researchers of mathematical sciences which
have risen to the appearance of different numerical computational methods
and efficient algorithms to solve the nonlinear equations. In fact, there are
several iterative methods have been developed to solve the nonlinear equations
f(x) =0, by using ADM, iterative method, and other techniques (for example
see [3-15]). Theoretical treatment of the convergence of the decomposition se-
ries to the ADM has been considered in [16-21].

In this work, a new algorithm for solving nonlinear equations is presented.
The proposed method can be found more than one zero of nonlinear equation
f(z) =0 (if exist), by using only one initial solution z¢. This method is based
on ADM and the Banach’s fixed point theorem [16]. The proposed algorithm
is numerically performed through Maple programming. The obtained results
show the advantage using this method. Note that, the authors in [9, 10] have
applied convergence conditions of ADM to solve nonlinear equations and sys-
tem of nonlinear equations. This paper is organized into following sections of
which this introduction is the first. ADM is described in Section 2. Section 3
derives the method. Also, a Predictor-Corrector algorithm for finding all zeros
of nonlinear equations is presented in Section 4. In Section 5 we present some
numerical examples to illustrate the efficiency and reliability of the presented
method. Finally, the paper is concluded with conclusion.

2. Adomian Decomposition Method Synthesis

Adomian decomposition method was presented by Adomian in 1981. This
method and its modifications have a good usage in solving the differential,
algebraic-differential, integral equations, etc [22]. The convergence of the ADM
have investigated by many researchers. Here, the review of the standard ADM
for solving nonlinear equations is presented. For this reason, consider the non-
linear equation,

flx) =0, (1)

which can be transformed to,
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where F(z) is a nonlinear function and ¢ is a real constant. The ADM decom-
poses the solution by an infinite series of components,

5= o, 3)

and the nonlinear term F(x) by an infinite series,

+o0
r) =) An, (4)

n=0

where the components of A, are the so-called Adomian polynomials [17], for
each i, A; depends on xg, o1, ..., x; only. Substituting (3) and (4) into (2)
yields,

+oo +oo
Zfﬂn =c++ ZAn-
n=>0 n=>0
Now, we define
g =c¢C,
5
Tnt1 =An, n20. )

If the series converges in a suitable way, then we can see that

r= lim Wy (z),

M—=+o0

where Uy (x) = Zfiu x;. Now, we require on expression for the A;. The Ado-

mian polynomials A; for the nonlinear term F(z) can be evaluated by using
the following expression,

1 dz, i .
i Id/\f Zl\ y_} A=0"? ?':{}9132,'-- (6)

j=0
The general formula (6) can be simplified as follows:
Ay = F(zo),
Ay = 21 F'(x0),
Ay = 2y (w0) + 523 (w0), (7)

1 o
Az = w3 F'(x0) + 122 F" (20) + g:zrme(:rn},
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substituting (7) into (4) gives,
F(z) = Ag+ Ay +Ag+ - = F(xo) + (1 + 22 + 23+ - -+ ) F'(20)
1
-{—5(3‘? + 22129 + 2123 + 25 + -+ ) F"(x0) + -

= F(x0) + (x — z0) F'(20) + %(w —20)?F"(x0) + - -

Note that, The last expansion confirms a fact that the series in A; polynomials
is a Taylor series about a function xy and not about a point as is usually used.
Here, we use the following Maple procedure to construct Adomian polynomials
of nonlinear term F'(z):

Am:=proc(K,m) global k; k:=20;
if m=0 then K(sum(lambda~j*(diff(U[j](tt, %), x)),j=0..k));
else
(diff (K(sum(lambda~j*(diff (U[j] (tt,x),x)),j=0..k)), ‘$‘(lambda, m)))/m!
end if;
subs (lambda=0,%) ;
end proc;

As a well-known powerful tool, for convergence of the ADM we have the Ba-
nach’s Fixed Point Theorem as follow [16-21].

Theorem 2.1. ([23]) Assume that B is a Banach space, and further, that
T : B — B is a contractive mapping with contractively constant oo, 0 < av < 1.
Then the following results hold.

(1) There exists a unique v € B such that u= T (u).

(2) For any ug € B, the sequence {u,} C B defined by u,4+y = T (uy,), n =
0,1,---, converges to u.

The theoretical treatment of the convergence of ADM has been considered in
[16, 17]. As it was seen in [16], >_;=, z;, which is obtained by (5), converges to
the exact solution z, when,

J0<a<], |zku|<alae|, VkeNu{0}. (8)

3. Description of the Method

In this section, we solve the nonlinear equation (1) by considering Convergence
conditions of ADM (8) and construct an efficient algorithm. For this reason, we
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need of an initial approximation. This initial approximation must be guessed.
But it can be computed if the nonlinear equation (1) has a real constant as
below,

0=F(x)+e, (9)

where F'(z) is a nonlinear function and ¢ is a real constant. In this case, we
add 3z on both sides of (9). So, we have,

Br=F(z)+ Bz +c. (10)

Here, 3 is unknown and nonzero real constant and it will be determined such
that the convergence condition (8) will be hold. Equation (10) implies that,

p— F(J?)..-f- B 48

B 8’
and by (5) and (7), we have,
Irp = % 3
T = .P (1713334-;5:1.‘" \ (11)
a5 = mlF"(l};}h’jx )

Replacing F(x) with two terms of Taylor’s series of F/(x), at = 0, becomes,

v e B
&ry = B>
P'(U)+x|,f.’“'(0)+ﬁm“

i cF (0)+ggf-‘(0)+6) . (12)

3
x1 F'(0)+8x,

Ty A 3

For an arbitrary number o , 0 < a < 1, and by attention to (8), we consider
two equations,
x1 = azxg, (13)

and
Ty = axq. (14)

Substituting (12) into (13) and (14) yields, respectively,

cF'(0) + B(F(0) 4+¢) [T cF'(0) g —cF'(0) o
7 —a;j = 0= C—(ﬂ'— Ty — F(0) or 3= 7c+F(U) (fora=0),
and . )
M = ar] = {(j’ — F_(n) i

B a—1
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Now, we able to compute a suitable initial approximation for nonlinear equa-
tion (9) by using predictor part of proposed algorithm.

Now, we have the nonlinear equation (1) and its initial approximation, z, which
is obtained by guessing or by using predictor part of proposed algorithm. To
continue, we rewrite (1) as below,

f(a:)g—l— Bz it

Here, 3is an unknown real constant and it will be determined such that the
convergence condition (8) will be hold. As it is seen in (11), we have,

To =1,
g ) +8xg = T
:E1=I(1+—T-=‘rf.g’,
x1 ' (x Bx ) f' (& &
vy = BLlEQHAn _ JOL@ | @) (15)

? :‘2-‘-”‘: )
P o f (wg)+ L5 L +3xa
£y = 3 .

For an arbitrary number a , 0 < e < 1, and by attention to (8), we consider
two equations,
T9 = ary, (16)

and

T3 = axs. (17)
Substituting (15) into (16) and (17) yields, respectively,
_ 1@

Ié) R
' a—1

and

f'(@) (2—a) £ /a2 [2(3) +2 f(z) ["(Z) (a — 1)
2(ee— 1)

Thus, we able to compute an approximated solution of nonlinear equation (1)

by using corrector part of proposed algorithm.

}(3 —

4. An Efficient Algorithm

The above result is summarized in the following algorithm. The main idea of
this algorithm is solve a nonlinear equation. First, a suitable initial approxi-
mation for nonlinear equation (9) is obtain by using predictor part of proposed
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algorithm. Then, an approximated solution of nonlinear equation (1) is com-
pute by using corrector part of proposed algorithm.

I. The Predictor Part

Object: To compute an initial approximation of a nonlinear equation.
Input: Nonlinear equation f(z) = F(z)+c=0,a (0 < a < 1)and m (m > 1).
Output : Initial approximation, Z.

Step 1: Choose,

cF’(0) —cF’(0) __ F'(0)
b= o-- F) °r b= Fo) O B= G4
Step 2: Compute Adomian’s polynomials A;, for nonlinear term w and
put
Ty = % )
xr1 = AO?
= Alv
Tpy1 = Ag,
while 1 < k < m and the condition |zx | < |zgp—1]| < ... <]|zo]| is hold. Now,

put

T=x9+x1+ ... + k.
II. The Corrector Part

Object: To compute approximated solution of a nonlinear equation.

Input: Nonlinear equationf(z) = 0, Initial approximation Z, o (0 < a < 1) ,
e>0and m (m>1).

Output: Approximated solution Z.

Step 1: If | f(Z)| < € then go to step 5.

Step 2: Choose,

iy
ﬂ:f()(Q—Oé )+ Ve f2(@) +2 (@) f'(@) (0 — 1)

2(a—1) ’

y_ ID R0 - @R T T@ @6

2(a—1)
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f(z)+p=
B

Step 8: Compute Adomian’s polynomials B;, for nonlinear term and

put

o=,
r1 =By — 1T,
I2ZB13
Tg41 = By,

while 1 < k < m and the condition |z | < |zr—1| < ... < || is hold. Now,
put
T=x9+x1+ ... +2g

Step 4: If | f(Z) | < € then go to step 5 else go to step 2.
Step 5: Put T = Z and stop.

Remark 4.1. By using different obtained real constants 3 which are appeared
in step 1 and step 2 of above algorithms, respectively. In fact, it is possible that
the obtained approximated solutions converge to different solutions of equation
(1) (see Examples 5.2 and 5.3).

5. Numerical Examples

In this section, some examples are solved by the proposed algorithm of this
paper. The obtained results show that the proposed algorithm can appropri-
ately solve the nonlinear equation (1). In fact, the standard ADM and its
modifications [3-8] can solve nonlinear equation (1) in specific cases whereas
the proposed algorithm can solve equation (1) in more cases (see Example 5.3).
In addition, we can obtain more than one zero of nonlinear equation f(z) =0
(if exist), with using the presented algorithm and chose a comfortable initial
solution (Note that, we have obtained two and there real solution of Examples
5.2 and 5.3 via two and one initial solution zg, respectively). Here, the algo-
rithm is performed by maple with 15 digits precision. In this section, we set
m =25, =10"'2 and a = 0.1, for all examples.

Example 5.1. Consider the nonlinear equation,

2% — 5% + 32 + 23 + 222 — 82 — 0.5 =0, (18)
which has two real solutions,
' = —0.0615753511597450, (19)

and
2% = 4.23471316736242, (20)
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In [3], the first solution, (19), was obtained by a modification of ADM. Here,
we obtain all real solutions (19) and (20) by the presented algorithm. For this
reason, we rewrite (18) as below,

28 — 525 4+ 32 + 23+ 222 —8x+ pBr 0.5

xr = —_ —.

g B

Now, by using algorithm (4.1), we obtain,

3=8.0,3=8888...,3=28888....

Choosing 8 =8.0, we obtain

zo = —0.0625,
z1 = 0.000952370464801789,

x5 = —0.0000287613653337411,
z3 = 0.00000108346254799556,
s = —0.456933501001624 ¢ — 7,
x5 = 0.206479468869854 ¢ — 8,

So, we obtain initial approximation = Z?:o x; = —0.0615753510665393, with
| f(Z)]| = 9.3e — 11 which it shows that this initial approximation is suitable.
Now, by using algorithm (4.II), we have,

8 = 8.23809310631965, B = 9.153436786 . .., 3 = 9.153436788 .. ..

where through choosing 3 =8.23809310631965, we obtain,

zo = —0.0615753510665395,
1 = —0.932055e — 10,

re = —0.2e—16,

z3 = 0.2e—20,

rgy = —0.2e—23,

rs = —0.3e—23,

and T =7 = Z?:o x; = —0.0615753511597450, with | f(Z)| = 0.

To obtain, second real solution (20), corrected part of the presented algorithm
with initial approximation Z = 5.0 is applied and Table (5.) shows the results.
The obtained results show the advantage using proposed algorithm for this
example.
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Table 1: Second approximate solution for Example
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5.1

Real 3’s Approximated Solution, Z | f(Z) ]
-5235.55. xo = 5.0 0.3431

xy = —0.38381791171477

xy = —0.038381791171477

x5 = —0.104908590182653

T = Y7,z = 4.57780029711375

(Note that |z3| > |22] )
-2564.12748600513 | xo = 4.57780029711375 0.0988

xp = —0.22207317064549

xg = —0.022207317064394

x5 = —0.044221101677761

T =Y 7 x; = 4.33351980940387
-1550.33665295112 | xo = 4.33351980940387 0.0011

x1 = —0.07946514158093

2y = —0.0079465141581112

x5 = —0.007205623329186

x4 = —0.0017627060015005

5 = —0.001335550382624

7 =30 @i = 4.23580427395152
-1125.62395151785, | xo = 4.23580427395152, 3.53 e-10
-1231.440. . ., o
-1214.112. .. T =Y 0_ox; = 4.23471316771527
-1105.31666185694, | xo = 4.23471316771527, 3.10 e-14

-1228.129618. ..,
-1228.129614. ..

&= Yo o2 = 4.23471316736245
(Note that & = )

Example 5.2. Consider the nonlinear equation [7, 8],

e* — 322 =0,

which has three real solutions,

2! = —0.458962267536950,
% = 0.910007572488716,
= 3.73307902863280.

Here, all real solutions (21) are obtained by using purposed algorithm.
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this reason, algorithm (4.1T) with initial approximation # = 0 is applied to this
problem. Table 2 reports the obtained results. Now, consider Table 2, in the

Table 2: First approximate solution for Example 5.2

Real 3’s Approximated Solution, Z | f(Z)]
-2.72314789108930, | # = Y7, x; = —0.622829090834269 | 0.1639
£ 1 3 LR

0.612036779978184

-4.74822137742396 | z =Y ._, x; = —0.460911148553635 | 0.0019
-3.45881275663384, | z = ., x; = —0.458962268550887 | 1.01e-9
-3.7735. . .,
-3.7108...

| J

-3.38571272694698, | # = 3.0, 2; = —0.458962267536948 | -2.10 e-15
-3.76190299. . ., (Note that & = 7)
-3.76190297. . .

first iteration, if we choose 3= —1.11... then the same results will obtain but
if we choose 3 = 0.612036779978184 then the approximated solution converges
to solution (23), the obtained results are shown in Table 3. Here, to obtain the

Table 3: Second approximate solution for Example 5.2

Real 3’s Approximated Solution, & | f(Z)]
-2.72314789108930, | & = Y_;_,x; = 1.63388873465357 0.7238. ..
SR

0.612036779978184
-5.19952381530444 | = = Ez o *i = 0.992050636325429 0.0820. ..
3.61727215566294 = Zf x; = 0.910186137072770 0.000178. ..

2.97950031256122, | & = Y ._,a; = 0.910007572488732 | 1.61 e-14
3.3070.. ., (Not that I=7)
3.3038. ..

third real solution (24), it is used algorithm (4.IT), with initial approximation
# = 5.0 and the obtained results are shown in Table 4.
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Table 4: Third approximate solution for Example 5.2

Real 3's Approximated Solution, T | f(2)]
-131.570176780641 | & = Z‘f= x; = 4.38622507783453 0.6531. ..
-60.0213678340246 | & =) ., x; = 3.97167875646619 0.2385. ..
-32.4927568083889 | & = Zf:a x; = 3.77699096825473 0.0439. ..
-23.3582780309814 | & = ?=U x; = 3.73314769138646 0.000068. ..
-19.4239860213644, | & = Z?:e x; = 3.73307902863282 | 2.10 e-14
-21.56. . ., (Note that & = &)

-21.55. ..

Example 5.3. Consider the nonlinear equation,

xr

e’ — 5 sin(z) =0, (25)

which has infinite real solutions (Figure 1 shows a piece of its graph),

[ exp(x)-Ssin(x);

Figure 1. Plot of ¢* — 5sin(z)

To solve the above problem by standard ADM and their modifications [3-8] is
difficult. Here, we obtain three solutions of nonlinear equation (24) by choosing
only one initial approximation & = —5.0. This work is done by using different
#'s which are obtained by applying algorithm (4.II) to this problem. Tables
5., 5. and 5. show the results. Now, consider Table 5., in the first iteration, if
we choose 3 =1.56841442257449 then the obtained approximations tend to the
other solution, the obtained results are shown in Table 5., Again, consider Table
5.. in the first iteration, if we choose 3 =-2.08456286550767 then the obtained
approximation solutions tend to the other solution. the obtained results are
shown in Table 5.,

The advantage of using the proposed algorithm of this paper is clearly demons-
trated for these examples.

6. Conclusion

In this paper, an efficient algorithm for solving nonlinear equations is pro-
posed. This method can be found more than one zero of a given nonlinear
equation (if exist) by using only one initial solution. This algorithm is based
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1

on the Adomian decomposition method and the Banach fixed point theorem.

The proposed method is tested by several examples and the results show the

efficiency of the proposed algorithm.

Table 5: First approximate solution for Example 5.3

Real 3’s Approximated Solution, # | f(Z)]
5.06455026839923, | & = 5.0, a; = —6.69544129140790 | 0.4126
1.56841442257449

-2.08456286550767,

3.31953835868750, | & =Y i ,a; = —6.34375878562871 0.0609
5.08...,

6.34. ..

4.90886367208948, | & = ;_,x; = —6.28281146508226 2.14e-7
5.62::.,

5.54...

4.99813150561590, | & = Y0 z; = —6.28281167905265 | 0
5.553479455. . . (Note that & = &)

5.553479459. ..

Table 6: Second approximate solution for Example 5.3

Real (’s Approximated Solution, & | f(z)]
5.06455026839923, | = = ZE:I] x; = —8.35795928240905 1.067
1.56841442257449,

-2.08456286550767

-5.81513280517790, | & = y 0y i = —9.59523735001112 | 0.1704
0.71...,

-2.68...

-5.89027775471385, | & = Z?:u x; = —9.42488591243072 0.000092
451...

-5.47...

-5.00008037684925, | & = Z-?:O x; = —9.42479410041240 | 0
-5.55564521. . ., (Note that & = z)

-5.55564522. ..
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Table 7: Third approximate solution for Example 5.3
Real 3's Approximated Solution, | f(@)]

5.06455026839923, | = = Zfl:u x; = —2.70317148715466 0.4470
1.56841442257449,
-2.08456286550767

-3.24760167799114, | & = Z?:o x; = —3.06988632699550 0.0802

-5.10. ..,
-6.45. ..

-4.92813051931722,

S0 @i = —3.15016231584163 | 5.19 -7

=
Il

5.59. ..,
-5.69. . .

-5.04266135301120, | & = ?:0;1:1- —3.15016179727586 | 1.10 e-14

-5.6029573. . ., (Note that & = z)
-5.6029575. ..
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