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1 Introduction

Throughout this paper R is a commutative with non-zero identity andM
is an unitary R-module. Recently, there has been considerable attention
in the work to associating graphs with algebtaic structures. There are
several associated graphs to R and M . The most well-known are zero-
divisor graph [7], total graph [1, 4], unit graph [11], the annihilator ideal
graph [2] and trace graph [13].

In [12], Sharma and Bhatwadekar defined a graph on R, G(R), with
vertices as elements of R where, two distinct vertices a, and b are ad-
jacent, if and only if Ra + Rb = R. In [15], Ye and Wu introduced the
comaximal ideal graph of a ring R, denoted by C(R) such that vertices
are the proper ideals of R which are not contained in the Jacobson radi-
cal of R, and two vertices I1 and I2 are adjacent if and only if I1+I2 = R.
They studied the diameter, girth and bipartiteness of C(R) and showed
that C(R) is a simple, connected graph with diameter not more than
three, and both the clique number and the chromatic number of the
graph are equal to the number of maximal ideals of the ring R. Dorbidi
and Manaviyat, classify all comaximal ideal graphs with finite indepen-
dence number and present a formula to calculate this number, see [9].
Also, the domination number of C(R) for a ring R is determined.

Let P denote the set of prime integers. Let S be a subset of R and
I be an ideal. We define the subset (I : S) = {a ∈ R : aS ⊂ I}. Clearly,
(I : S) is an ideal of R which is called the ideal quotient or colon ideal.
Let I∗(R) denote the set of all proper non-trivial ideals of R and S∗(M)
denote the set of all proper non-trivial submodules of M . The Krull
dimension of a ring R is the supremum of the lengths of all chains of
prime ideals which is denoted by dim(R).

Recall that an R-module M is a multiplication module if every sub-
module N of M has the form N = IM for some ideal I of R. Equiva-
lently, N = (N : M)M , see [6, 8, 14]. A multiplication module M with
Ann(M) = 0 is called a faithful multiplication module. A local module
is a module with exactly one maximal submodule. A non-zero module
M over a ring R whose only submodules are the module itself and the
zero module, is called a simple module. A co-semisimple module is an
R-module M in which every proper submodule is an intersection of max-
imal submodules. We will say M is a cancellation module if for all ideals
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I and J of R, IM = JM implies that I = J . An R-module M is called
prime if for every non-zero submodule K of M , Ann(K) = Ann(M).
For any unexplained notions or terminology we refer the reader to [5].

According to [10], a non-zero module M is define to be hollow if
every submodule N of M is small, abreviated N ≪ M , in case for any
submodule K of M ; the equality N + K = M implies that K = M .
An R-module M is called a uniserial module if for all non-zero elements
m and n in M , either Rm ⊆ Rn or Rn ⊆ Rm. Equivalently, for all
submodules K and N of M , either K ⊆ N or N ⊆ K. A ring R is said
to be uniserial (hollow) if R is uniserial (hollow) as an R-module.

For a graph G, by V(G) and E(G), we mean the set of all vertices
and edges of G, respectively. We recall that a graph is connected if
there exists a path connecting any two of it’s distinct vertices. We say
that a graph is empty or totally disconnected if E(G) = ∅. The distance
between two distinct vertices a and b, denoted by d(a, b), is the length
of a shortest path connecting them (if such a path does not exist, then
d(a, b) = ∞; we also defne d(a, a) = 0). The diameter of a graph G,
denoted by diam(G), is equal to sup{d(a, b) : a; b ∈ V(G)}. A graph is
complete if it is connected with diameter less than or equal to one. The
girth of a graph G, denoted gr(G), is the length of a shortest cycle in
G, provided G contains a cycle; otherwise; gr(G) = ∞. We denote the
complete graph on n vertices by Kn and the complete bipartite graph on
m and n vertices by Km,n. We allow m and n to be infinite cardinals.
We will sometimes call a K1,m a star graph. A universal vertex is a
vertex of an undirected graph that is adjacent to all other vertices of the
graph. A graph that contains a universal vertex may be called a cone.
The chromatic number of a graph G, denoted χ(G), is defined to be the
minimum number of colors which can be assigned to the vertices of G
in such away that every two adjacent vertices have different colors. A
subset C of the vertex set of a graphG is called a clique if any two distinct
vertices of C are adjacent. The clique number of G, denoted by ω(G) is
the size of the largest clique of G, and clearly χ(G) ≥ ω(G). A regular
graph is a graph whose vertices all have equal degree. A n-regular graph
is a regular graph whose common degree is n. An independent vertex
set of a graph G is a subset of the vertices such that no two vertices
in the subset represent an edge of G. The independence number is the
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cardinality of the largest independent vertex set which is denoted by
α(G). For a loopless graph G, it’s line graph L(G) is constructed in
such way that the vertex set of L(G) is in 1 − 1 correspondence with
the edge set of G and two vertices of L(G) are joined by an edge if and
only if the correspondence edges of G are adjacent in G. A graph G is
called planar if there exists a drawing of G in the plane in which no two
edges intersect in a point other than a vertex of G. By Kuratowski’s
theorem, a graph is planar if and only if it has no subgraph isomorphic
to a subdivision of K5 or K3,3.

2 The Comaximal Colon Ideal Graph of a Com-
mutative Ring

In this paper, all considered graphs are non-null. Let I and J be two
elements of I∗(R) and denote C(I, J) as the sum of two colon ideals
(I : J) + (J : I). First, we introduce the comaximal colon ideal graph
C∗(R) as follows.

Definition 2.1. Let C∗(R) be the simple graph of vertex set I∗(R) and
two vertices I, J of I∗(R) are adjacent if C(I, J) = R.

Proposition 2.2. Suppose that n is a positive integer and that R =
F1 × · · · × Fn where Fk is a field for all k = 1, · · · , n. Then C∗(R) is a
complete graph with 2(2n−1 − 1) vertices.

Proof. Note that every non-trivial ideal of R has the form I1 × · · · × In
where at least one component Ik is equal to zero ideal of Fk and at least
one component Is is equal to Fs. Let I and J be two non-trivial ideals of
R. We denote (I : J)k for the kth component of (I : J). Then (I : J)k =
(Ik : Fk

Jk) for all 1 ≤ k ≤ n. If Ik = Jk = 0 or Ik = Jk = Fk, then
(I : J)k = (J : I)k = Fk. Let Ik = 0 and Jk = Fk for some 1 ≤ k ≤ n.
Then (I : J)k = 0 and (J : I)k = Fk. Hence, (I : J)k + (J : I)k = Fk for
all k = 1, · · · , n. So, (I : J) + (J : I) = R as we desired. □

As noted C(R) is a simple graph in which V(C(R)) ⊆ V(C∗(R))
and two disjoint vertices are adjacent if and only if they are comaximal
ideals. It is clear that any adjacent pair in C(R) is also adjacent in
C∗(R). But the converse is not true. For example, in the R = Z8, ⟨2⟩
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and ⟨4⟩ are non-adjacent in C(R), but they are adjacent in C∗(R). It
is clear that a comparable pair of vertices I, J of C∗(R) forms an edge.
Whence, a chain of non-trivial ideals forms a complete subgraph.

Remark 2.3. Let (R,m) is a local ring. Then C∗(R) is a complete
graph if and only if R is a uniserial ring. In fact, non-comparable ideals
of a local ring are not adjacent. Because, C(I, J) ⊆ m for all proper
ideals I, J .

Observation 2.4. Let I and J be disjoint vertices of the graph. If
I + J = R, I ⊆ J or J ⊆ I, then C(I, J) = R and hence I— J is an
edge. Otherwise, I— I + J — J is a path. This implies that C∗(R) is a
connected graph and diam(C∗(R)) ≤ 2.

Theorem 2.5. Let |Max(R)| = n and I be an ideal properly contained
in J(R), then deg(I) ≥ 2n − 1. In particular, deg(J(R)) ≥ 2n − 2.

Proof. As we have I ⊂ J(R), it is evident that I ⊂
⋂

λ∈B mλ for all
nonempty sets B of Λ. The number of non-empty subsets B of Λ equals
to 2n − 1. Thus, deg(I) ≥ 2n − 1. The second part is clear. □

Theorem 2.6. Let m ∈ Max(R) and I be a vertex of C∗(R) disjoint
from m. For all positive integers n where

√
(I : mn) ⊈ m, I is adjacent

to mn. Moreover, if α(C∗(R)) ≥ 3, then C∗(R) is not a line graph.

Proof. Fix a positive integer n. Since,
√
(I : mn) ⊈ m. Hence,√

(I : mn) +
√
mn = R. Therefore, (I : mn) + mn = R. This shows

that
(I : mn) + (mn : I) ⊇ (I : mn) +mn = R.

So, (I : mn) + (mn : I) = R.
Moreover, let I1, I2 and I3 be non-adjacent vertices and m be a maximal
ideal. It is clear that

√
(Ij : m) ⊈ m for j = 1, 2, 3 that Ij ⊈ m. Then

the subgraph induced by {m, I1, I2, I3} is isomorphic to the star graph
K1,3. This is a forbidden subgraph for a line graph. □

Corollary 2.7. Every maximal ideal m of R is a universal vertex. So,
∆(C∗(R)) = |I(R)| − 1. Moreover, m is a central point.

Corollary 2.8. Let (R,m) be a local ring with mk ̸= mk+1 for 1 ≤ k ≤ 5.
Then C∗(R) is non-planar. In particular, if R is a Noetherian local ring
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which is non-Artinian containing at least 5 ideals, then C∗(R) is non-
planar.

Proof. It is clear that the subgraph induced by {m,m2, · · · ,m5} is
isomorphc to K5. So, we are desired. □

Example 2.9. C∗(Z[X]) is not a line graph. Suppose that I1 = ⟨X2⟩,
I2 = ⟨X2 + 2⟩ and I3 = ⟨X2 + 5⟩. Then (I1 : I2) = (I1 : I3) = I1, (I2 :
I1) = (I2 : I3) = I2, and (I3 : I1) = (I3 : I2) = I3. So, C(I1, I2), C(I2, I3)
and C(I1, I3) are proper ideals of Z[X]. Now Theorem 2.6 shows the
result.

Theorem 2.10. Suppose that {m1, · · · ,mn} is a subset of Max(R) and
that I is a non-trivial proper ideal of R. Then I is adjacent to m1 · · ·mn.

Proof. Note that by the simplicity of our graph, I has to be disjoint
from m1 · · ·mn. We may assume that I ⊈ m1 · · ·mn = m1 ∩ · · · ∩ mn.
Then (I : m1 · · ·mn) ⊈ m1 · · ·mn. Set J := (I : m1 · · ·mn). Hence,√
J ⊈ m1 · · ·mn. One may assume that there is some 1 ≤ s ≤ n such

that
√
J ⊈ m1 ∪ · · · ∪ ms and

√
J ⊆ ms+1 ∩ · · · ∩ mn. For i = 1, · · · , s

one has
√
J + mi = R. This yields

√
J + m1 · · ·ms = R. It is easy to

see that m1 · · ·ms ⊆ (m1 · · ·mn : I). Therefore,
√
J +

√
m1 · · ·mn : I ⊇√

J +m1 · · ·ms = R. Finally, C(I,m1 · · ·mn) = R . □

Corollary 2.11. Let |Max(R)| = n. For all I ∈ I∗(R), deg(I) ≥ 2n−2.

Proof. For all vertex I, if I /∈ {mi1 · · ·mit |mij ∈ Max(R), 1 ≤ t ≤ n},
one has from the theorem that deg(I) ≥

(
n
1

)
+
(
n
2

)
+ · · ·+

(
n
n

)
= 2n − 1.

Otherwise, deg(I) ≥ 2n − 2. □

Theorem 2.12. Let |V(C∗(R))| ≥ 3, then gr(C∗(R)) = 3.

Proof. It is clear that if m1,m2 and m3 are disjoint maximal ideals,
then m1—m2—m3—m1 is a triangle.

If m1 and m2 are maximal ideals and I is a non-maximal ideal, then
m1—m2— I—m1 is a triangle.

Let m be the only maximal ideal and I and J be non-maximals. Then
I—m— J is a path. If I and J are comparable, then gr(C∗(R)) = 3.
Otherwise, we may assume that I is finitely generated as an R-module.
So, by Nakayama Lemma mI ̸= I. This shows that m— I—mI—m is
a triangle and we are done. □
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Remark 2.13. Let Q be a primary ideal and let I be an ideal that
I ⊈ Q. Then Q ⊆ (Q : I) ⊆

√
Q. In particular, if Q is a prime ideal

does not containing I, then (Q : I) = Q.

Proposition 2.14. Let Q1 and Q2 be non-comparable primary ideals
of R. Then Q1—Q2 is an edge in C(R) if and only if it is an edge in
C∗(R).

Proof. It is enough for us to prove the ”necessary” part. To this end,
we note that Qi ⊆ (Qi : Qj) ⊆

√
Qi for 1 ≤ i, j ≤ 2 with i ̸= j,

by Remark 2.13. Assume that Q1 − Q2 is an edge in C∗(R). Then
(Q1 : Q2) + (Q2 : Q1) = R. Thus,

√
Q1 +

√
Q2 = R which implies that

Q1 +Q2 = R. □

Theorem 2.15. Let Qi be a mi-primary ideal for i = 1, 2, where mi ∈
Max(R).

(i) If m1 ̸= m2, then Q1 is adjacent to Q2. In particular, mn
1 − mk

2 is
an edge for all positive integers n, k.

(ii) If m1 = m2, then Q1 is adjacent to Q2 if and only if they are
comparable.

Proof. (i) We may assume that Q1 and Q2 are non-comparable. So,
Qi ⊆ (Qi : Qj) ⊆

√
Qi = mi for 1 ≤ i, j ≤ 2 with i ̸= j, by Remark 2.13.

By the fact that m1 + m2 = R, one has Q1 + Q2 = R. Hence, Q1 and
Q2 are adjacent in C∗(R).

(ii) Let m1 = m2. If they are comparable there is no something
to prove. Assume that Q1 and Q2 are not comparable. Then (Q1 :
Q2)+ (Q2 : Q1) ⊆ m1 = m2 is a proper ideal. So, they are non-adjacent.
□

Example 2.16. Suppose that R = F [X,Y ] is the polynomial ring in
variables X and Y and coefficients in the field F . Let I = ⟨X2, Y ⟩ and
J = ⟨X,Y 2⟩. These ideals are both ⟨X,Y ⟩-primary. It is easy to see that
I is not adjacent to J in C∗(R). Therefore, the ideals are not adjacent
in C(R) too.

Theorem 2.17. Suppose that Max(R) = {m1, · · · ,mn}. Then C∗(R)
has a complete n-partite subgraph.
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Proof. For i = 1, · · · , n, let Vi be the set of all mi-primary ideals where
are not pairwise comparable. Hence, non of two vertices in Vi are adja-
cent, by Theorem 2.15. Assume that I ∈ Vi and J ∈ Vj for i ̸= j. Then√

I = mi and
√
J = mj . Thus,

√
(I : J) +

√
(J : I) ⊇

√
I +

√
J = R.

This yields that I— J is an edge. □

Corollary 2.18. In the light of Theorem 2.17, if n ≥ 2 and |Vi| ≥ 3,
then C∗(R) is non-planar.

Corollary 2.19. If |Max(R)| = n, then χ(C∗(R)) ≥ n.

Theorem 2.20. Let I, J ∈ I∗(R) where Ann(I) + Ann(J) = R, then
I is adjacent to J in C∗(R). Moreover, if R is not a field and I is a
minimal non-nilpotent ideal of R, then deg(I) ≥ 1.

Proof. The first assertion is clear, because Ann(I)+Ann(J) ⊆ C(I, J).
The second part conclude that from this fact I = Re where e2 = e and
by first part C(Re,R(1− e)) = R. □

3 The Comaximal Colon Ideal Graph of a Mod-
ule

In this section, we will discuss some fundamental properties of the graph
C∗(M). The results will show that C∗(M) has not properties similar
to that of the comaximal graph C(R), which is defined and studied by
Meng Ye et al. in [15]. We begin with some notation and definitions.

Definition 3.1. Let M be an R-module. We define the comaximal
colon ideal graph C∗(M) whose its vertices are all proper non-trivial
submodules of M and two distinct vertices N and K are adjacent if and
only if

C(N,K) = (N : K) + (K : N) = R,

i.e., (N : K) and (K : N) are comaximal ideals of R. We note that in
this case, (N : K)(K : N) = (N : K) ∩ (K : N).

Note that this graph contains inclusion graph (two distinct submod-
ules N and K are adjacent if and only if N and K are comparable).
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Clearly, if there exists a submodule N ∈ S∗(M) \Min(M), then C∗(M)
is a non-empty graph.

Our starting point is the following lemma and we list some basic
properties concerning to C∗(M).

Lemma 3.2. Let M be an R-module. Then the following assertions
hold.

(i) Suppose that N,K are distinct comparable non-trivial submodules
of M , then N —K is an edge in C∗(M).

(ii) If (R,m) is a local ring and N,K ∈ S∗(M) are non-comparable,
then N is not adjacent to K in C∗(M). In this case, M is a
uniserial module if and only if C∗(M) is a complete graph.

(iii) If N is a non-trivial submodule of M with a minimal set of at least
3 generators, then gr(C∗(M)) = 3.

(iv) Suppose that N and K are submodules of M where (N : K) and
(K : N) are distinct maximal ideals of R, then N —K is an edge
of C∗(M).

(v) Let N1 ⊂ N2 ⊂ . . . ⊂ Ns be a finite ascending chain of non-trivial
submodules of M , then C∗(M) has a subgraph isomorphic to Ks.

(vi) If ω(C∗(M)) < ∞, then M is both Noetherian and Artinian mod-
ule.

Proof. (i) It is clear.
(ii) Let (R,m) be a local ring, then for every two non-comparable

submodules N,K of M , we have C(N,K) ⊆ m ⊊ R. This implies that
N is not adjacent to K in C∗(M). The second part is clear by (i).

(iii) Let N ⊇ Rx + Ry + Rz, where {x, y, z} is a minimal set of
generators, then by (i), Rx—Rx+Ry—N —Rx is a 3-cyclic in C∗(M).

(iv) Suppose that m1 = (N : K) and m2 = (K : N) are distinct
maximal ideals of R, then C(N,K) = R and hence N —K is an adge
of C∗(M).

(v) It is clear.
(vi) Suppose that M is not a Notherian module, then there exists a

strict ascending chain of submodules of M which is not stationary. By



10 S. RAJAEE AND A. ABBASI

virtue of (i), this implies that C∗(M) has a subgraph isomorphic to the
complete graph K∞, which is a contradiction. A similar argument can
be applied for the Artinian case. □

Corollary 3.3. Let M be an R-module which has a strict ascending or
descending chain of submodules with length ≥ 5, then C∗(M) is not a
planar graph. In particular, if dimR ≥ 5, then C∗(R) is not planar.

Proof. Suppose that there exists a strict ascending or descending chain
of submodules of M with length ≥ 5, then C∗(M) has a subgraph iso-
morphic to the complete graph K5. Therefore by Kuratowski’s theorem
C∗(M) is not planar. In particular, if dimR ≥ 5, then there exists a
strict ascending chain of prime submodules of M with length 5 and this
implies that C∗(M) is not planar. □

In [15, Proposition 2.1 (1)], it is shown that, if (R,m) is a local ring,
then C(R) is an empty graph. The following example shows that this is
not the case in C∗(M).

Example 3.4. (i) Consider M = Z12 as a Z-module, then V(C∗(M)) =
{⟨2̄⟩, ⟨3̄⟩, ⟨4̄⟩, ⟨6̄⟩}. Clearly C∗(Z12) is the complete graph K4.

(ii) Consider M = Z8 as a Z8-module, where Z8 is a local ring with
only maximal ideal m = ⟨2̄⟩. Then V(C∗(Z8)) = {⟨2̄⟩, ⟨4̄⟩} and C∗(Z8)
is the complete graph K2 with only edge ⟨2̄⟩— ⟨4̄⟩.

(iii) We consider M = Z2×Z2 as a Z-module, then the set of vertices
is V(C∗(M)) := {Z2 × 0, 0×Z2, ⟨(1, 1)⟩}. One can check that C∗(M) is
an empty graph.

(iv) Consider M = Z2×Z2×Z2 as a Z-module, then V(C∗(M)) has
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14 submodules as follows:

N1 : = Z2 × Z2 × 0 = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)}
= N4 +N6 = N4 +N7 = N6 +N7,

N2 : = Z2 × 0× Z2 = {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)}
= N4 +N5 = N4 +N8 = N5 +N8,

N3 : = 0× Z2 × Z2 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}
= N6 +N9 = N5 +N6 = N5 +N9,

N4 : = ⟨(1, 0, 0)⟩ = Z2 × 0× 0,

N5 : = ⟨(0, 0, 1)⟩ = 0× 0× Z2,

N6 : = ⟨(0, 1, 0)⟩ = 0× Z2 × 0,

N7 : = ⟨(1, 1, 0)⟩ = {(0, 0, 0), (1, 1, 0)},
N8 : = ⟨(1, 0, 1)⟩ = {(0, 0, 0), (1, 0, 1)},
N9 : = ⟨(0, 1, 1)⟩ = {(0, 0, 0), (0, 1, 1)},
N10 : = ⟨(1, 1, 1)⟩ = {(0, 0, 0), (1, 1, 1)},
N11 : = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

= N7 +N8 = N7 +N9 = N8 +N9,

N12 : = {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}
= N5 +N7 = N5 +N10 = N7 +N10,

N13 : = {(0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 1)}
= N6 +N8 = N6 +N10 = N8 +N10,

N14 : = {(0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)},
= N4 +N9 = N4 +N10 = N9 +N10.

Clearly for all k ∈ Z and submodules Ni, Nj , kNi ⊆ Nj if and only
if Ni ⊆ Nj . So, two vertices are adjacent if and only if the cor-
responding submodules are comparable. C∗(M) is a 3-regular graph
and it is a bipartite graph with a bipartition of two sets as X :=
{N1, N2, N3, N11, N12, N13, N14} and Y := {N4, N5, N6, N7, N8, N9, N10}.
Hence, χ(C∗(M)) = 2 and α(C∗(M)) = 7. In the Figure 1, we have
taken k for denoting the vertex Nk.
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Theorem 3.5. Let M be a finitely generated faithful multiplication R-
module. Then C∗(R) ∼= C∗(M).

Proof. Consider the map ϕ : I∗(R) → S∗(M) where ϕ(I) = IM .
Clearly ϕ is a bijection between V(C∗(R)) and V(C∗(M)). Assume that
N = IM and K = JM are distinct submodules of M , we must show
that N —K is an edge in C∗(M) if and only if I— J is an edge in
C∗(R). Obviously, (N : K)M = (I : J)M and (K : N)M = (J : I)M .
Suppose that C(N,K) = R, then (N : K)M+(K : N)M = M , since M
is a cancellation module. This implies that C(I, J) = R. The converse
is clear. □

Remark 3.6. A module M is called coatomic if every proper submod-
ule of M is contained in a maximal submodule of M . In this case,
if |V(C∗(M)| ≥ 2, then |E(C∗(M)| ≥ 1. It is well-known that co-
semisimple modules, finitely generated modules and multiplication mod-
ules are coatomic. By Lemma 3.2 (ii), in a coatomic R-module M with
at least two non-trivial submodules, C∗(M) has no isolated vertex. We
recall that an R-module M is said to be sum-irreducible precisely when
it is non-zero and cannot be expressed as the sum of two proper sub-
modules of itself.
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In the following theorem, we will give some relations between the
graph-theoretic properties of C∗(M) and the module-theoretic proper-
ties of M .

Theorem 3.7. Let M be an R-module. Then the following assertions
hold.

(i) If M is coatomic, then deg(Rad(M)) is at least equal to the number
of essential submodules of M .

(ii) If N —K is an edge in C∗(M) and (N : K) is a small ideal of
R, then N is a proper submodule of K. In particular, if R is a
hollow ring and C∗(M) is a complete graph, then M is a uniserial
module.

(iii) If N ∩ K = 0 and Ann(K) = 0, then N is not adjacent to K in
C∗(M). Moreover, if N and K are distinct simple submodules of
M and either Ann(N) = 0 or Ann(K) = 0, then N is not adjacent
to K in C∗(M).

Proof. (i) Assume that N ∈ V(C∗(M)), then N ≪ M if and only if
N ⊆ Rad(M). Therefore N —Rad(M) is an edge in C∗(M) and the
proof is complete.

(ii) Since N —K is an edge in C∗(M), therefore C(N,K) = R. By
hypothesis (N : K) ≪ R, then (K : N) = R which implies that N ⊂ K.
For the second part, since R is a hollow ring hence every ideal of R is a
small ideal and the proof is clear by the first part.

(iii) Assume that N —K is an edge in C∗(M). Since N ∩K = 0 we
conclude that (N : K) = Ann(K) and (K : N) = Ann(N). This implies
that Ann(N)+Ann(K) = R and by hypothesis since Ann(K) = 0 hence
Ann(N) = R which is a contradiction. The second part is clear. □

Corollary 3.8. Let N,K ∈ S∗(M) and N ∩K = 0. Then N —K is an
edge in C∗(M) if and only if Ann(N) + Ann(K) = R.

The condition Ann(K) = 0 in Theorem 3.7 (iii), can not be omitted,
because we consider the Z-module M = Z3 ⊕ Z5 and N = Z3 ⊕ 0,
K = 0⊕ Z5. Then we have (N : K) = 5Z and (K : N) = 3Z, therefore
(N : K) + (K : N) = 5Z+ 3Z = Z. We infer that N —K is an edge of
C∗(M).
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Theorem 3.9. If |V(C∗(M))| ≥ 2, then C∗(M) is an empty graph if
and only if M = N ⊕K where N ∼= K is a simple module.

Proof. If C∗(M) is the empty graph, then no two submodules of M
are comparable. So every non-trivial submodule is both a maximal and
a minimal submodule. Let N,K be two vertices of C∗(M), then there
exist x ∈ N and y ∈ K such that N = Rx and K = Ry. It conclude
that R/Ann(x) ∼= Rx and R/Ann(y) ∼= Ry. If N and K are two non-
isomorphic non-trivial submodules of M , then Ann(N) ̸= Ann(K) are
two maximal ideals, since otherwise N ∼= K which is a contradiction.
Now since Ann(N) and Ann(K) are two distinct maximal ideals of R
hence R = Ann(N) + Ann(K) ⊆ (K : N) + (N : K) ⊆ R. Therefore
N and K are adjacent in C∗(M). This contradiction shows that all
non-trivial submodules of M are isomorphic to a simple module N . It
is easy to see that M = N ⊕K. □

Corollary 3.10. Let M be an R-module and |V(C∗(M))| ≥ 2. The
following assertions hold.

(i) If M is a hollow module, then C∗(M) is not empty.

(ii) If C∗(M) is empty, then M is a two dimensional vector space.

Proof. (i) It is clear.
(ii) Note that in the notation of Theorem 3.9, F = R/Ann(M) is

a field. On the other hand, N = Rx and K = Ry are cyclic modules.
Hence, M is a two dimensional vector space over F . □

Theorem 3.11. If C∗(M) is non-empty, then diam(C∗(M)) ≤ 3.

Proof. Let N and K are two different submodule of S∗(M). If N and K
are adjacent, then d(N,K) = 1. Assume N and K are non-adjacent. If
N+K &M then N —N+K—K is a path which implies d(N,K) = 2.
Hence assume N +K = M . If N ∩K ̸= 0, then N —N ∩K—K is a
path which implies d(N,K) = 2. Hence assume that N ∩ K = 0 and
M = N⊕K. If N is not simple, then N has a non-trivial submodule N1.
So N —N1—N1+K—K is a path which implies d(N,K) ≤ 3. So, we
may assume that N and K are simple. If N and K are non-isomorphic,
then Ann(N) ̸= Ann(K) are two different maximal ideals. Hence N and
K are adjacent in C∗(M). So assume that N ∼= K, then by Theorem
3.9, C∗(M) is an empty graph which is a contradiction. □
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Corollary 3.12. Suppose that M is a sum-irreducible R-module, then
diam(C∗(M)) ≤ 2. Moreover, in this case if M has an essential sub-
module, then gr(C∗(M)) ≤ 4.

Theorem 3.13. Let M be a faithful prime R-module and N ∈ Min(M).
If K—N is an edge in C∗(M), then N ⊊ K.

Proof. Since K is adjacent to N in C∗(M), hence C(N,K) = R. We
note that (N : K)K ⊆ N and N ∈ Min(M) hence either (N : K)K = 0
or (N : K)K = N . If (N : K)K = 0, then (N : K) ⊆ Ann(K) =
Ann(M) = 0, then (K : N) = R and we are desired. Otherwise, we
have (N : K)K = N ⊊ K. □

Corollary 3.14. Let M be a faithful prime R-module and X = Min(M).
Then the induced subgraph of C∗(M) generated by X is empty.

Assume that d(n) is the number of divisors of a positive integer
number n except 1 and n. In particular, d(p) = 0 for every prime
number p ∈ P.

Theorem 3.15. Consider Zn as a Z-module. If n /∈ P, then C∗(Zn) is
the complete graph Kd(n).

Proof. Suppose that N = ⟨t̄⟩ and K = ⟨s̄⟩ are submodules of Zn. We
show that N —K is an edge in C∗(Zn).

case 1. If (t, s) = 1, then C(⟨t̄⟩, ⟨s̄⟩) = tZ+ sZ = Z.

case 2. If (t, s) = d > 1, then t = t1d, s = s1d and (t1, s1) = 1, therefore

(⟨t̄⟩ : ⟨s̄⟩) = (
t

gcd(t, s)
)Z = t1Z, (⟨s̄⟩ : ⟨t̄⟩) = (

s

gcd(t, s)
)Z = s1Z.

It follows that C(N,K) = t1Z+ s1Z = Z.

Therefore C∗(Zn) is the complete graph Kd(n). □

Definition 3.16. Let M be an R-module.

(i) M is called a prüfer module if every non-zero finitely generated
submodule of M is invertible.
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(ii) M is called a dedekind module, if each non-zero submodule of M
is invertible in M .

For an R-module M we denote the collection of all finitely gener-
ated (resp. cyclic) submodules of M by FG(M) (resp. CY(M)). The
following theorem is a consequence of [3, Theorem 2.3].

Theorem 3.17. Let R be an integral domain and M a faithful multi-
plication R-module. The following assertions are equivalent.

(i) M is a prüfer domain.

(ii) The induced subgraph of C∗(M) generated by FG(M) is a complete
graph.

(iii) The induced subgraph of C∗(M) generated by CY(M) is a complete
graph.

(iv) For every P ∈ Spec(R), C∗(MP ) is a complete graph.

In the following theorem we will give some necessary and sufficient
conditions for that C∗(M) is a complete graph.

Theorem 3.18. Let M be a module on a simple ring R. Then the
following assertions are equivalent.

(i) C∗(M) is a complete graph.

(ii) M is a uniserial module.

(iii) For every submodule N of M and all L ∈ Max(N), L ≪ N .

Proof. (i ⇒ ii) Let C∗(M) is complete, then for every distinct sub-
modules N,K of M , C(N,K) = R. Since R is a simple ring, hence
(N : K) = R or (K : N) = R. Therefore N ⊂ K or K ⊂ N , we infer
that M is a uniserial module.
(ii ⇒ i) The proof is obvious.
(ii ⇒ iii) Let N is a submodule of M and L ∈ Max(N) . Let L+T = N ,
where L and T are submodules of N . Now L ⊆ T or T ⊆ L. If L ⊆ T ,
then N = L + T = T , this implies that L ≪ N . If T ⊆ L, then
N = L + T = L, which is impossible, since L is a maximal submodule



SOME RESULTS ON THE COMAXIMAL ... 17

of N .
(iii ⇒ ii) Assume that L and K are submodules of M and let L ⊈ K.
Then there exists an element x ∈ L \K. Let y is an arbitrary element
of K. We show that y ∈ L. Let N = Rx + Ry. If N = Ry, then
Rx ⊆ Rx+ Ry = N = Ry ⊆ K. So x ∈ K, which is impossible. Hence
Ry is a proper submodule of N = Rx + Ry, and since N is a f.g. R-
module, so there exists a maximal submodule L ∈ Max(N) such that
Ry ⊆ L . We have N = Rx+Ry ⊆ Rx+L ⊆ N . Therefore N = Rx+L
and by our assumption L ≪ N , this implies that so N = Rx. Therefore,
Ry ⊆ Rx + Ry = N = Rx ⊆ L, and hence y ∈ L. This implies that
K ⊆ L hence M is a uniserial module. □
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