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Operator Arithmetic-Harmonic Mean
Inequality on Krein Spaces
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Abstract. We prove an operator arithmetic-harmonic mean type in-
equality in Krein space setting, by using some block matrix techniques
of indefinite type. We also give an example which shows that the oper-
ator arithmetic-geometric-harmonic mean inequality for two invertible
selfadjoint operators on Krein spaces is not valid, in general.
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1. Introduction and Preliminaries

A Krein space is a triple (47, (-,-),J) such that (7, (-,-)) is a Hilbert
space and J : # — S is a selfadjoint involution i.e., J = J* = J~!
which defines an indefinite inner product on 57, given by

[z,y] := (Jz,y) (2,y € H).

Note that the indefinite inner product space is not assumed to be pos-
itive, that is, [x,z] may be negative for some z € J#. We denote this
Krein space by (¢, J).

Received: October 2013; Accepted: December 2013
*Corresponding author

59



60 M. DEHGANI AND S. M. S. MODARRES MOSADEGH

Let (4, J) be a Krein space and let B(.#") denote the C*-algebra of all
bounded linear operators acting on a Hilbert space (7, (-,-)) with the
identity I. An operator T € B(.5¢) is called positive if (T'xz,x) > 0 for all
x € 2. We denote by BT () the subspace of all positive operators on
€. If T is a positive invertible operator we write 7" > 0. For bounded
selfadjoint operators T" and S on ¢, wesay T < Sif S—T > 0.

The J-adjoint operator of A € B(J¢) is defined by

[Az,y] = [z, A%y],  (z,y € ),

which is equivalent to say that A* = JA*J. An operator A € B(J¢) is
said to be J-selfadjoint if A = A, or equivalently, A = JA*J.

For .J-selfadjoint operators A, B € B() the J-order, denoted by A <’
B, is defined by

[Az, z] < [Bz, ], (x € I0).

Clearly A <’ B if and only if JA < JB (AJ < BJ). The J-selfadjoint
operator A € B(J) is said to be J-positive if A =7 0. For a complete
exposition on the subject see [2, 6, 11].

The theory of matrix and operator means started from the presence of
the notion of parallel sum in engineering by Anderson and Duffin [1]. An
axiomatic theory of matrix means was developed in [10] by Kubo and
Ando. Three classical means, namely, arithmetic mean, harmonic mean
and geometric mean for matrices and operators are considered in [4, 5].
A binary operation - : B () x B (2#) — BT (), (A, B) — ATB is
called an operator mean if the following conditions are satisfied:

(i) A< C, B< D imply ATB < CTD.

(ii) Ap, \ A, B, \, B imply A, 7B, \, ATB.

(iii) T*(A7B)T < (T*AT)7(T*BT) for all T € B(5¢).

(iv) ITI = I cf. [9, Chapter 5].

Let A and B be positive operators on a Hilbert space 7. Then their
arithmetic mean is defined by

AVAB =X A+ (1-X)B (A€]0,1]). (1)
If A> 0 and B > 0, then the harmonic mean A!,B is defined by
ANB=(AMT"+(1-NB ) (Ae(o0,1)) (2)
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and the geometric mean AfB between A and B is defined as follows:
A$B = A2(A"2BA 2)2 A3,

We denote AVB = AV%B and A!B := A!%B.
The following arithmetic-geometric-harmonic mean inequality hold, see
[4].

ALWB < AEB < AV,\B. (3)

Matrix and operator inequalities in the setting of Krein spaces is a fas-
cinating subject of operator theory. For instance, operator monotone
functions in finite dimensional Krein spaces (specially, the Lowner in-
equality) has been studied in [3]. In addition, a notion of operator con-
vexity in Krein spaces was studied recently, by Moslehian and Dehghani
[11].

In this Note, we consider the notions of arithmetic and harmonic mean
of two J-positive operators on a Krein space (4, J). We will prove the
operator arithmetic-harmonic mean inequality on Krein spaces, by using
some block matrix techniques of indefinite type. We describe appropri-
ate conditions to define the notion of power mean for two invertible
J-selfadjoint operators on a Krein space (7, J). Also we give an exam-
ple which shows that the inequality (3) is not correct for operators on
Krein spaces, in general.

2. Main Results

Let 54 and .74 be Hilbert spaces. It is well-know that an operator
A € B(JA4 @) is uniquely determined by the bounded linear operators
Ajj G — A (1 <14,j <2). We write A by the block matrix

Al App
A= . 4
( Ay As ) @
A 0

Let (#,J) be a Krein space. We consider the selfadjoint involution

The diagonal block matrix ( ) is denoted by Ai1 @ Aos.



62 M. DEHGANI AND S. M. S. MODARRES MOSADEGH

J = J @ J on the Hilbert space J# @ . Therefore ( ® #,J) is a
Krein space. Let A € B(J¢ @ ) be the block matrix introduced in
(4). Note that

I JALT  JALJT
§_ 5 11 21
AT=IAd ( JALd T A )
. A A
Therefore A is J-selfadjoint if and only if A = < oo ) in which
A12 Az

A11 and Ayy are J-selfadjoint cf. [8]
We need the following lemma, which is a consequence of [8, Theorem §]
in the setting of Krein spaces.

Lemma 2.1. Let (J,J) be a Krein space. Suppose that A and B are

J-selfadjoint operators. If A is invertible, then the operator < )?ﬁ )é >

is J-positive if and only if A =7 0 and X*A~1X <’/ B.

Corollary 2.2. Let (#,J) be a Krein space. If C' is an invertible J-

positive operator on F€, then the operator < ? CI_l ) 18 j—posz’tz’ve.
Proof. Let A=C, B=C"! and X = I in Lemma 2.1.

A real valued continuous function f on an interval 7 is said to be operator
monotone if A < B implies f(A) < f(B) for all selfadjoint operators A
and B on a Hilbert space .7 whose spectra are contained in Z, where
f(A) is defined by the usual functional calculus for a selfadjoint operator
[9, Chapter 1]. O

Lemma 2.3. [9, Example 1.6] The function f(t) = —% is operator mono-
tone on (0,00).

Operator means for Krein space operators is naturally defined as follows:

Definition 2.4. Let (#,J) be a Krein space and let B () be the
space of all J-positive operators on 7. A binary operation - : IB%}F () x
B} () — BY (), (A, B) — ATB is called an operator mean if the
following conditions are satisfied:

(i) A <’ C, B<’/ D imply ATB <’ C7D.
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(ii) An \, A, By, \\ B imply A, 7B, \, ATB.

(iii) T*(ATB)T <’ (T*AT)7(T*BT) for all T € B(F).

(i) IT] = 1.

The arithmetic and harmonic means of two J-positive operators are de-
fined by (1) and (2), respectively. Indeed, suppose that A and B are
J-positive operators on a Krein space (2%, J). Clearly AV,B =7 0. If A
and B are invertible, then the J-positivity of A~! and B~! implies that
AlZB >7 0. It is easy to see that other properties of an operator mean
(properties (i)-(iv) of Definition 2.4) are satisfied by replacing < and x
by <’ and f, respectively. Therefore AV\B and A!yB can be regarded
as means of two J-positive operators.

One may immediately say that if A and B are invertible J-positive op-
erators, then JA > 0 and JB > 0. It follows from the usual operator
arithmetic-harmonic mean inequality that JA!\JB < JAV\JB. There-
fore AlyB <’ AV, B. In the following theorem a direct proof of this
inequality (without using the usual operator arithmetic-harmonic mean
inequality) is provided.

Theorem 2.5. Let (A, J) be a Krein space. If A and B are invertible
J-positive operators on F, then

ALB <’ AV, B.

Proof. Let A = < AT > and B = ( B 1 ) Then Corollary

I A! I B!

2.2 implies that A and B are j—positive. Therefore,

< - ([ AM+(1-NB 1
M+ (1-MB = ( I A4 (1-N)B!

is J-positive for all \ € [0,1]. Lemma 2.1 implies that
~1
</\A +(1- )\)B) <Iaat (1 -NBL

By the definition, we have

J()\A +(1- )\)B) < J()\A_l +(1- )\)B_l)
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which is equivalent to
-1
()\AJ +(1- /\)BJ) SAAD) 1+ (1 - N)(BJ)

By the assumption, AJ > 0, BJ > 0 so is AAJ + (1 — \)BJ. It follows
from Lemma 2.3 that

(AAD " + (-2 (B "< MJ 4 (1-NBJ.

So
(AA*1 T (1- A)B*l)_lj < ()\A +(1- A)B) J.

Hence AZWB <’/ AV,\B. O

It is well-known that the spectrum of a J-positive operator on a Krein
space (., J) is real and it contains a non-negative number as well as a
non-positive one; see [3, Theorem 2.1]. According to this fact, the square
root of a J-positive operator can not be defined by usual functional
calculus such as a positive operator. Let J be a selfadjoint involution
on C". For a J-selfadjoint matrix A with nonnegative eigenvalues on
Krein space (C",J), the J-selfadjoint square root A2 was defined by
Ando [4, Lemma 5]. Moreover A* was defined by Sano in [12] for all
0 < a < 1. By a similar argument, for the J-selfadjoint operator C' on
a Krein space (4, J) with positive spectrum, the J-selfadjoint square
root of C' is defined by the Riesz-Dunford integral as follows:

N[

1 [ _1 1

C :ﬂ/o N3O +C)LdA. (5)
An operator C' € B(¢) on a Krein space (¢, J) is called a J-contraction
if C*C' <7 I. The operator C is called a J-bicontraction if both C' and C*
are J-contractions. Note that in contrast to the setting of Hilbert spaces,
not all J-contractions are J-bicontractions. As a result of Potapov-
Ginzburg theorem [6, Chapter 2, Section 4] we have the following propo-
sition; also see [3, Corollary 3.4.1].

Proposition 2.6. Let (J,J) be a Krein space and let C' € B(J7).
Then C' is a J-bicontraction if and only if o(C*C) C [0, 00).
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Moreover The following proposition appropriate a condition for a J-
contraction to being a J-bicontraction.

Proposition 2.7. [3, Corollary 3.3.3] Let (J,J) be a Krein space. If
C € B(S) is an invertible J-contraction, then C' is a J-bicontraction.
The notion of a-power mean for two J-selfajoint matrices with non-
negative eigenvalues was defined by Bebiano et al. in [7]. Now, we are
going to construct power mean of two invertible J-selfadjoint operators
on Krein spaces.

Let A and B be invertible J-selfadjoint operators on a Krein space

1 1
(A, J) with nonnegative spectrum such that A >/ B. Then A~2 BA™2 <’/
1. By the definition, we have

(BzA™2)IB2A™: = J

= J(A"2)*(B2)*JBiA 2

= A:J(B2)"JBEA: (A7 is J-selfadjoint )
— A 3J2B3B3A 3 ( B3 is J-selfadjoint )
— ABA LT

Therefore B2 A~2 is an invertible J-contraction. It follows from Propo-
1 1
sitions 2.6 and 2.7 that 0(A"2BA™2) C (0,00). Then the operator

(AféBAfé)% is well defined by Riesz-Dunford integral (5). Therefore,
the power mean of A and B is well-defined as follows:

AtB = A2(A 2 BA 2)2 Az,

Since B is J-selfadjoint it is easy to see that AjB is J-selfadjoint. Note
that this notion is like the geometric mean of two positive operators, but
in fact, it is not a mean. For instance it is not J-positive, in general; see
Example 2.8.

Let C" be the n-dimensional complex Hilbert space consisting of all
column vectors = (21,2, - ,xy) for which z; € C (j =1,2,--- ,n).
The standard inner product in C" is denoted by (.,.). The formula

n—1
[w, y] = Zxkgk — TnYn (CL‘,y € Cn)
k=1
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determines an indefinite inner product on C™. It is clear that the
selfadjoint involution corresponding to this indefinite inner product is

0 -1
n —1, and

I,
Jo = ( n-1 0 ) , where I, 1 denotes the identity matrix of order

[‘T’y] = <J01,‘,y> (:L“,y € (Cn)

The Krein space (C", Jp) is called the n-dimensional Minkowski space.
The following example shows that the J-positivity of operators in The-
orem 2.5 is an essential assumption. Also, it shows that the arithmetic-
geometric-harmonic mean inequality for operators on Hilbert spaces is
not true for operators on Krein spaces, in general.

Example 2.8. Consider the 2-dimensional Minkowski space (C2,.Jp)
1 . Suppose that A = ( a2 ) is a2 x 2 com-

0
0 -1 a1 a2
plex Jy-selfadjoint matrix. Since the Jy-selfadjoitness of A is equivalent

with Jy =

to the usual selfadjointness of JyA, we have A = a1 a2 ) in
—a12  G22

which a11 and a9y are real.

1 1
LetA:< 21 ‘i)andB:( 11 %).ThenAandBareJo—
T4 3

selfadjoint with positive eigenvalues and
1 0.0833
Jo(d=B) = < —0.0833 1 >

is positive. It follows that A >70 B. Some matrix calculation shows

1.4208  0.2755
A4B = ( —0.2755 1.4153 )

and
A+ B

0.0792  0.0162
—AuB = ( —0.0162 0.0847 > ‘

The matrix JO(A*'TB — AfB) has a negative eigenvalue. It follows that

A4B £ AJFTB — AVB.
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Moreover

AB—2(A 4B )l = ( 0.0750  0.0153 > '

—0.0153 0.0799

The matrix Jy (AhB—2(A_1 +B‘1)_1) has a negative eigenvalue. Hence

AB =2(A7 '+ B7H) ™t ¢ ApB.

Therefore

AlB £70 ApB £7° AVB.
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