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Abstract. The notion of Rci-supercontinuity, a strong variant of con-
tinuity, is considered. The ring Rei(X) consists of all real-valued Rqi-
supercontinuous functions on a topological space X is studied. It is
shown that Re(X) = C(Y), where Y is an ultra-Hausdorff rq-quotient
of X and it turns out that whenever X is rq-compact, then Y is zero-
dimensional. The maximal ideals of Rei(X) are specified. The spaces
X are determined for which every maximal ideal in Rei(X) is fixed. Fi-
nally, P._-spaces and almost P, -spaces are defined and characterized
both algebraically and topologically.
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1 Introduction

In 2007, Singh introduced the concept of a cl-open set in the study of
clopen continuous maps. A set A in a topological space X is called cl-
open if A is a union of clopen sets. The complement of a cl-open set
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is called cl-closed. In 2013, Tyagi et al. introduced the concept of an
rq-open set as follows. An open set U in a topological space X is said
to be rq-open if U is a union of cl-closed sets. The complement of an
re-open set is called an r.-closed set. For a set A in a topological space
X, the set of all x € A such that A contains an rq-open set containing x
is called r¢-interior of A and it is denoted by int,  A. Clearly, a subset
B of X is rq-open if and only if B = int, B. The rq-closure of a set A
in a topological space X, denoted by cl, A, is the set of all x € X such
that each rg-open set containing x intersects A nontrivially. Clearly, a
subset B of X is rq-closed if and only if B = cl, B. According to [13],
a topological space X is called an R.-space if each open set in X is
rq-open. If X and Y are topological spaces, then a function f: X — Y
is said to be Rg-supercontinuous if for each x € X and each open set
V in Y containing f(x), there exists an r -open set U in X contain-
ing « such that f(U) C V. A bijection ¢ : X — Y is said to be an
R-homeomorphism if both o and ¢! are R,-supercontinuous. In this
case, X and Y are said to be Rg-homeomorphic and it is written as
X =Y.

Let Ry (X) be the set of all real-valued R.-supercontinuous func-
tions on X. It is easily seen that R;(X) is a subring and sublattice
of C(X) where C(X) is the ring of all real-valued continuous func-
tions on a space X. Throughout this paper, for f € C(X), the set
Z(f) =4z € X : f(x) =0} is the zero-set of f. The set-theoretic com-
plement of Z(f) is denoted by coz(f) and is called the cozero-set of f.
We denote by Z(X) the set of all zero-sets in X and Z,_(X) denotes the
set of all zero-sets Z(f) in X, where f € R (X). We refer the reader to
[6] for undefined terms and notations.

2 Ru(X)IsaC(Y)

In this section for any topological space X, an ultra-Hausdorff space Y
is established such that R, (X) and C(Y') are isomorphic. First, let us
recall some definitions and facts. A Ti-space is called zero-dimensional
if it has a base consisting of clopen sets. According to [11], a topological
space X is called wultra-Hausdorff if every pair of distinct points in X
are contained in disjoint clopen sets.
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Remark 2.1. The following implications hold.
zero-dimensional space = ultra-Hausdorff space = R-space.

However, none of the above implications is reversible. For exam-
ple, the space of strong ultrafilter topology [12, Example 113] is an
ultra-Hausdorff space which is not zero-dimensional. A nondegenerate
indiscrete space is an Rg-space, but it is not ultra-Hausdorff, see [9].
We cite the following result from [13].

Theorem 2.2. ([13], Theorem 8.2) For a topological space (X,T) the
following statements are equivalent.

1. (X, 1) is an R -space.

2. Every continuous function from (X, 7) into a space (Y, w) is Ry-
supercontinuous

Now, let us make the following observation.

Lemma 2.3. If X is an Rg-space, then C(X) = Ry(X) and whenever
X is completely reqular, the converse is also true.

Proof. Using [13, Theorem 8.2|, the first implication is immediate.
Now, suppose that X is a completely regular space and C'(X) = Ry(X).
By [0, Theorem 3.2] the collection 8 = {coz(f): f € C(X)} is a base for
open subsets of X. Since C(X) = Ry(X), for each f € C(X) and every
x € coz(f), we infer that there is an r.-open set U in X containing x
such that U C coz(f). This shows that X is an R.-space. O

In the following, we give some properties of R.-supercontinuous
functions. Before stating our results, recall that for a point z in a
topological space X, the maximal connected subset of X containing
x, denoted by C;, is called the component of x. A space is called totally
disconnected if the only nonempty components are one-point sets. For a
point x in a topological space X, the intersection of all clopen subsets of
X containing z, denoted by @), is called the quasi-component of x. The
collection of all components (resp., quasi-components) of a topological
space X constitutes a decomposition of X into pairwise disjoint closed
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sets. By [5, Theorem 6.1.22], Cy; C Q5 for each x € X and the inclusion
may be proper as it is shown by [5, Example 6.1.24]. It is easily seen that
an open (resp., closed) set in a topological space X is rq-open (resp.,
re-closed) if and only if it is a union of quasi-components of X. By [13,
Theorem 4.1], every Z € Z,,(X) is r-closed. Hence, each Z € Z, (X) is
a union of quasi-components in X. However, an r¢-closed set need not
be a zero-set in Z, (X), see [0, 4N].

Proposition 2.4. For an R.-supercontinuous function f : X —'Y, the
following statements are true.

1. flQuz] € Qy(y for each z € X.
If Y is a T1-space, then f[Qz] = {f(x)} for each z € X.

If f is injective and Y is a T1-space, then X is totally disconnected.

e e

If f is an Re-homeomorphism, then f|Q.] = Qs for eachx € X.
Furthermore, if X or'Y is a Ti-space, then both X and Y are
totally disconnected.

Proof. (1) Let z € X, p € Q; and f(p) ¢ Q). Then there is a
clopen set V in Y containing f(p) such that f(x) ¢ V. Since f is Ry-
supercontinuous, f[Qz] C V. So f(z) € V which is a contradiction.

(2) Let x € X, p € Q. and f(p) # f(x). Then there is an open set V' in
Y containing f(z) such that f(p) ¢ V. Since f is Ry-supercontinuous,
flQz] €V which yields that f(p) € V, and it is a contradiction.

(3) By part (2), flQz] = {f(z)} for every z € X, this implies that
Q. = {x}. Since f is injective we infer that X is totally disconnected.
(4) It is an immediate consequence of parts (1) and (3). O

Corollary 2.5. Let X be a topological space. If f € Ry(X), then
Q) = {f(z)} for each x € X.

Definition 2.6. Let X be a space and Y be a set and let p: X — Y
be a surjection. The collection 7, = {U C Y : p~}(U)isrq-open in X}
of subsets of Y is called the r-quotient topology on Y induced by p, see
[13]. Moreover, (Y, 7,) is called an rq-quotient space of X.

Next, we state the main result of this section.
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Theorem 2.7. For any topological space X, there is an ultra-Hausdorff
space X,, which is an rq-quotient space of X and Ry (X) = C(Xy,).

Proof. Let X, = {Q, : = € X} and define p : X — X, by p(z) = Q,,
for all x € X. Let 7, be the ry-quotient topology on X, induced by
p. Then (X, 7p) is ultra-Hausdorff. In fact, if Q, and @, are distinct
points in X,,, then = ¢ @, and hence there is a clopen set V' in X such
that z € Vandy ¢ V. Now, let H = {Q. : z € V}. Then H is a clopen
set in X, for V.= p }(H) = U.cy Q- is a clopen set in X. Clearly,
Q2 € H and Q, ¢ H which shows that X, is ultra-Hausdorff.

To complete the proof, we show that Ry(X) = C(X,). To this end,
define 6 : R, (X) — C(X,) by 0(f) = fu, for each f € Ry(X), where
fu : Xy — R be defined as f,(Q.) = f(z), for all z € X. By Corollary
2.5, fu, and 0 are well-defined. To show that f, € C(Xy), let x € X,
Q. € X, and let f,(Qz) = f(x) = a. Then for each € > 0, there is
an rq-open set U in X containing x such that f(U) C (a —€,a + €).
Now G = {Q. : Q. C U} is an open set in X, containing @, such
that f,(G) C (a —€,a + €). It is easily seen that 6 is a one to one
homomorphism. Finally, we show that 6 is onto. To this end, let g €
C(X,) and define f : X — R by f(z) = g(Qz), for all z € X. To see
that f € Ry(X), let x € X and let f(z) = a. Since g € C(X,), there is
an open set G in X, containing @, such that g(G) C (a — €,a + ¢€) for
every € > 0. SoU = UQzeG Q@ is an rq-open set in X containing x such
that f(U) C (a — €,a+ €) and this shows that f is R.-supercontinuous.
Also we have 0(f) =¢g. O

Remark 2.8. From now on, for each topological space X, we consider
X, and the isomorphism 6 : Ry(X) — C(X,,) as defined in the proof of
Theorem 2.7.

Definition 2.9. A topological space X is said to be ry-compact if every
rq-open cover of X has a finite subcover.

Note that every compact space is 7,-compact, but not conversely.
For instance, R is an ry-compact space which is not compact. Clearly,
a space X is rg-compact if and only if X, is compact.

Corollary 2.10. If X is rq-compact, then Ry (X) = C(Y) for a zero-
dimensional space Y .
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Proof. By Theorem 2.7, X, is ultra-Hausdorff and since X, is com-
pact, X, is zero-dimensional. Now, let Y = X, so by Theorem 2.7,
Ry(X)=C(Y). O

Accourding to [7], a topological space X is called sum connected if
each component in X is open. Obviously, if X is sum connected, then
C, = Q; for every x € X.

Corollary 2.11. If X is sum connected, then Ry(X) = C(Y) for a
discrete space Y .

Proof. Since X is sum connected, @, is rq-open for every x € X. So
every one point set {Q,} is open in X, which yields that X, is discrete.
Now, let Y = X, so by Theorem 2.7, Ry(X) = C(Y). O

We conclude this section by the following proposition.

Proposition 2.12. Let X andY be two topological spaces. If X =, Y,
then X, £2Y,,.

Proof. Let ¢ : X — Y be an R -homeomorphism. Define 7: X,, —
Y, by 7(Q) = ¢(Q), for all @ € X,. Clearly, 7 is one to one. To
see that 7 is onto, let y € Y and let @, € Y,. Then there is x € X
such that ¢(z) = y and hence 7(Q) = ¢(Qz) = Qy by part (4) of
Proposition 2.4. Now, we show that 7 and 7~! are continuous. To this
end, let z € X, Q. € X, and let H be an open set in Y, containing
©(Qz). Then V = g, cy @- is an open set in Y containing ¢(z). So
by R-supercontinuity of ¢, there is an r-open set U in X containing
z such that p(U) C V. Therefore, G = {Q;|x € U} is an open set in
X, containing @, such that 7(G) C H. Similarly, 7! is continuous. [

We remind the reader that the converse of Proposition 2.12 is not

true in general. For instance, let X = {a} and let Y = R. Then X, is
homeomorphic to Yy, but X and Y are not R,-homeomorphic.

3 Maximal Ideals of R, (X)

In this section, we turn our attention to the maximal ideals in the rings
Ry (X). First, let us recall that an ideal I of Ry(X) is called a fixed
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ideal if N fer 2 (f) # 0, otherwise I is called a free ideal. We begin with
the following easy lemma, its proof is left to the reader.

Lemma 3.1. An ideal I in Ry(X) is fized if and only if O(I) is fized in
C(Xy).

Now, we completely characterize the fixed maximal ideals of a ring
Ry(X).

Theorem 3.2. For a topological space X, any fizred mazximal ideal in
R, (X) is in the form of

Mg, = {f€Ra(X) : Q. C Z(f)}, zeX.

The ideals Mg, are distinct for distinct Q.. Furthermore, Rﬁéx) ~ R

for every x € X. :

Proof. By [0, Theorem 4.6] and Lemma 3.1, M is a fixed maximal ideal
in Ry(X) if and only if M = §~*(M,) for some y € X,. So M = Mg,
for some x € X. Now, suppose that @, # @y for z,y € X. Then
Qz N Qy = 0, so there is a clopen set Cy in X containing x such that
Q: CCpand C;NQy = 0. Let f: X — R be defined as f(z) = 0, if
€ Cpand f(z) =1, if & ¢ Cp. Then f € Ry(X), f € Mg, \ Mg,
which shows that Mg, # Mg,. For the last assertion, let z € X and
define ¢ : Ry(X) — R by o(f) = f(x), for all f € Ry(X). Then ¢ is a

homomorphism and Kery = Mg, . Consequently, }3@[175;() = R. ]

Lemma 3.3. If X is re-compact, then each ideal in Ry (X) is fized.

Proof. If X is ry-compact, then X, is zero-dimensional by Corollary
2.10. So in view of [6, Theorem 4.11], every ideal in C'(X,) is fixed.
Consequently, each ideal in Ry(X) is fixed by Lemma 3.1. O

Definition 3.4. A topological space X is called s.-completely requ-
lar if for each ry-closed set A and each = ¢ A, there exists an R-
supercontinuous function f : X — R such that f[A] = {0} and f[Q.] =

{1}.

Clearly, a space X is sq-completely regular if and only if X, is com-
pletely regular.

7
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Theorem 3.5. For a sq-completely regular space X, the following state-
ments are equivalent.

1. X is ro-compact.

2. X, 1s compact.

3. Every ideal in Ry (X) is fived.

4. Every mazximal ideal in Ry(X) is fized.

Proof. Clearly, parts (1) and (2) are equivalent.

(2) = (3). It is immediate by Lemma 3.3.

(3) = (4). It is immediate.

(4) = (2). Since X is sq-completely regular, X,, is completely regular
and by Lemma 3.1, each maximal ideal in C(X,) is fixed. These follow
by [0, Theorem 4.11], that X, is compact. O

Theorem 3.6. Let X and Y be two topological spaces. If X, = Y,,
then Ry(X) = Ry(Y) and whenever X and Y are rq-compact, then the
converse 1s also true.

Proof. If X,, =Y, then C(X,) = C(Yy,). So Ry(X) = Ry(Y) by The-
orem 2.7. Now, suppose that X and Y are r -compact. Then X, and
Y, are compact zero-dimensional spaces by Theorem 3.5 and Corollary
2.10. If Ry(X) & Ry(Y), then C(X,) = C(Y,) by Theorem 2.7. This
implies that X, =Y, see [0, Theorem 4.9]. O

Corollary 3.7. For two topological spaces X andY, if X =, Y, then
Ry(X) = Ry(Y).

Proof. It follows immediately from Proposition 2.12 and Theorem 3.6.
O

Remark 3.8. For two r.-compact spaces X and Y, the rings R (X)
and Rg(Y) may be isomorphic, while X and Y may not be homeo-
morphic. To see that, we utilize the example of [I, Remark 4.7]. Let
X={:neNuU{0}and Y = Uzozl(n%rl,%) U {0} as subspaces
of R. Since X and Y are compact, we infer that X and Y are r.-
compact. Using a proof similar to [!, Remark 4.7], we can show that

Ry(X) = Ry(Y), but X and Y are not homeomorphic.
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Theorem 3.9. For a s.-completely regular space X, the maximal ideals
of Ry (X) are precisely the sets

Mp:{fERcl(X) :pECnguZ(fu)}, p € BX,.

Proof. Using Theorem 2.11 and in view of [0, Theorem 7.3], it is evident.
O

Remark 3.10. Let X be a space and let M be a maximal ideal of
Ry (X). Similar to C'(X), we define

Om ={f € Ry(X): fg=0 for someg ¢ Mg, },

see the discussion preceding [2, Theorem 2.12] .For each z € X, let
Og, = {f € Ry(X) : Q, C z'ntTch(f)}. If X is s, -completely regular
and M is a fixed maximal ideal of R;(X), then Oy = Ogq, for some
x € X. In fact, if M is a fixed maximal ideal in R.(X), then by Theorem
3.2, M = Mg, for some z € X. Now we show that Oy = Og,. To
this end, let f € Op. Then fg = 0 for some g ¢ Mg, and hence
Qr € X\Z(g9) C Z(f). Since X \ Z(g) is re-open, then Q, C int,_, Z(f)
which follows that f € Og,. Now, let f € Og,. Then Q, C int, ,Z(f),
so there is an rq-open set U in X such that @, C U C Z(f). Since X is
s¢i-completely regular, there exists g € Re(X) such that g[X \ U] = {0}
and g[Q.] = {1}. Therefore g ¢ Mg, and fg = 0 which shows that
feO0y.

Theorem 3.11. Let X be an ry-compact space. Then for every x € X,
the ideal Og, in Ry(X) is generated by a set of idempotents.

Proof. By Corollary 2.10, X, is zero-dimensional. In view of [4, The-
orem 2.4], a space X is zero-dimensional if and only if for each z € X,
the ideal O, in C(X) is generated by a set of idempotents. Using this
fact, for each € X, the ideal Og, in C(X,) is generated by a set of
idempotents. This follows by Theorem 2.7, that the ideal Og, in R (X)
is generated by a set of idempotents. U

4 P, ,-Spaces and Almost P, -Spaces

In this section the counterparts of P-spaces and almost P-spaces are
defined and characterized both algebraically and topologically. We recall

9
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that a completely regular Hausdorff space X is called a P-space if Z(f)
is open for each f € C(X), equivalently, C(X) is a von Neumann regular
ring, see [0, 4J]. Recall that a ring R is called von Neumann regular if for
every a € R there is x € R for which aza = a. We observe trivially that
if C(X) is von Neumann regular, then so is Ry(X), but the converse
is not true in general. For example, the space R;(R) is von Neumann
regular but C(R) is not von Neumann regular. Motivated by this, we
offer the following definition.

Definition 4.1. A s.-completely regular space X is called P, -space if
Z(f) is open for each f € Ry (X).

Lemma 4.2. Every P-space is a P, -space.

Proof. Suppose that X is a P-space. Then X is zero-dimensional and
hence X is s.-completely regular. Also each Z € Z, ,(X) is open, for
Zr,(X) C Z(X). O

Theorem 4.3. Let X be a sq-completely regular space X. The following
statements are equivalent.

1. X is a P -space.

2. Xy 1s a P-space.

3. Mg, = Oq, for every x € X.

4. Each countable intersection of rq-open sets is req-open.

5. Rq(X) is von Neumann regular.

Proof. (1) < (2) If f € Rq(X), then Z(f) = Ug,ez(s,) @=- So Z(f)
is open in X if and only if Z(f,) is open in X,. This implies that X is
a P, -space if and only if X, is a P-space.

Using [0, 4J], parts (2), (3) and (4) are equivalent.

(2) < (5) By [0, 4J], X, is a P-space if and only if C(X,) is a von
Neumann regular ring. This implies by Theorem 2.7, that X, is a P-
space if and only if R (X) is a von Neumann regular ring. O

Proposition 4.4. A Hausdorff space X is a P-space if and only if X
is both an R.-space and a P, -space.
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Proof. If X is a P-space, then X is zero-dimensional and hence X
is an Rg-space. Furthermore X is a P, -space by Lemma 4.2. Con-
versely, suppose that X is an R-space and a P, -space. Since every
se-completely regular R.-space is completely regular, we infer that X
is completely regular. X is a P, -space and by Theorem 4.3 Ry (X) is
a von Neumann regular ring which implies that C(X) is von Neumann
regular, for Ry(X) = C(X) by Lemma 2.2. O

We recall that a completely regular Hausdorff space X is an almost
P-space if every nonempty zero-set in Z(X) has non-empty interior.
Motivated by this, we offer the following definition.

Definition 4.5. A s, -completely regular space X is called an almost
P, -space if every non-empty zero-set in Z,,(X) has non-empty rq-
interior.

The following shows that the classes of almost P-spaces and almost
P, ,-spaces are independent of each other.

Example 4.6. The space R is an almost P, -space but it is not an
almost P-space. Now, let Y = X UN, where X is a connected almost
P-space, see [1, Example 5.3]. Then Y is an almost P-space. To see that
Y is not an almost P, -space, let f : Y — R be defined as f(n) = %, if
n € Nand f(x) =0,if 2 € X. Then f € Ry(Y) and Z(f) = X, but
int,, Z(f) =0, for if x € int,,Z(f), then there is an open set U in Y
such that X = @, C U C Z(f) = X which shows that X is open in Y,
a contradiction.

We conclude this section by the following theorem which character-
izes almost P, -space. We call a set A in a space X is rq-dense in X if
every rq-open set in X intersects A nontrivially.

11

Theorem 4.7. The following statements are equivalent for a s.;-completely

reqular space X.

1. X is an almost P,

o ~SPACE.

2. Xy s an almost P-space.

3. Every non-unit element in Ry(X) is a zero-divisor.
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5. If G = ey Gi, where each G is r¢-open, then int, G is rq-dense
in G.

6. Every non-empty zero-set in Z,,(X) has non-empty rq-interior.

Proof. Using [3, Theorem 2.2] and by Theorem 2.7, the proof is easy.
Il
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