N-Legendre and N-Slant Curves in the Unit Tangent Bundles of Minkowski Surfaces with Natural Diagonal Structures

M. Altunbas
Erzincan Binali Yıldırım University

Abstract

This paper is devoted to discuss N-Legendre and N-slant curves in the unit tangent bundles of Minkowski surfaces. Unit tangent bundles are considered with a natural diagonal structure which generalizes the standard contact metric structure.

AMS Subject Classification: 53B21; 53C07; 53C15
Keywords and Phrases: Unit tangent bundle, natural diagonal structures, N-slant curves, Minkowski surfaces

1 Introduction

Let (M, g, ϕ, ξ, η) be a 3 -dimensional contact metric manifold. The notion of slant curves in M was introduced by Cho et al. in [5]. A curve $\gamma(s)$ in M is said to be slant if its tangent vector field makes constant contact angle with the Reeb vector field ξ. In this paper, for a contact Riemann manifold, it was proved that a slant curve in a Sasakian 3 -manifold is that its ratio of κ and $\tau-1$ is constant. Slant curves with contact angle $\frac{\pi}{2}$ are called Legendre curves. In [2], Baikoussis and

[^0]Blair showed that on a 3-dimensional Sasakian manifold, the torsion of a Legendre curve is +1 .

Let (M, g) be a smooth Riemannian manifold and $T M$ its tangent bundle. The best known Riemannian metric on the tangent bundle, which is called as Sasaki metric and denoted by ${ }^{S} g$, was introduced by Sasaki in [11]. In addition to this, Tachibana and Okumura defined an almost complex structure J in $T M$ which is compatible with ${ }^{S} g$ in [12] (for a history of tangent bundles, see [1]).

The unit tangent bundle $T_{1} M$ is a hypersurface in $T M$. In [13], Tashiro constructed an almost contact metric structure $(\bar{g}, \phi, \bar{\xi}, \bar{\eta})$ in $T_{1} M$ which is induced from the almost complex structure ($T M,{ }^{S} g, J$) in $T M$ (see also [4]).

Some other contact metric structures on unit tangent bundles may be constructed by using a few lifts to the tangent bundle. One of them, which is known as the natural diagonal structure, was introduced and studied by Druta-Romaniuc and Oproiu in [6], [7] and [8].

Similar to slant and Legendre curves, N-Legendre and N-slant curves can be defined as follows: A curve $\gamma(s)$ in a contact metric manifold M is said to be N-slant if its normal vector field makes constant contact angle with the Reeb vector field ξ. N-slant curves with contact angle $\frac{\pi}{2}$ called N-Legendre curves [9]. \tilde{N}-Legendre and \tilde{N}-slant curves were discussed in the unit tangent bundles of Riemannian and Minkowski surfaces when the unit tangent bundles are endowed with the Sasaki metric in [9] and [3].

In the present paper, these curves are studied in the unit tangent bundles of Minkowski surfaces which are endowed with natural diagonal metric structures. Some geometric results are obtained when the surfaces are supposed to be de Sitter and not de Sitter spaces.

2 Preliminaries

2.1 Minkowski space

The Minkowski 3-space M_{1}^{2} is a real vector space provided with the standard metric given by

$$
g=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2},
$$

in terms of the natural coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$. Recall that an arbitrary vector $x=\left(x_{1}, x_{2}, x_{3}\right)$ in M_{1}^{2} can have one of three Lorentzian causal characters: It is said to be spacelike, timelike and lightlike (null), if $g(x, x)>0, g(x, x)<0$ and $g(x, x)=0$. Similarly, an arc-parametrized curve $\alpha(s)$ in M_{1}^{2} is spacelike, timelike and lightlike (null) if $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right.$) $=1, g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)=-1$ and $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)=0$, respectively.

For any vectors $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$, the Minkowski pseudo vector product is defined by

$$
x \times_{1} y=\left|\begin{array}{ccc}
i & j & -k \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|,
$$

where $\{i, j, k\}$ canonical basis of M_{1}^{2}. The norm of a vector x is defined by $\|x\|=\sqrt{|g(x, x)|}$ and two vectors x and y in M_{1}^{2} is said to be orthogonal if $g(x, y)=0$. The sets

$$
\begin{aligned}
S_{1}^{2}(\mathbf{r}) & =\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in M_{1}^{2}: g(x, x)=\mathbf{r}^{2}\right\} \quad \text { Lorentzian sphere } \\
H_{1}^{2}(\mathbf{r}) & =\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in M_{1}^{2}: g(x, x)=-\mathbf{r}^{2}\right\} \quad \text { Hyperbolic sphere }
\end{aligned}
$$

are called de Sitter and anti de Sitter spaces, respectively.
Let $\{T, N, B\}$ be the moving Frenet frame along an arc-parametrized curve $\alpha(s)$ in M_{1}^{2}. The Frenet formulae are given by

$$
\left(\begin{array}{l}
T^{\prime} \tag{1}\\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\epsilon_{1} \epsilon_{2} \kappa & 0 & \tau \\
0 & -\epsilon_{2} \epsilon_{3} \tau & 0
\end{array}\right)\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right),
$$

where $\tau(s)$ is torsion of the curve α at s and $g(T, T)=\epsilon_{1}= \pm 1$, $g(N, N)=\epsilon_{2}= \pm 1, g(B, B)=-\epsilon_{1} \epsilon_{2}$. We have the following relations for this moving frame

$$
T \times_{1} N=\epsilon_{1} \epsilon_{2} B, N \times_{1} B=-\epsilon_{1} T \text { and } B \times_{1} T=-\epsilon_{2} N .
$$

When M_{1}^{1} is a Minkowski surface endowed with the standard metric given by

$$
g=d x_{1}^{2}-d x_{2}^{2},
$$

then the moving Frenet formulae of an arc-parametrized curve $\alpha(s)$ in M_{1}^{1} turn to be

$$
\binom{T^{\prime}}{N^{\prime}}=\left(\begin{array}{cc}
0 & \epsilon_{2} \kappa \tag{2}\\
-\epsilon_{1} \kappa & 0
\end{array}\right)\binom{T}{N}
$$

and $g(T, T)=\epsilon_{1}= \pm 1, g(N, N)=\epsilon_{2}= \pm 1$.

2.2 Unit tangent bundle

Let (M, g) be an n-dimensional pseudo-Riemannian manifold and let $T M$ its tangent bundle with projection π. For a local coordinate neighborhood in $\left(U, x^{i}\right)$ in M, there is a local coordinate neighborhood $\left(\pi^{-1}(U)\right.$, $\left.x^{i}, u^{i}\right)$ in $T M$. For a vector field X on M, its horizontal lift X^{h} is defined by $X^{h}=X^{i} \frac{\partial}{\partial x^{i}}-X^{i} u^{j} \Gamma_{i j}^{k} \frac{\partial}{\partial u^{k}}$, where $\Gamma_{i j}^{k}$ denotes the Christoffel symbols of the Levi-Civita connection ∇ of g. The vertical lift X^{v} of X is given by $X^{v}=X^{i} \frac{\partial}{\partial u^{i}}$.

The canonical energy density function of the tangent vector u with respect to g is denoted by $t=\frac{1}{2} g(u, u)$.

An almost complex structure J on $T M$ is defined by

$$
\begin{align*}
J X^{h} & =a_{1} X^{v}+b_{1} g(X, u) u^{v} \tag{3}\\
J X^{v} & =-a_{2} X^{h}-b_{2} g(X, u) u^{h}
\end{align*}
$$

where $a_{1}, b_{1}, a_{2}, b_{2}$ are smooth functions of t such that $a_{2}=\frac{1}{a_{1}}, b_{2}=$ $-\frac{b_{1}}{a_{1}\left(a_{1}+2 t b_{1}\right)}[6]$.

The natural diagonal lift metric g^{d} is defined by

$$
\left\{\begin{array}{l}
g^{d}\left(X^{h}, Y^{h}\right)=c_{1} g(X, Y)+d_{1} g(X, u) g(Y, u) \tag{4}\\
g^{d}\left(X^{v}, Y^{h}\right)=g^{d}\left(X^{h}, Y^{v}\right)=0 \\
g^{d}\left(X^{v}, Y^{v}\right)=c_{2} g(X, Y)+d_{2} g(X, u) g(Y, u)
\end{array}\right.
$$

for every vector fields X, Y on M and every tangent vector u, where $t=g(u, u) / 2$ and $c_{1}, c_{2}, d_{1}, d_{2}$ are smooth functions of t which satisfies $c_{1}>0, c_{2}>0, c_{1}+2 t d_{1}>0$ and $c_{2}+2 t d_{2}>0$.

The unit tangent bundle $T_{1} M$ of M is a submanifold of $T M$ defined by $T_{1} M=\{u \in T M: g(u, u)= \pm 1\}$, where u^{v} is a normal to $T_{1} M$. For a vector field X on M, its tangential lift is defined by $X^{t}=X^{v}-g(X, u) u^{v}$.

Hence, for a vector field \tilde{X} on $T_{1} M$, we can write it uniquely as $\tilde{X}=$ $X^{h}+X^{t}$.

The induced pseudo-Riemannian metric g_{1}^{d} on $T_{1} M$ is uniquely determined by

$$
\left\{\begin{array}{l}
g_{1}^{d}\left(X^{h}, Y^{h}\right)=c_{1} g(X, Y)+d_{1} g(X, u) g(Y, u) \tag{5}\\
g_{1}^{d}\left(X^{v}, Y^{h}\right)=g_{1}^{d}\left(X^{h}, Y^{v}\right)=0 \\
g_{1}^{d}\left(X^{v}, Y^{v}\right)=c_{2}[g(X, Y)-g(X, u) g(Y, u)]
\end{array}\right.
$$

for every vector fields X, Y on M and every tangent vector u, where c_{1}, d_{1}, c_{2} are constants such that $c_{1}>0, c_{2}>0, c_{1}+d_{1}>0[7]$.

A contact metric structure $\left(\varphi_{1}, \xi_{1}, \eta_{1}, g_{1}\right)$ on $T_{1} M$ is given by the following relations:

$$
\begin{align*}
\varphi_{1}\left(X^{h}\right) & =a_{1} X^{t}, \varphi_{1}\left(X^{t}\right)=-a_{2} X^{h}+a_{2} g(X, u) u^{h} \tag{6}\\
\xi_{1} & =\frac{1}{2 \lambda \alpha} u^{h}, \eta_{1}\left(X^{t}\right)=0, \eta_{1}\left(X^{h}\right)=2 \alpha \lambda g(X, u), g_{1}=\alpha g_{1}^{d}
\end{align*}
$$

for every vector fields X, Y on M and every tangent vector u, where $\lambda>0$ is a scalar, $\alpha=\frac{c_{1}+d_{1}}{4 \lambda^{2}}$ and a_{1}, a_{2} are functions defined in (3). This contact metric structure is said to be natural diagonal structure [6].

The Levi-Civita connection ∇_{1} of $\left(T_{1} M, g_{1}\right)$ is given by

$$
\begin{align*}
\nabla_{1 X^{h}} Y^{h}= & \left(\nabla_{X} Y\right)^{h}-\frac{1}{2}(R(X, Y) u)^{t}-\frac{d_{1}}{2 c_{2}}\left[g(X, u) Y^{t}-g(Y, u) X^{t}\right] \\
\nabla_{1 X^{h}} Y^{t}= & \left(\nabla_{X} Y\right)^{t}-\frac{c_{2}}{2 c_{1}}(R(Y, u) X)^{h}+\frac{d_{1}}{2 c_{1}} g(X, u) Y^{h} \\
& +\frac{d_{1}}{2\left(c_{1}+d_{1}\right)} g(X, Y) u^{h}-\frac{d_{1}\left(2 c_{1}+d_{1}\right)}{2 c_{1}\left(c_{1}+d_{1}\right)} g(X, u) g(Y, u) u^{h} \\
& -\frac{c_{2} d_{1}}{2 c_{1}\left(c_{1}+d_{1}\right)} g(Y, R(X, u) u) u^{h}, \\
\nabla_{1 X^{t}} Y^{h}= & -\frac{c_{2}}{2 c_{1}}(R(X, u) Y)^{h}+\frac{d_{1}}{2 c_{1}} g(Y, u) X^{h} \\
& +\frac{d_{1}}{2\left(c_{1}+d_{1}\right)} g(X, Y) u^{h}-\frac{d_{1}\left(2 c_{1}+d_{1}\right)}{2 c_{1}\left(c_{1}+d_{1}\right)} g(X, u) g(Y, u) u^{h} \\
& -\frac{c_{2} d_{1}}{2 c_{1}\left(c_{1}+d_{1}\right)} g(X, R(Y, u) u) u^{h}, \\
\nabla_{1 X^{t}} Y^{t}= & -g(Y, u) X^{t}, \tag{7}
\end{align*}
$$

for every vector fields X, Y on M and every tangent vector u, where R is the curvature tensor on M [6].

3 N -Legendre and N -slant curves

Let (M, g) be a surface and let $\gamma: I \subset \mathbb{R} \rightarrow M$ be a curve on M. Suppose that $\tilde{\gamma}(s)=(\gamma(s), X(s))$ is a curve on $\left(T_{1} M, g_{1}, \varphi_{1}, \xi_{1}, \eta_{1}\right)$, where the contact metric structure is given by (6). We define the Legendre and slant curves as follows:

Definition 3.1. [10] Let γ be a curve in an almost contact metric manifold (M, g, φ, ξ, η). The curve γ is said to be Legendre (resp. slant) if the angle between its tangent vector field T of γ and the Reeb vector field ξ is $\frac{\pi}{2}($ resp. $[0, \pi]-\{\pi / 2\})$, i.e. $g(T, \xi)=0($ resp. $g(T, \xi)=c)$, where c is a non-zero constant.

Definition 3.2. [9] Let γ be a curve in an almost contact metric manifold (M, g, φ, ξ, η). The curve γ is said to be N-Legendre (resp. N-slant) if the angle between its normal vector field N of γ and the Reeb vector field ξ is $\pi / 2$ (resp. $[0, \pi]-\{\pi / 2\}$), i.e. $g(N, \xi)=0($ resp. $g(N, \xi)=c$), where c is a non-zero constant.

Let $\tilde{\gamma}$ be an arc-parametrized spacelike or timelike (non-null) curve in the unit tangent bundle $\left(T_{1} M_{1}^{2}, g_{1}, \varphi_{1}, \xi_{1}, \eta_{1}\right)$ and let $(\hat{T}, \tilde{N}, \tilde{B}, \tilde{\kappa}, \tilde{\tau})$ denotes the Frenet apparatus of $\tilde{\gamma}$. In this case,

$$
\begin{align*}
\tilde{T}(s) & =\frac{d \gamma^{i}}{d s} \frac{\partial}{\partial x^{i}}+\frac{d X^{i}}{d s} \frac{\partial}{\partial u^{i}} \tag{8}\\
& =\frac{d \gamma^{i}}{d s}\left(\frac{\partial}{\partial x^{i}}\right)^{h}(\tilde{\gamma}(s))+\left(\frac{d X^{i}}{d s}+\frac{d \gamma^{j}}{d s} X^{k} \Gamma_{j k}^{i}\right) \frac{\partial}{\partial u^{i}}(\tilde{\gamma}(s)) \\
& =\left(E^{h}+\left(\nabla_{E} X\right)^{t}\right)(\tilde{\gamma}(s)),
\end{align*}
$$

where $E=\gamma^{\prime}(s)$.
From equations (5) and (6), the Lorentzian angle between \tilde{T} and $\xi_{1}=\frac{1}{2 \lambda \alpha} u^{h}$ is obtained by

$$
\begin{equation*}
\frac{g_{1}\left(\tilde{T}, \xi_{1}\right)}{|\tilde{T}|\left|\xi_{1}\right|}=\sqrt{c_{1}+d_{1}} g(E, X)=L(\theta) \tag{9}
\end{equation*}
$$

where $L(\theta)$ is
(i) $\cos \theta$, if \tilde{T} and ξ_{1} are spacelike vectors that span a spacelike subspace,
(ii) $\cosh \theta$, if \tilde{T} and ξ_{1} are spacelike vectors that span a timelike subspace,
(iii) $\sinh \theta$, if \tilde{T} and ξ_{1} have different causal characters.

Differentiating both side of equation (9) with respect to s and using equations (5), (6) and (8), we get

$$
\begin{aligned}
& \frac{d}{d s} g_{1}\left(\tilde{T}, \xi_{1}\right)= g_{1}\left(\nabla_{1 \tilde{T}} \tilde{T}, \xi_{1}\right)+g_{1}\left(\tilde{T}, \nabla_{1 \tilde{T}} \xi_{1}\right) \\
&= \tilde{\kappa} g_{1}\left(\tilde{N}, \xi_{1}\right)+\frac{1}{2 \lambda \alpha} g_{1}\left(\tilde{T}, \nabla_{\left.1_{E^{h}} X^{h}+\nabla_{1\left(\nabla_{E} X\right)^{t}} X^{h}\right)}=\right. \\
& \tilde{\kappa} g_{1}\left(\tilde{N}, \xi_{1}\right)+\frac{1}{2 \lambda \alpha^{2}}\left[\left(c_{1}+d_{1}\right) g\left(E, \nabla_{E} X\right)\right. \\
&\left.-c_{2} R\left(E, X, X, \nabla_{E} X\right)\right] \\
&=\left|\xi_{1}\right| \theta^{\prime} L^{\prime}(\theta) .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
g_{1}\left(\tilde{N}, \xi_{1}\right)= & \frac{1}{2 \lambda \alpha^{2} \tilde{\kappa}}\left(c_{2} R\left(E, X, X, \nabla_{E} X\right)-\left(c_{1}+d_{1}\right) g\left(E, \nabla_{E} X\right)\right) \\
& +\left|\xi_{1}\right| \theta^{\prime} L^{\prime}(\theta) \tag{11}
\end{align*}
$$

where $\theta^{\prime}=\frac{d \theta}{d s}$ and R is the curvature tensor of M_{1}^{2}.
If (T, N) is a Frenet frame on γ given in (2), then from equation (9), we have

$$
\begin{equation*}
X=\frac{1}{r \sqrt{c_{1}+d_{1}}} L(\theta) T+\beta N \tag{12}
\end{equation*}
$$

for a smooth function β, where $r=\|E\|$. Because of X is a unit vector, we write

$$
\frac{\lambda^{2} \epsilon_{1}}{\left(c_{1}+d_{1}\right) r^{2}} L^{2}(\theta)+\epsilon_{2} \beta^{2}=\epsilon_{X}
$$

from which

$$
\begin{equation*}
\beta= \pm \frac{1}{r} \sqrt{\epsilon_{X} \epsilon_{2} r^{2}-\left(\frac{\lambda}{\sqrt{c_{1}+d_{1}}}\right)^{2} \epsilon_{1} \epsilon_{2} L^{2}(\theta)} \tag{13}
\end{equation*}
$$

where $\epsilon_{X}=g(X, X)= \pm 1$.
Differentiating equation (12) with respect to s, we occur

$$
\begin{align*}
\nabla_{E} X & =\frac{1}{\sqrt{c_{1}+d_{1}}}\left(\frac{L(\theta)}{r}\right)^{\prime} T+\frac{\kappa L(\theta)}{\sqrt{c_{1}+d_{1}}} N+\beta^{\prime} N+\epsilon_{2} r \beta \kappa T \tag{14}\\
& =\left(\left(\frac{L(\theta)}{r \sqrt{c_{1}+d_{1}}}\right)^{\prime}+\epsilon_{2} r \beta \kappa\right) T+\left(\frac{\kappa L(\theta)}{\sqrt{c_{1}+d_{1}}}+\beta^{\prime}\right) N
\end{align*}
$$

Since $g\left(X, \nabla_{E} X\right)=0$, equations (9) and (14) lead to

$$
\begin{equation*}
E=\frac{L(\theta)}{\sqrt{c_{1}+d_{1}}} X+\frac{r}{g\left(\nabla_{E} X, \nabla_{E} X\right)}\left(\left(\frac{L(\theta)}{r \sqrt{c_{1}+d_{1}}}\right)^{\prime}+\epsilon_{2} r \beta \kappa\right) \nabla_{E} X \tag{15}
\end{equation*}
$$

So,

$$
\begin{align*}
R\left(E, X, X, \nabla_{E} X\right) & =r\left(\left(\frac{L(\theta)}{r \sqrt{c_{1}+d_{1}}}\right)^{\prime}+\epsilon_{2} r \beta \kappa\right) \frac{R\left(\nabla_{E} X, X, X, \nabla_{E} X\right)}{g\left(\nabla_{E} X, \nabla_{E} X\right)} \\
& =r\left(\left(\frac{L(\theta)}{r \sqrt{c_{1}+d_{1}}}\right)^{\prime}+\epsilon_{2} r \beta \kappa\right) \sigma(s), \tag{16}
\end{align*}
$$

where $\sigma(s)$ is the sectional curvature of M_{1}^{2}. Setting equations (13)-(16) in (11), we express the main equation

$$
\begin{align*}
g_{1}\left(\tilde{N}, \xi_{1}\right)= & \frac{r\left(c_{2} \sigma(s)-\left(c_{1}+d_{1}\right)\right)}{2 \lambda \alpha^{2} \tilde{\kappa}}\left(\left(\frac{L(\theta)}{r \sqrt{c_{1}+d_{1}}}\right)^{\prime}\right. \\
& \pm r \epsilon_{2} \kappa \sqrt{\left.\epsilon_{X} \epsilon_{2} r^{2}-\left(\frac{\lambda}{\sqrt{c_{1}+d_{1}}}\right)^{2} \epsilon_{1} \epsilon_{2} L^{2}(\theta)\right)} \\
& +\left|\xi_{1}\right| \frac{\theta^{\prime} L^{\prime}(\theta)}{\tilde{\kappa}} . \tag{17}
\end{align*}
$$

Now we can state the following propositions.
Proposition 3.3. Let $T_{1} S_{1}^{2}$ be the unit tangent bundle of the de Sitter space S_{1}^{2} with the natural diagonal metric structure given by (6) such that $c_{2}=c_{1}+d_{1}$. Then all Legendre and slant non-geodesic curves are \tilde{N}-Legendre curves.

Proof. Let $\tilde{\gamma}(s)=(\gamma(s), X(s))$ be a Legendre or a slant curve with arc-parameter on the contact metric manifold $T_{1} S_{1}^{2}$ such that $c_{2}=c_{1}+$ d_{1}. We know that the sectional curvature $\sigma(s)$ of the de Sitter space equals 1. Thus, from Definition 3.1 and equation (17), we see that

$$
g_{1}\left(\tilde{N}, \xi_{1}\right)=0 .
$$

This completes the proof.
Proposition 3.4. Let $T_{1} S_{1}^{2}$ be the unit tangent bundle of the de Sitter space S_{1}^{2} with the natural diagonal metric structure given by (6) such that $c_{2}=c_{1}+d_{1}$ and let $\tilde{\gamma}$ be a non-slant curve on $T_{1} S_{1}^{2}$. Then $\tilde{\gamma}$ is an \tilde{N}-slant curve if the angle θ satisfies
(i) $\theta=\arccos c \int \tilde{\kappa}$, if \tilde{T} and ξ_{1} are spacelike vectors in the same space-conic,
(ii) $\theta=\arg \cosh c \int \tilde{\kappa}$, if \tilde{T} and ξ_{1} are spacelike or timelike vectors in the same time-conic,
(iii) $\theta=\arg \sinh c \int \tilde{\kappa}$, if \tilde{T} is spacelike and ξ_{1} is timelike vectors, where c is a non-zero constant.

Proof. Let $\tilde{\gamma}(s)=(\gamma(s), X(s))$ be a non-slant curve with arc-parameter on the contact metric manifold $T_{1} S_{1}^{2}$ such that $c_{2}=c_{1}+d_{1}$. Since the sectional curvature $\sigma(s)$ of the de Sitter space is 1, Definition 3.1 and equation (17) demonstrate that

$$
g_{1}\left(\tilde{N}, \xi_{1}\right)=\frac{L(\theta)^{\prime}}{\tilde{\kappa}}=c \text { constant }
$$

If \tilde{T} and ξ_{1} are spacelike vectors in the same space-conic, then $L(\theta)=$ $\cos \theta$, hence

$$
g_{1}\left(\tilde{N}, \xi_{1}\right)=(\cos \theta)^{\prime}=c \tilde{\kappa} .
$$

This differential equation yields

$$
\theta=\arccos c \int \tilde{\kappa} .
$$

Thus, we prove the statement (i). The proof of the statements (ii) and (iii) is similar.

Proposition 3.5. Let M_{1}^{2} be not de Sitter space and $T_{1} M_{1}^{2}$ be the unit tangent bundle of M_{1}^{2} with the natural diagonal metric structure given by (6) such that $c_{2}=c_{1}+d_{1}$. Assume that $\tilde{\gamma}(s)=(\gamma(s), X(s))$ is a slant curve on $T_{1} M_{1}^{2}$ and γ is a curve with constant velocity r_{0}. Then the curve $\tilde{\gamma}$ is \tilde{N}-slant if and only if

$$
\frac{(\sigma-1) \kappa}{\widetilde{\kappa}}
$$

is a non-zero constant.
Proof. Let M_{1}^{2} be a not de Sitter space (i.e. $\sigma(s) \neq 1$). Suppose that the curve $\tilde{\gamma}(s)=(\gamma(s), X(s))$ is a slant curve in $\left(T_{1} M_{1}^{2}, g_{1}, \varphi_{1}, \xi_{1}, \eta_{1}\right)$ such that $c_{2}=c_{1}+d_{1}$, where γ has constant velocity of r_{0}. Then from (17), we get

$$
\begin{aligned}
g_{1}\left(\tilde{N}, \xi_{1}\right)= & \frac{r_{0} c_{2}(\sigma(s)-1)}{2 \lambda \alpha^{2} \tilde{\kappa}}\left(\pm \epsilon_{2} \kappa \sqrt{\epsilon_{X} \epsilon_{2}^{2} r_{0}^{2}-\left(\frac{\lambda}{\sqrt{c_{1}+d_{1}}}\right)^{2} \epsilon_{1} \epsilon_{2} L^{2}(\theta)}\right) \\
= & \pm \frac{r_{0} c_{2}}{2 \lambda \alpha^{2}}\left(\epsilon_{2} \sqrt{\epsilon_{X} \epsilon_{2}\left(\frac{r_{0}}{2}\right)^{2}-\left(\frac{\lambda}{c_{1}+d_{1}}\right)^{2} \epsilon_{1} \epsilon_{2} L^{2}(\theta)}\right) \\
& \times \frac{(\sigma(s)-1) \kappa}{\widetilde{\kappa}} \\
= & \bar{c} \frac{(\sigma(s)-1) \kappa}{\tilde{\kappa}},
\end{aligned}
$$

where \bar{c} is a non-zero constant. Thus, the proof is complete from Definition 3.2.

Example 3.6. Let $\tilde{\gamma}$ be an arbitrary slant curve on $H_{1}^{2}(\mathbf{r})$ or $S_{1}^{2}(\mathbf{r})(\mathbf{r} \neq$ 1). Then $\tilde{\gamma}$ is an \tilde{N}-slant curve if and only if $\frac{\kappa}{\tilde{\kappa}}$ is a non-zero constant.

Proposition 3.7. Let M_{1}^{2} be a timelike (resp. spacelike) surface and $T_{1} M_{1}^{2}$ be the unit tangent bundle of M_{1}^{2} with the natural diagonal metric structure given by (6) such that $c_{2}=c_{1}+d_{1}$. Suppose that $\tilde{\gamma}(s)=$ $(\gamma(s), X(s))$ is a curve on $T_{1} M_{1}^{2}$ and γ is a curve with constant velocity $\frac{\lambda}{\sqrt{c_{1}+d_{1}}}$. If X has a different causal character with γ (resp. is a spacelike vector) and \tilde{T}, ξ_{1} fulfill the relation (10 (iii)) (resp. 10 (i)), then
(1) $\tilde{\gamma}(s)$ is an \tilde{N}-Legendre curve if and only if

$$
\theta=\int \kappa \bar{\sigma}(s) d s
$$

(2) $\tilde{\gamma}(s)$ is a \tilde{N}-slant curve if and only if

$$
L(\theta)^{\prime} \pm \kappa \bar{\sigma}(s) L^{\prime}(\theta)=c \widetilde{\kappa},
$$

where $\bar{\sigma}(s)=\frac{\kappa \lambda^{2} c_{2}(\sigma(s)-1)}{c_{2}(\sigma(s)-1)+2 \alpha^{2} \lambda\left|\xi_{1}\right| \sqrt{c_{1}+d_{1}}}$ and $L(\theta)$ equals $\sinh \theta($ resp. $\cos \theta)$.
Proof. (1) Suppose that M_{1}^{2} is a timelike (resp. spacelike) surface. Let $\tilde{\gamma}(s)=(\gamma(s), X(s))$ be a curve on $T_{1} M_{1}^{2}, \gamma$ be a curve with constant velocity $\frac{\lambda}{\sqrt{c_{1}+d_{1}}}$ and X has a different causal character with γ (resp. spacelike vector). We have

$$
\epsilon_{X}=-\epsilon_{1}=\epsilon_{2}\left(\text { resp. } \epsilon_{X}=\epsilon_{1}=\epsilon_{2}\right) .
$$

From equation (17), we express
$g_{1}\left(\tilde{N}, \xi_{1}\right)=\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \tilde{\kappa} \sqrt{c_{1}+d_{1}}}\left(\frac{\theta^{\prime} L^{\prime}(\theta)}{\lambda} \pm \frac{\kappa \lambda}{c_{1}+d_{1}} \sqrt{1+L^{2}(\theta)}\right)+\left|\xi_{1}\right| \frac{\theta^{\prime} L^{\prime}(\theta)}{\tilde{\kappa}}$,
(resp.) $g_{1}\left(\tilde{N}, \xi_{1}\right)=\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \tilde{\kappa} \sqrt{c_{1}+d_{1}}}\left(\frac{\theta^{\prime} L^{\prime}(\theta)}{\lambda} \pm \frac{\kappa \lambda}{c_{1}+d_{1}} \sqrt{1-L^{2}(\theta)}\right)$

$$
+\left|\xi_{1}\right| \frac{\theta^{\prime} L^{\prime}(\theta)}{\tilde{\kappa}} .
$$

When the vectors \tilde{T} and ξ_{1} fulfill the relation (10 (iii)) (resp. 10 (i)), the function $L(\theta)$ equals $\sinh \theta$ (resp. $\cos \theta$). Therefore, $\tilde{\gamma}(s)$ is an \tilde{N}-Legendre curve if and only if

$$
g_{1}\left(\tilde{N}, \xi_{1}\right)=\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \tilde{\kappa} \sqrt{c_{1}+d_{1}}}\left(\frac{\theta^{\prime}}{\lambda} \pm \frac{\kappa \lambda}{c_{1}+d_{1}}\right)+\left|\xi_{1}\right| \frac{\theta^{\prime}}{\tilde{\kappa}}=0
$$

and

$$
\theta=\int \frac{\kappa \lambda^{2} c_{2}(\sigma(s)-1)}{c_{2}(\sigma(s)-1)+2 \alpha^{2} \lambda\left|\xi_{1}\right| \sqrt{c_{1}+d_{1}}} d s
$$

Similarly, $\tilde{\gamma}(s)$ is an \tilde{N}-slant curve (i.e. $g\left(N, \xi_{1}\right)=c$) if and only if

$$
L(\theta)^{\prime} \pm \kappa \frac{\kappa \lambda^{2} c_{2}(\sigma(s)-1)}{c_{2}(\sigma(s)-1)+2 \alpha^{2} \lambda\left|\xi_{1}\right| \sqrt{c_{1}+d_{1}}} L^{\prime}(\theta)=c \widetilde{\kappa} .
$$

Thus the proof ends.
Now, we will prove some propositions under the assumption the angle θ is linear (i.e. $\theta=e s+f$). Furthermore, we suppose that the vector fields ξ_{1} and X have same causal characters.

Proposition 3.8. Let M_{1}^{2} be a spacelike surface $(\sigma(s) \neq 1)$ and $T_{1} M_{1}^{2}$ be the unit tangent bundle of M_{1}^{2} with the natural diagonal metric structure given by (6) such that $c_{2}=c_{1}+d_{1}$. Suppose that $\tilde{\gamma}(s)=(\gamma(s), X(s))$ is a non-slant curve on $T_{1} M_{1}^{2}$ and γ is a curve with constant velocity $\frac{\lambda}{\sqrt{c_{1}+d_{1}}}$. Let X be a spacelike vector and the vectors \tilde{T} and ξ_{1} spacelike vectors which span a spacelike vector subspace. In this case, the curve $\tilde{\gamma}(s)$ is \tilde{N}-Legendre if and only if

$$
(\sigma(s)-1)\left(-\frac{e}{\lambda} \pm \frac{\lambda}{c_{1}+d_{1}} \kappa\right)=\frac{2 e\left|\xi_{1}\right| \alpha^{2} \sqrt{c_{1}+d_{1}}}{c_{2}}
$$

Proof. Let M_{1}^{2} be a spacelike surface, $\tilde{\gamma}(s)=(\gamma(s), X(s))$ be a nonslant curve on $T_{1} M_{1}^{2}, \gamma$ be a curve with constant velocity $\frac{\lambda}{\sqrt{c_{1}+d_{1}}}$ and X be a spacelike vector $\left(\epsilon_{X}=1\right)$. Then, from equation (17), we have

$$
\begin{aligned}
& \frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \tilde{\kappa} \sqrt{c_{1}+d_{1}}}\left(\frac{e L^{\prime}(\theta)}{\lambda}\right. \\
& \left. \pm \epsilon_{2} \kappa \frac{\lambda}{c_{1}+d_{1}} \sqrt{\epsilon_{X} \epsilon_{2}-\epsilon_{1} \epsilon_{2} L^{2}(\theta)}\right) \\
& \quad+\frac{e\left|\xi_{1}\right| L^{\prime}(\theta)}{\tilde{\kappa}}=0
\end{aligned}
$$

and

$$
\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}\left(\frac{e L^{\prime}(\theta)}{\lambda} \pm \kappa \frac{\lambda}{c_{1}+d_{1}} \sqrt{1-L^{2}(\theta)}\right)+e\left|\xi_{1}\right| L^{\prime}(\theta)=0 .
$$

Since the vectors \tilde{T} and ξ_{1} span a spacelike subspace, we have

$$
L(\theta)=\cos \theta, L^{\prime}(\theta)=-\sin \theta .
$$

So,

$$
\begin{gathered}
\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}\left(\frac{e L^{\prime}(\theta)}{\lambda} \pm \frac{\lambda \kappa}{c_{1}+d_{1}} \sqrt{1-L^{2}(\theta)}\right)+e\left|\xi_{1}\right| L^{\prime}(\theta)=0 \\
\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}\left(-\frac{e \sin \theta}{\lambda} \pm \frac{\lambda}{c_{1}+d_{1}} \kappa \sin \theta\right)-e\left|\xi_{1}\right| \sin \theta=0 \\
(\sigma(s)-1)\left(-\frac{e}{\lambda} \pm \frac{\lambda}{c_{1}+d_{1}} \kappa\right)=\frac{2 e\left|\xi_{1}\right| \alpha^{2} \sqrt{c_{1}+d_{1}}}{c_{2}}
\end{gathered}
$$

Therefore, we prove the proposition.
Proposition 3.9. Let M_{1}^{2} be a timelike surface $(\sigma(s) \neq 1)$ and $T_{1} M_{1}^{2}$ be the unit tangent bundle of M_{1}^{2} with the natural diagonal metric structure given by (6) such that $c_{2}=c_{1}+d_{1}$. Suppose that $\tilde{\gamma}(s)=(\gamma(s), X(s))$ is a non-slant curve on $T_{1} M_{1}^{2}$ and γ is a curve with constant velocity $\frac{\lambda}{\sqrt{c_{1}+d_{1}}}$. Let X has a different causal character from γ, and \tilde{T}, ξ_{1} fulfill (10 (iii)). In this case, the curve $\tilde{\gamma}(s)$ is \tilde{N}-Legendre if and only if

$$
(\sigma(s)-1)\left(\frac{e}{\lambda} \pm \frac{2 \lambda}{c_{1}+d_{1}} \kappa\right)=-\frac{2 e \alpha^{2} \sqrt{c_{1}+d_{1}}}{c_{2}} .
$$

Proof. Let M_{1}^{2} be a timelike surface, $\tilde{\gamma}(s)=(\gamma(s), X(s))$ be a nonslant curve on $T_{1} M_{1}^{2}, \gamma$ be a curve with constant velocity $\frac{\lambda}{\sqrt{c_{1}+d_{1}}}$ and X has a different causal character from γ. We have $\epsilon_{X}=-\epsilon_{1}=\epsilon_{2}$. Then, equation (17) gives

$$
\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \tilde{\kappa} \sqrt{c_{1}+d_{1}}}\left(\frac{e L^{\prime}(\theta)}{\lambda} \pm \epsilon_{2} \kappa \frac{\lambda}{c_{1}+d_{1}} \sqrt{\epsilon_{X} \epsilon_{2}-\epsilon_{1} \epsilon_{2} L^{2}(\theta)}\right)+\frac{e\left|\xi_{1}\right| L^{\prime}(\theta)}{\tilde{\kappa}}=0 .
$$

If the vectors \tilde{T} and ξ_{1} have different causal characters, we write

$$
L(\theta)=\sinh \theta, L^{\prime}(\theta)=\cosh \theta .
$$

Therefore, we obtain

$$
\begin{aligned}
\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}\left(\frac{e L^{\prime}(\theta)}{\lambda} \pm \frac{\lambda \kappa}{c_{1}+d_{1}} \sqrt{1+L^{2}(\theta)}\right)+e\left|\xi_{1}\right| L^{\prime}(\theta) & =0 \\
\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}\left(\frac{e \cosh \theta}{\lambda} \pm \frac{\lambda}{c_{1}+d_{1}} \kappa \cosh \theta\right)+e\left|\xi_{1}\right| \cosh \theta & =0
\end{aligned}
$$

$$
(\sigma(s)-1)\left(\frac{e}{\lambda} \pm \frac{2 \lambda}{c_{1}+d_{1}} \kappa\right)=-\frac{2 e\left|\xi_{1}\right| \alpha^{2} \sqrt{c_{1}+d_{1}}}{c_{2}}
$$

So, the proposition is proved.
Example 3.10. Consider M_{1}^{2} as the anti de Sitter space H_{1}^{2}. Since the sectional curvature of H_{1}^{2} is -1 , under the assumptions of Proposition 3.9, \tilde{N}-Legendre condition of the curve $\tilde{\gamma}$ is that its projection curve γ has a constant curvature $\kappa= \pm \frac{e\left(c_{1}+d_{1}\right)}{2 \lambda}\left(\frac{\xi_{1} \mid \alpha^{2} \sqrt{c_{1}+d_{1}}}{c_{2}}-\frac{1}{\lambda}\right)$.

Proposition 3.11. Let M_{1}^{2} be a spacelike surface $(\sigma(s) \neq 1)$ and $T_{1} M_{1}^{2}$ be the unit tangent bundle of M_{1}^{2} with the natural diagonal metric structure given by (6) such that $c_{2}=c_{1}+d_{1}$. Suppose that $\tilde{\gamma}(s)=(\gamma(s), X(s))$ is a non-slant curve on $T_{1} M_{1}^{2}$ and γ is a curve with constant velocity $\frac{\lambda}{\sqrt{c_{1}+d_{1}}}$. If X is a spacelike vector, then the curve $\tilde{\gamma}(s)$ is $\tilde{N}-$ slant if and only if

$$
\theta=\arcsin \frac{c \tilde{\kappa}}{-e\left(\frac{c_{2}(\sigma(s)-1)}{2 \lambda \alpha^{2} \sqrt{c_{1}+d_{1}}}+\left|\xi_{1}\right|\right) \pm \frac{\lambda \kappa c_{2}(\sigma(s)-1)}{2 \alpha^{2}\left(c_{1}+d_{1}\right)^{3 / 2}}}, c \text { non-zero constant, }
$$

when \tilde{T} and ξ_{1} stay in the same spacelike subspace.
Proof. Under the assumptions M_{1}^{2} is a spacelike surface, $\tilde{\gamma}(s)=(\gamma(s), X(s))$ is a non-slant curve on $T_{1} M_{1}^{2}, \gamma$ is a curve with constant velocity $\frac{\lambda}{\sqrt{c_{1}+d_{1}}}$ and X is a spacelike vector, using the relations $g\left(N, \xi_{1}\right)=c ; \epsilon_{X}=\epsilon_{1}=$ $\epsilon_{2}=1$, we get the following equation from (17)
$\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \tilde{\kappa} \sqrt{c_{1}+d_{1}}}\left(\frac{e L^{\prime}(\theta)}{\lambda} \pm \epsilon_{2} \kappa \frac{\lambda}{c_{1}+d_{1}} \sqrt{\epsilon_{X} \epsilon_{2}-\epsilon_{1} \epsilon_{2} L^{2}(\theta)}\right)+\frac{e\left|\xi_{1}\right| L^{\prime}(\theta)}{\tilde{\kappa}}=c$.
and

$$
\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \tilde{\kappa} \sqrt{c_{1}+d_{1}}}\left(\frac{e L^{\prime}(\theta)}{\lambda} \pm \kappa \frac{\lambda}{c_{1}+d_{1}} \sqrt{1-L^{2}(\theta)}\right)+\frac{e\left|\xi_{1}\right| L^{\prime}(\theta)}{\tilde{\kappa}}=c .
$$

If \tilde{T} and ξ_{1} stay in the same spacelike subspace, then

$$
L(\theta)=\cos \theta, L^{\prime}(\theta)=-\sin \theta,
$$

and

$$
\begin{aligned}
\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}\left(-\frac{e \sin \theta}{\lambda} \pm \frac{\lambda}{c_{1}+d_{1}} \kappa \sin \theta\right)-e\left|\xi_{1}\right| \sin \theta & =c \tilde{\kappa} \\
\sin \theta\left(-e\left(\frac{c_{2}(\sigma(s)-1)}{2 \lambda \alpha^{2} \sqrt{c_{1}+d_{1}}}+\left|\xi_{1}\right|\right) \pm \frac{\lambda \kappa}{c_{1}+d_{1}} \frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}\right) & =c \tilde{\kappa} \\
\arcsin \frac{c \tilde{\kappa}}{-e\left(\frac{c_{2}(\sigma(s)-1)}{2 \lambda \alpha^{2} \sqrt{c_{1}+d_{1}}}+\left|\xi_{1}\right|\right) \pm \frac{\lambda \kappa}{c_{1}+d_{1}} \frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}} & =\theta .
\end{aligned}
$$

Thus, we prove the proposition.
Proposition 3.12. Let M_{1}^{2} be a timelike surface $(\sigma(s) \neq 1)$ and $T_{1} M_{1}^{2}$ be the unit tangent bundle of M_{1}^{2} with the natural diagonal metric structure given by (6) such that $c_{2}=c_{1}+d_{1}$. Suppose that $\tilde{\gamma}(s)=(\gamma(s), X(s))$ is a non-slant curve on $T_{1} M_{1}^{2}$ and γ is a curve with constant velocity $\frac{\lambda}{\sqrt{c_{1}+d_{1}}}$. Let X has a different causal character from γ. In this case, the curve $\tilde{\gamma}(s)$ is \tilde{N}-slant if and only if

$$
\theta=\arg \cosh \frac{c \tilde{\kappa}}{e\left(\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}+\left|\xi_{1}\right|\right) \pm \frac{\lambda \kappa c_{2}(\sigma(s)-1)}{2 \alpha^{2}\left(c_{1}+d_{1}\right)^{3 / 2}}}, c \text { non-zero constant, }
$$

when \tilde{T} and ξ_{1} fulfill the relation (10 (iii)).
Proof. Under the assumptions M_{1}^{2} is a timelike surface, $\tilde{\gamma}(s)=(\gamma(s), X(s))$ is a non-slant curve on $T_{1} M_{1}^{2}, \gamma$ is a curve with constant velocity $\frac{\lambda}{\sqrt{c_{1}+d_{1}}}$ and X has a different causal character from γ and \tilde{T}, using the relations $g\left(N, \xi_{1}\right)=c$ and $\epsilon_{X}=-\epsilon_{1}=\epsilon_{2}$, we get the following equation from (17)
$\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}\left(\frac{e L^{\prime}(\theta)}{\lambda} \pm \epsilon_{2} \kappa \frac{\lambda}{c_{1}+d_{1}} \sqrt{\epsilon_{X} \epsilon_{2}-\epsilon_{1} \epsilon_{2} L^{2}(\theta)}\right)+\frac{e\left|\xi_{1}\right| L^{\prime}(\theta)}{\tilde{\kappa}}=c$.
and

$$
\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}\left(\frac{e L^{\prime}(\theta)}{\lambda} \pm \kappa \frac{\lambda}{c_{1}+d_{1}} \sqrt{1+L^{2}(\theta)}\right)+\frac{e\left|\xi_{1}\right| L^{\prime}(\theta)}{\tilde{\kappa}}=c .
$$

If \tilde{T} and ξ_{1} satisfy the relation (10 (iii)), we have

$$
L(\theta)=\sinh \theta, L^{\prime}(\theta)=\cosh \theta,
$$

and so,

$$
\begin{aligned}
\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}\left(\frac{e \cosh \theta}{\lambda} \pm \frac{\lambda}{c_{1}+d_{1}} \kappa \cosh \theta\right)+e\left|\xi_{1}\right| \cosh \theta} & =c \tilde{\kappa} \\
\cosh \theta\left(e\left(\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}+\left|\xi_{1}\right|\right) \pm \frac{\lambda \kappa}{c_{1}+d_{1}} \frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}\right) & =c \tilde{\kappa} \\
\arg \cosh \frac{c \tilde{\kappa}}{e\left(\frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}+\left|\xi_{1}\right|\right) \pm \frac{\lambda \kappa}{c_{1}+d_{1}} \frac{c_{2}(\sigma(s)-1)}{2 \alpha^{2} \sqrt{c_{1}+d_{1}}}} & =\theta .
\end{aligned}
$$

Thus, we prove the last proposition of the paper.

Acknowledgements

The author would like to thank the referee for his/her valuable suggestions and comments.

References

[1] M.T.K. Abbassi, g-natural metrics: New horizons in the geometry of tangent bundles of Riemannian manifolds, Note di Mat., 28 (1) (2008), 6-35.
[2] C. Baikoussis and D. E. Blair, On Legendre curves in contact 3manifolds, Geom. Dedicata, 49 (1994), 135-142.
[3] M. Bekar, F. Hathout and Y. Yayli, N-Legendre and N-slant curves in the unit tangent bundles of Minkowski surfaces, Asian-European J. Math., 11 (1) (2018), 1850008.
[4] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, 142-144, Birkhauser, Boston (2002).
[5] J. T. Cho, J. I. Inoguchi and J. E. Lee, On slant curves in Sasakian 3-manifolds, Bul. Aust. Math. Soc., 74 (3) (2006), 359-367.
[6] S. L. Druta and V. Oproiu, Tangent sphere bundles which are η-Einstein, Balkan J. Geo. App., 16 (2) (2011), 48-61.
[7] S. L. Druta and V. Oproiu, Tangent sphere bundles of natural diagonal type, Balkan J. Geo. App., 15 (1) (2010), 53-67.
[8] S. L. Druta and V. Oproiu, Some natural diagonal structures on the tangent bundles and on the tangent sphere bundles, Romai J., 6 (2) (2010), 121-130.
[9] F. Hathout, M. Bekar and Y. Yayli, N-Legendre and N-slant curves in the unit tangent bundle of surfaces, Kuwait J. Sci., 44 (3) (2017), 28-33.
[10] Z. H. Hou and L. Sun, Slant curves in the unit tangent bundles of surfaces, ISRN Geometry, 2013 (2013), 1-5.
[11] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-358.
[12] S. Tachibana and M. Okumura, An almost complex structure of tangent bundles of Riemannian spaces, Tohoku Math J., 14 (2) (1962), 156-161.
[13] Y. Tashiro, On contact structures of tangent sphere bundles, Tohoku Math. J., 21 (1969), 117-143.

Murat Altunbaş
Department of Mathematics
Associate Professor of Mathematics
Erzincan Binali Yıldırım University
Erzincan, Turkey
E-mail: maltunbas@erzincan.edu.tr

[^0]: Received: June 2021; Accepted: March 2022

