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1 Introduction

Let (M, g, ϕ, ξ, η) be a 3-dimensional contact metric manifold. The no-
tion of slant curves in M was introduced by Cho et al. in [5]. A curve
γ(s) in M is said to be slant if its tangent vector field makes constant
contact angle with the Reeb vector field ξ. In this paper, for a con-
tact Riemann manifold, it was proved that a slant curve in a Sasakian
3-manifold is that its ratio of κ and τ − 1 is constant. Slant curves
with contact angle π

2 are called Legendre curves. In [2], Baikoussis and
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Blair showed that on a 3-dimensional Sasakian manifold, the torsion of
a Legendre curve is +1.

Let (M, g) be a smooth Riemannian manifold and TM its tangent
bundle. The best known Riemannian metric on the tangent bundle,
which is called as Sasaki metric and denoted by Sg, was introduced by
Sasaki in [11]. In addition to this, Tachibana and Okumura defined an
almost complex structure J in TM which is compatible with Sg in [12]
(for a history of tangent bundles, see [1]).

The unit tangent bundle T1M is a hypersurface in TM. In [13],
Tashiro constructed an almost contact metric structure (ḡ, ϕ̄, ξ̄, η̄) in
T1M which is induced from the almost complex structure (TM,S g, J)
in TM (see also [4]).

Some other contact metric structures on unit tangent bundles may
be constructed by using a few lifts to the tangent bundle. One of them,
which is known as the natural diagonal structure, was introduced and
studied by Druta–Romaniuc and Oproiu in [6], [7] and [8].

Similar to slant and Legendre curves, N−Legendre and N−slant
curves can be defined as follows: A curve γ(s) in a contact metric man-
ifold M is said to be N−slant if its normal vector field makes constant
contact angle with the Reeb vector field ξ. N−slant curves with con-
tact angle π

2 called N−Legendre curves [9]. Ñ−Legendre and Ñ−slant
curves were discussed in the unit tangent bundles of Riemannian and
Minkowski surfaces when the unit tangent bundles are endowed with the
Sasaki metric in [9] and [3].

In the present paper, these curves are studied in the unit tangent
bundles of Minkowski surfaces which are endowed with natural diago-
nal metric structures. Some geometric results are obtained when the
surfaces are supposed to be de Sitter and not de Sitter spaces.

2 Preliminaries

2.1 Minkowski space

The Minkowski 3-space M2
1 is a real vector space provided with the

standard metric given by

g = dx21 + dx22 − dx23,
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in terms of the natural coordinate system (x1, x2, x3). Recall that an
arbitrary vector x = (x1, x2, x3) in M2

1 can have one of three Lorentzian
causal characters: It is said to be spacelike, timelike and lightlike (null),
if g(x, x) > 0, g(x, x) < 0 and g(x, x) = 0. Similarly, an arc-parametrized
curve α(s) inM2

1 is spacelike, timelike and lightlike (null) if g(α′(s), α′(s))
= 1, g(α′(s), α′(s)) = −1 and g(α′(s), α′(s)) = 0, respectively.

For any vectors x = (x1, x2, x3) and y = (y1, y2, y3), the Minkowski
pseudo vector product is defined by

x×1 y =

∣∣∣∣∣∣
i j −k
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ ,
where {i, j, k} canonical basis ofM2

1 . The norm of a vector x is defined by
∥x∥ =

√
|g(x, x)| and two vectors x and y in M2

1 is said to be orthogonal
if g(x, y) = 0. The sets

S2
1(r) = {x = (x1, x2, x3) ∈ M2

1 : g(x, x) = r2} Lorentzian sphere

H2
1 (r) = {x = (x1, x2, x3) ∈ M2

1 : g(x, x) = −r2} Hyperbolic sphere

are called de Sitter and anti de Sitter spaces, respectively.

Let {T,N,B} be the moving Frenet frame along an arc-parametrized
curve α(s) in M2

1 . The Frenet formulae are given by T ′

N ′

B′

 =

 0 κ 0
−ϵ1ϵ2κ 0 τ

0 −ϵ2ϵ3τ 0

 T
N
B

 , (1)

where τ(s) is torsion of the curve α at s and g(T, T ) = ϵ1 = ±1,
g(N,N) = ϵ2 = ±1, g(B,B) = −ϵ1ϵ2. We have the following relations
for this moving frame

T ×1 N = ϵ1ϵ2B, N ×1 B = −ϵ1T and B ×1 T = −ϵ2N.

When M1
1 is a Minkowski surface endowed with the standard metric

given by

g = dx21 − dx22,
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then the moving Frenet formulae of an arc-parametrized curve α(s) in
M1

1 turn to be (
T ′

N ′

)
=

(
0 ϵ2κ

−ϵ1κ 0

)(
T
N

)
, (2)

and g(T, T ) = ϵ1 = ±1, g(N,N) = ϵ2 = ±1.

2.2 Unit tangent bundle

Let (M, g) be an n−dimensional pseudo-Riemannian manifold and let
TM its tangent bundle with projection π. For a local coordinate neigh-
borhood in (U, xi) inM, there is a local coordinate neighborhood (π−1(U),
xi, ui) in TM. For a vector field X on M, its horizontal lift Xh is defined
by Xh = Xi ∂

∂xi −XiujΓk
ij

∂
∂uk , where Γ

k
ij denotes the Christoffel symbols

of the Levi-Civita connection ∇ of g. The vertical lift Xv of X is given
by Xv = Xi ∂

∂ui .
The canonical energy density function of the tangent vector u with

respect to g is denoted by t = 1
2g(u, u).

An almost complex structure J on TM is defined by

JXh = a1X
v + b1g(X,u)uv, (3)

JXv = −a2X
h − b2g(X,u)uh,

where a1, b1, a2, b2 are smooth functions of t such that a2 = 1
a1
, b2 =

− b1
a1(a1+2tb1)

[6].

The natural diagonal lift metric gd is defined by
gd(Xh, Y h) = c1g(X,Y ) + d1g(X,u)g(Y, u),
gd(Xv, Y h) = gd(Xh, Y v) = 0,
gd(Xv, Y v) = c2g(X,Y ) + d2g(X,u)g(Y, u),

(4)

for every vector fields X,Y on M and every tangent vector u, where
t = g(u, u)/2 and c1, c2, d1, d2 are smooth functions of t which satisfies
c1 > 0, c2 > 0, c1 + 2td1 > 0 and c2 + 2td2 > 0.

The unit tangent bundle T1M of M is a submanifold of TM defined
by T1M = {u ∈ TM : g(u, u) = ±1}, where uv is a normal to T1M. For a
vector fieldX onM, its tangential lift is defined byXt = Xv−g(X,u)uv.
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Hence, for a vector field X̃ on T1M, we can write it uniquely as X̃ =
Xh +Xt.

The induced pseudo-Riemannian metric gd1 on T1M is uniquely de-
termined by

gd1(X
h, Y h) = c1g(X,Y ) + d1g(X,u)g(Y, u),

gd1(X
v, Y h) = gd1(X

h, Y v) = 0,
gd1(X

v, Y v) = c2[g(X,Y )− g(X,u)g(Y, u)],
(5)

for every vector fields X,Y on M and every tangent vector u, where
c1, d1, c2 are constants such that c1 > 0, c2 > 0, c1 + d1 > 0 [7].

A contact metric structure (φ1, ξ1, η1, g1) on T1M is given by the
following relations:

φ1(X
h) = a1X

t, φ1(X
t) = −a2X

h + a2g(X,u)uh, (6)

ξ1 =
1

2λα
uh, η1(X

t) = 0, η1(X
h) = 2αλg(X,u), g1 = αgd1 ,

for every vector fields X,Y on M and every tangent vector u, where
λ > 0 is a scalar, α = c1+d1

4λ2 and a1, a2 are functions defined in (3). This
contact metric structure is said to be natural diagonal structure [6].

The Levi-Civita connection ∇1 of (T1M, g1) is given by

∇1 XhY h = (∇XY )h − 1

2
(R(X,Y )u)t − d1

2c2
[g(X,u)Y t − g(Y, u)Xt],

∇1 XhY t = (∇XY )t − c2
2c1

(R(Y, u)X)h +
d1
2c1

g(X,u)Y h

+
d1

2(c1 + d1)
g(X,Y )uh − d1(2c1 + d1)

2c1(c1 + d1)
g(X,u)g(Y, u)uh

− c2d1
2c1(c1 + d1)

g(Y,R(X,u)u)uh,

∇1 XtY h = − c2
2c1

(R(X,u)Y )h +
d1
2c1

g(Y, u)Xh

+
d1

2(c1 + d1)
g(X,Y )uh − d1(2c1 + d1)

2c1(c1 + d1)
g(X,u)g(Y, u)uh

− c2d1
2c1(c1 + d1)

g(X,R(Y, u)u)uh,

∇1 XtY t = −g(Y, u)Xt, (7)
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for every vector fields X,Y on M and every tangent vector u, where R
is the curvature tensor on M [6].

3 N-Legendre and N-slant curves

Let (M, g) be a surface and let γ : I ⊂ R → M be a curve onM. Suppose
that γ̃(s) = (γ(s), X(s)) is a curve on (T1M, g1, φ1, ξ1, η1), where the
contact metric structure is given by (6). We define the Legendre and
slant curves as follows:

Definition 3.1. [10] Let γ be a curve in an almost contact metric man-
ifold (M, g, φ, ξ, η). The curve γ is said to be Legendre (resp. slant) if
the angle between its tangent vector field T of γ and the Reeb vector
field ξ is π

2 (resp. [0, π] − {π/2}), i.e. g(T, ξ) = 0 (resp. g(T, ξ) = c),
where c is a non-zero constant.

Definition 3.2. [9] Let γ be a curve in an almost contact metric mani-
fold (M, g, φ, ξ, η). The curve γ is said to be N-Legendre (resp. N-slant)
if the angle between its normal vector field N of γ and the Reeb vector
field ξ is π/2 (resp. [0, π]− {π/2}), i.e. g(N, ξ) = 0 (resp. g(N, ξ) = c),
where c is a non-zero constant.

Let γ̃ be an arc-parametrized spacelike or timelike (non-null) curve
in the unit tangent bundle (T1M

2
1 , g1, φ1, ξ1, η1) and let (T̂ , Ñ , B̃, κ̃, τ̃)

denotes the Frenet apparatus of γ̃. In this case,

T̃ (s) =
dγi

ds

∂

∂xi
+

dXi

ds

∂

∂ui
(8)

=
dγi

ds
(
∂

∂xi
)h(γ̃(s)) + (

dXi

ds
+

dγj

ds
XkΓi

jk)
∂

∂ui
(γ̃(s))

= (Eh + (∇EX)t)(γ̃(s)),

where E = γ′(s).
From equations (5) and (6), the Lorentzian angle between T̃ and

ξ1 =
1

2λαu
h is obtained by

g1(T̃ , ξ1)∣∣∣T̃ ∣∣∣ |ξ1| =
√

c1 + d1g(E,X) = L(θ), (9)
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where L(θ) is

(i) cos θ, if T̃ and ξ1 are spacelike vectors that span a spacelike

subspace,

(ii) cosh θ, if T̃ and ξ1 are spacelike vectors that span a timelike

subspace,

(iii) sinh θ, if T̃ and ξ1 have different causal characters. (10)

Differentiating both side of equation (9) with respect to s and using
equations (5), (6) and (8), we get

d

ds
g1(T̃ , ξ1) = g1(∇1T̃ T̃ , ξ1) + g1(T̃ ,∇1T̃ ξ1)

= κ̃g1(Ñ , ξ1) +
1

2λα
g1(T̃ ,∇1EhXh +∇1(∇EX)tX

h)

= κ̃g1(Ñ , ξ1) +
1

2λα2
[(c1 + d1)g(E,∇EX)

−c2R(E,X,X,∇EX)]

= |ξ1| θ′L′(θ).

Therefore,

g1(Ñ , ξ1) =
1

2λα2κ̃
(c2R(E,X,X,∇EX)− (c1 + d1)g(E,∇EX))

+ |ξ1| θ′L′(θ), (11)

where θ′ = dθ
ds and R is the curvature tensor of M2

1 .
If (T,N) is a Frenet frame on γ given in (2), then from equation (9),

we have

X =
1

r
√
c1 + d1

L(θ)T + βN, (12)

for a smooth function β, where r = ∥E∥ . Because of X is a unit vector,
we write

λ2ϵ1
(c1 + d1)r2

L2(θ) + ϵ2β
2 = ϵX ,

from which

β = ±1

r

√
ϵXϵ2r2 − (

λ√
c1 + d1

)2ϵ1ϵ2L2(θ), (13)
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where ϵX = g(X,X) = ±1.

Differentiating equation (12) with respect to s, we occur

∇EX =
1√

c1 + d1
(
L(θ)

r
)′T +

κL(θ)√
c1 + d1

N + β′N + ϵ2rβκT (14)

= ((
L(θ)

r
√
c1 + d1

)′ + ϵ2rβκ)T + (
κL(θ)√
c1 + d1

+ β′)N.

Since g(X,∇EX) = 0, equations (9) and (14) lead to

E =
L(θ)√
c1 + d1

X+
r

g(∇EX,∇EX)

(
(

L(θ)

r
√
c1 + d1

)′ + ϵ2rβκ

)
∇EX. (15)

So,

R(E,X,X,∇EX) = r

(
(

L(θ)

r
√
c1 + d1

)′ + ϵ2rβκ

)
R(∇EX,X,X,∇EX)

g(∇EX,∇EX)

= r

(
(

L(θ)

r
√
c1 + d1

)′ + ϵ2rβκ

)
σ(s), (16)

where σ(s) is the sectional curvature of M2
1 . Setting equations (13)-(16)

in (11), we express the main equation

g1(Ñ , ξ1) =
r(c2σ(s)− (c1 + d1))

2λα2κ̃
((

L(θ)

r
√
c1 + d1

)′

±rϵ2κ

√
ϵXϵ2r2 − (

λ√
c1 + d1

)2ϵ1ϵ2L2(θ))

+ |ξ1|
θ′L′(θ)

κ̃
. (17)

Now we can state the following propositions.

Proposition 3.3. Let T1S
2
1 be the unit tangent bundle of the de Sitter

space S2
1 with the natural diagonal metric structure given by (6) such

that c2 = c1 + d1. Then all Legendre and slant non-geodesic curves are
Ñ−Legendre curves.
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Proof. Let γ̃(s) = (γ(s), X(s)) be a Legendre or a slant curve with
arc-parameter on the contact metric manifold T1S

2
1 such that c2 = c1 +

d1. We know that the sectional curvature σ(s) of the de Sitter space
equals 1. Thus, from Definition 3.1 and equation (17), we see that

g1(Ñ , ξ1) = 0.

This completes the proof. □

Proposition 3.4. Let T1S
2
1 be the unit tangent bundle of the de Sitter

space S2
1 with the natural diagonal metric structure given by (6) such

that c2 = c1 + d1 and let γ̃ be a non-slant curve on T1S
2
1 . Then γ̃ is an

Ñ−slant curve if the angle θ satisfies

(i) θ = arccos c
∫
κ̃, if T̃ and ξ1 are spacelike vectors in the same

space-conic,

(ii) θ = arg cosh c
∫
κ̃, if T̃ and ξ1 are spacelike or timelike vectors

in the same time-conic,

(iii) θ = arg sinh c
∫
κ̃, if T̃ is spacelike and ξ1 is timelike vectors,

where c is a non-zero constant.

Proof. Let γ̃(s) = (γ(s), X(s)) be a non-slant curve with arc-parameter
on the contact metric manifold T1S

2
1 such that c2 = c1 + d1. Since the

sectional curvature σ(s) of the de Sitter space is 1, Definition 3.1 and
equation (17) demonstrate that

g1(Ñ , ξ1) =
L(θ)′

κ̃
= c constant.

If T̃ and ξ1 are spacelike vectors in the same space-conic, then L(θ) =
cos θ, hence

g1(Ñ , ξ1) = (cos θ)′ = cκ̃.

This differential equation yields

θ = arccos c

∫
κ̃.

Thus, we prove the statement (i). The proof of the statements (ii) and
(iii) is similar. □
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Proposition 3.5. Let M2
1 be not de Sitter space and T1M

2
1 be the unit

tangent bundle of M2
1 with the natural diagonal metric structure given

by (6) such that c2 = c1+d1. Assume that γ̃(s) = (γ(s), X(s)) is a slant
curve on T1M

2
1 and γ is a curve with constant velocity r0. Then the

curve γ̃ is Ñ−slant if and only if

(σ − 1)κ

κ̃

is a non-zero constant.

Proof. Let M2
1 be a not de Sitter space (i.e. σ(s) ̸= 1). Suppose that

the curve γ̃(s) = (γ(s), X(s)) is a slant curve in (T1M
2
1 , g1, φ1, ξ1, η1)

such that c2 = c1 + d1, where γ has constant velocity of r0. Then from
(17), we get

g1(Ñ , ξ1) =
r0c2(σ(s)− 1)

2λα2κ̃

(
±ϵ2κ

√
ϵXϵ22r

2
0 − (

λ√
c1 + d1

)2ϵ1ϵ2L2(θ)

)

= ± r0c2
2λα2

(
ϵ2

√
ϵXϵ2

(r0
2

)2
− (

λ

c1 + d1
)2ϵ1ϵ2L2(θ)

)

×(σ(s)− 1)κ

κ̃

= c
(σ(s)− 1)κ

κ̃
,

where c is a non-zero constant. Thus, the proof is complete from Defi-
nition 3.2. □

Example 3.6. Let γ̃ be an arbitrary slant curve on H2
1 (r) or S

2
1(r) (r ̸=

1). Then γ̃ is an Ñ−slant curve if and only if κ
κ̃ is a non-zero constant.

Proposition 3.7. Let M2
1 be a timelike (resp. spacelike) surface and

T1M
2
1 be the unit tangent bundle of M2

1 with the natural diagonal metric
structure given by (6) such that c2 = c1 + d1. Suppose that γ̃(s) =
(γ(s), X(s)) is a curve on T1M

2
1 and γ is a curve with constant velocity

λ√
c1+d1

. If X has a different causal character with γ (resp. is a spacelike

vector) and T̃ , ξ1 fulfill the relation (10 (iii)) (resp. 10 (i)), then
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(1) γ̃(s) is an Ñ−Legendre curve if and only if

θ =

∫
κσ̄(s)ds,

(2) γ̃(s) is a Ñ−slant curve if and only if

L(θ)′ ± κσ(s)L′(θ) = cκ̃,

where σ̄(s) = κλ2c2(σ(s)−1)

c2(σ(s)−1)+2α2λ|ξ1|
√
c1+d1

and L(θ) equals sinh θ (resp. cos θ).

Proof. (1) Suppose that M2
1 is a timelike (resp. spacelike) surface. Let

γ̃(s) = (γ(s), X(s)) be a curve on T1M
2
1 , γ be a curve with constant

velocity λ√
c1+d1

and X has a different causal character with γ (resp.

spacelike vector). We have

ϵX = −ϵ1 = ϵ2 (resp. ϵX = ϵ1 = ϵ2).

From equation (17), we express

g1(Ñ , ξ1) =
c2(σ(s)− 1)

2α2κ̃
√
c1 + d1

(
θ′L′(θ)

λ
± κλ

c1 + d1

√
1 + L2(θ)

)
+|ξ1|

θ′L′(θ)

κ̃
,

(resp.) g1(Ñ , ξ1) =
c2(σ(s)− 1)

2α2κ̃
√
c1 + d1

(
θ′L′(θ)

λ
± κλ

c1 + d1

√
1− L2(θ)

)
+ |ξ1|

θ′L′(θ)

κ̃
.

When the vectors T̃ and ξ1 fulfill the relation (10 (iii)) (resp. 10 (i)),
the function L(θ) equals sinh θ (resp. cos θ). Therefore, γ̃(s) is an
Ñ−Legendre curve if and only if

g1(Ñ , ξ1) =
c2(σ(s)− 1)

2α2κ̃
√
c1 + d1

(
θ′

λ
± κλ

c1 + d1

)
+ |ξ1|

θ′

κ̃
= 0

and

θ =

∫
κλ2c2(σ(s)− 1)

c2(σ(s)− 1) + 2α2λ |ξ1|
√
c1 + d1

ds.
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Similarly, γ̃(s) is an Ñ−slant curve (i.e. g(N, ξ1) = c) if and only if

L(θ)′ ± κ
κλ2c2(σ(s)− 1)

c2(σ(s)− 1) + 2α2λ |ξ1|
√
c1 + d1

L′(θ) = cκ̃.

Thus the proof ends. □
Now, we will prove some propositions under the assumption the angle

θ is linear (i.e. θ = es + f). Furthermore, we suppose that the vector
fields ξ1 and X have same causal characters.

Proposition 3.8. Let M2
1 be a spacelike surface (σ(s) ̸= 1) and T1M

2
1 be

the unit tangent bundle of M2
1 with the natural diagonal metric structure

given by (6) such that c2 = c1 + d1. Suppose that γ̃(s) = (γ(s), X(s))
is a non-slant curve on T1M

2
1 and γ is a curve with constant velocity

λ√
c1+d1

. Let X be a spacelike vector and the vectors T̃ and ξ1 spacelike

vectors which span a spacelike vector subspace. In this case, the curve
γ̃(s) is Ñ−Legendre if and only if

(σ(s)− 1)

(
− e

λ
± λ

c1 + d1
κ

)
=

2e |ξ1|α2
√
c1 + d1

c2
.

Proof. Let M2
1 be a spacelike surface, γ̃(s) = (γ(s), X(s)) be a non-

slant curve on T1M
2
1 , γ be a curve with constant velocity λ√

c1+d1
and X

be a spacelike vector (ϵX = 1). Then, from equation (17), we have

c2(σ(s)− 1)

2α2κ̃
√
c1 + d1

(
eL′(θ)

λ

±ϵ2κ
λ

c1 + d1

√
ϵXϵ2 − ϵ1ϵ2L2(θ))

+
e |ξ1|L′(θ)

κ̃
= 0

and

c2(σ(s)− 1)

2α2
√
c1 + d1

(
eL′(θ)

λ
± κ

λ

c1 + d1

√
1− L2(θ)

)
+ e |ξ1|L′(θ) = 0.

Since the vectors T̃ and ξ1 span a spacelike subspace, we have

L(θ) = cos θ, L′(θ) = − sin θ.
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So,

c2(σ(s)− 1)

2α2
√
c1 + d1

(
eL′(θ)

λ
± λκ

c1 + d1

√
1− L2(θ)

)
+ e |ξ1|L′(θ) = 0

c2(σ(s)− 1)

2α2
√
c1 + d1

(
−e sin θ

λ
± λ

c1 + d1
κ sin θ

)
− e |ξ1| sin θ = 0

(σ(s)− 1)

(
− e

λ
± λ

c1 + d1
κ

)
=

2e |ξ1|α2
√
c1 + d1

c2
.

Therefore, we prove the proposition. □

Proposition 3.9. Let M2
1 be a timelike surface (σ(s) ̸= 1) and T1M

2
1 be

the unit tangent bundle of M2
1 with the natural diagonal metric structure

given by (6) such that c2 = c1 + d1. Suppose that γ̃(s) = (γ(s), X(s))
is a non-slant curve on T1M

2
1 and γ is a curve with constant velocity

λ√
c1+d1

. Let X has a different causal character from γ, and T̃ , ξ1 fulfill

(10 (iii)). In this case, the curve γ̃(s) is Ñ−Legendre if and only if

(σ(s)− 1)

(
e

λ
± 2λ

c1 + d1
κ

)
= −2eα2

√
c1 + d1
c2

.

Proof. Let M2
1 be a timelike surface, γ̃(s) = (γ(s), X(s)) be a non-

slant curve on T1M
2
1 , γ be a curve with constant velocity λ√

c1+d1
and X

has a different causal character from γ. We have ϵX = −ϵ1 = ϵ2. Then,
equation (17) gives

c2(σ(s)− 1)

2α2κ̃
√
c1 + d1

(
eL′(θ)

λ
± ϵ2κ

λ

c1 + d1

√
ϵXϵ2 − ϵ1ϵ2L2(θ)

)
+
e |ξ1|L′(θ)

κ̃
= 0.

If the vectors T̃ and ξ1 have different causal characters, we write

L(θ) = sinh θ, L′(θ) = cosh θ.

Therefore, we obtain

c2(σ(s)− 1)

2α2
√
c1 + d1

(
eL′(θ)

λ
± λκ

c1 + d1

√
1 + L2(θ)

)
+ e |ξ1|L′(θ) = 0

c2(σ(s)− 1)

2α2
√
c1 + d1

(
e cosh θ

λ
± λ

c1 + d1
κ cosh θ

)
+ e |ξ1| cosh θ = 0
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(σ(s)− 1)

(
e

λ
± 2λ

c1 + d1
κ

)
= −2e |ξ1|α2

√
c1 + d1

c2
.

So, the proposition is proved. □

Example 3.10. Consider M2
1 as the anti de Sitter space H2

1 . Since the
sectional curvature of H2

1 is −1, under the assumptions of Proposition
3.9, Ñ−Legendre condition of the curve γ̃ is that its projection curve γ

has a constant curvature κ = ± e(c1+d1)
2λ ( |ξ1|α

2
√
c1+d1

c2
− 1

λ).

Proposition 3.11. Let M2
1 be a spacelike surface (σ(s) ̸= 1) and T1M

2
1

be the unit tangent bundle of M2
1 with the natural diagonal metric struc-

ture given by (6) such that c2 = c1+d1. Suppose that γ̃(s) = (γ(s), X(s))
is a non-slant curve on T1M

2
1 and γ is a curve with constant velocity

λ√
c1+d1

. If X is a spacelike vector, then the curve γ̃(s) is Ñ−slant if and

only if

θ = arcsin
cκ̃

−e( c2(σ(s)−1)

2λα2
√
c1+d1

+ |ξ1|)± λκc2(σ(s)−1)

2α2(c1+d1)3/2

, c non-zero constant,

when T̃ and ξ1 stay in the same spacelike subspace.

Proof. Under the assumptionsM2
1 is a spacelike surface, γ̃(s) = (γ(s), X(s))

is a non-slant curve on T1M
2
1 , γ is a curve with constant velocity λ√

c1+d1
and X is a spacelike vector, using the relations g(N, ξ1) = c; ϵX = ϵ1 =
ϵ2 = 1, we get the following equation from (17)

c2(σ(s)− 1)

2α2κ̃
√
c1 + d1

(
eL′(θ)

λ
± ϵ2κ

λ

c1 + d1

√
ϵXϵ2 − ϵ1ϵ2L2(θ)

)
+
e |ξ1|L′(θ)

κ̃
= c.

and

c2(σ(s)− 1)

2α2κ̃
√
c1 + d1

(
eL′(θ)

λ
± κ

λ

c1 + d1

√
1− L2(θ)

)
+

e |ξ1|L′(θ)

κ̃
= c.

If T̃ and ξ1 stay in the same spacelike subspace, then

L(θ) = cos θ, L′(θ) = − sin θ,
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and

c2(σ(s)− 1)

2α2
√
c1 + d1

(
−e sin θ

λ
± λ

c1 + d1
κ sin θ

)
− e |ξ1| sin θ = cκ̃

sin θ

(
−e(

c2(σ(s)− 1)

2λα2
√
c1 + d1

+ |ξ1|)±
λκ

c1 + d1

c2(σ(s)− 1)

2α2
√
c1 + d1

)
= cκ̃

arcsin
cκ̃

−e( c2(σ(s)−1)

2λα2
√
c1+d1

+ |ξ1|)± λκ
c1+d1

c2(σ(s)−1)

2α2
√
c1+d1

= θ.

Thus, we prove the proposition. □

Proposition 3.12. Let M2
1 be a timelike surface (σ(s) ̸= 1) and T1M

2
1

be the unit tangent bundle of M2
1 with the natural diagonal metric struc-

ture given by (6) such that c2 = c1+d1. Suppose that γ̃(s) = (γ(s), X(s))
is a non-slant curve on T1M

2
1 and γ is a curve with constant velocity

λ√
c1+d1

. Let X has a different causal character from γ. In this case, the

curve γ̃(s) is Ñ−slant if and only if

θ = arg cosh
cκ̃

e( c2(σ(s)−1)

2α2
√
c1+d1

+ |ξ1|)± λκc2(σ(s)−1)

2α2(c1+d1)3/2

, c non-zero constant,

when T̃ and ξ1 fulfill the relation (10 (iii)).

Proof. Under the assumptionsM2
1 is a timelike surface, γ̃(s) = (γ(s), X(s))

is a non-slant curve on T1M
2
1 , γ is a curve with constant velocity λ√

c1+d1

and X has a different causal character from γ and T̃ , using the relations
g(N, ξ1) = c and ϵX = −ϵ1 = ϵ2, we get the following equation from (17)

c2(σ(s)− 1)

2α2
√
c1 + d1

(
eL′(θ)

λ
± ϵ2κ

λ

c1 + d1

√
ϵXϵ2 − ϵ1ϵ2L2(θ)

)
+
e |ξ1|L′(θ)

κ̃
= c.

and

c2(σ(s)− 1)

2α2
√
c1 + d1

(
eL′(θ)

λ
± κ

λ

c1 + d1

√
1 + L2(θ)

)
+

e |ξ1|L′(θ)

κ̃
= c.

If T̃ and ξ1 satisfy the relation (10 (iii)), we have

L(θ) = sinh θ, L′(θ) = cosh θ,
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and so,

c2(σ(s)− 1)

2α2
√
c1 + d1

(
e cosh θ

λ
± λ

c1 + d1
κ cosh θ

)
+ e |ξ1| cosh θ = cκ̃

cosh θ

(
e(

c2(σ(s)− 1)

2α2
√
c1 + d1

+ |ξ1|)±
λκ

c1 + d1

c2(σ(s)− 1)

2α2
√
c1 + d1

)
= cκ̃

arg cosh
cκ̃

e( c2(σ(s)−1)

2α2
√
c1+d1

+ |ξ1|)± λκ
c1+d1

c2(σ(s)−1)

2α2
√
c1+d1

= θ.

Thus, we prove the last proposition of the paper. □
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