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1 Introduction

The concepts of a nil module and the square submodule of a module
for any arbitrary module M over a commutative ring R are both in-
spired from their analogous concepts in the theory of abelian groups.
Indeed, such notions were first introduced by A. E. Stratton and M. C.
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Webb [15] for abelian groups. Several authors have investigated prob-
lems concerning to nil groups and the square subgroup of an abelian
group over the past decades in [1, 2, 3, 7, 14, 16]. For the first time,
Aghdam and Najafizadeh [3] defined the notion of the square submodule
over a commutative ring and discussed it over some classes of commu-
tative domains. The square submodule of a module is the most natural
generalization of the concept of a nil module. Indeed, any module over
a commutative ring is a nil module exactly if its square submodule van-
ishes. In this paper we define a dual notion for the square submodule
of a module. Moreover, besides some other results, we investigate some
properties of the square submodule of a module and its dual notion.

2 Preliminaries and Notations

Throughout this paper, R denotes a commutative ring with identity
element. Let M be an R-module. An element m in a module M over a
ring R is said to be a regular element if there exists an R-homomorphism
α : M → R such that m = α(m)m. If every element of the module M
is regular, then M is called a regular module. The module M is said
to be divisible if rM = M for all non zero-divisors r ∈ R. Following
[8], an R-module M is said to be a multiplication (co-multiplication)
module if for any submodule N of M there exists a two sided ideal I of
R such that N = IM (N = (0 :M I)). A proper submodule P of M is
called prime provided that for r ∈ R and m ∈ M, if rm ∈ P then either
m ∈ P or rM ⊆ P. For a module M, M (I) denotes the direct sum of |I|
copies of M in which |I| is the cardinality of the index set I. We also
say that N (finitely) generates M if there is an epimorphism N (A) →
M → 0 for some (finite) set A. The trace of M in N, which is denoted
by TrN (M), is defined as TrN (M) =

∑
{Im(φ) : φ ∈ HomR(M,N)}.

Moreover, the reject ofM in N, which is denoted by RejN (M), is defined
as RejN (M) = ∩{ker(φ) : φ ∈ HomR(N,M)}.

Let M be an R-module over a commutative ring R. A bilinear map
on M is a function µ : M ×M −→ M such that for all m,n,mi, ni ∈ M
and r ∈ R :

(1) µ(m1 +m2, n) = µ(m1, n) + µ(m2, n);
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(2) µ(m,n1 + n2) = µ(m,n1) + µ(m,n2);

(3) µ(rm, n) = µ(m, rn) = rµ(m,n).

Now for any two bilinear maps µ and ν on M, and r ∈ R we define

(µ+ ν)(m,n) = µ(m,n) + ν(m,n)

(rµ)(m,n) = r · µ(m,n).

The set of all bilinear maps on M forms an R-module which we denote
by MultR(M) and call any element of it a multiplication on the R-
module M. Following [3], for a given submodule N of an R-module
M, the module M is said to be nil modulo N if µ(M × M) ≤ N for
all µ ∈ MultR(M). Moreover, the square submodule of M denoted by
□RM is defined as □RM =

∑
Im(φ), where φ runs in MultR(M). We

use the symbol □M if no ambiguity arises. An R-module M is called nil
if □M = 0. Clearly M is a nil R-module if and only if M is nil modulo
0. Furthermore, □M is the intersection of all submodules N of M such
that M is nil modulo N, i.e., the smallest R-submodule N of M such
that M is nil modulo N.

Theorem 2.1. Let M be an R-module over a commutative ring R with
S = EndR(M). Then □M = TrM (M ⊗R M) = TrS(M)M.

Proof. See [3, Theorem 2.3]. □

3 Main Results

In this section, we organize the main results of the paper in 3 subsections.
The first one includes some general results about the square submodule
and its dual notion. The remaining subsections discuss the situations
in which either the square submodule or its dual notion is a specific
submodule of the module under investigation.

3.1 Generalities on the square submodule and its dual
notion

In this subsection, we express the square submodule and its dual notion
in terms of some algebraic concepts. Moreover, the situations in which
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the module under discussion is either a nil or a co-nil module are inves-
tigated. We begin with a result which deals with a condition that the
square submodule of a given module, is equal to the whole module.

Proposition 3.1. Let M be a regular module over a commutative ring
R with S = EndR(M). Then □M = M. Moreover, if M is a regular
S-module, then □M = M.

Proof. The hypothesis that M is a regular R-module, implies that for
any element m of M, there exists an R-homomorphism α : M → R such
that m = α(m)m. But R is commutative, hence the multiplication by
every element r of R induces an R-homomorphism of M. Now, a similar
reasoning as [3, Proposition 3.6] yields the result. The last assertion is
clear. □

The next result expresses the square submodule of a module in terms
of some algebraic concepts.

Theorem 3.2. Let M be a module over a commutative ring R with
S = EndR(M). If S is a co-multiplication R-module, then

□M = (0 :S Ann(HomR(M,S)))M.

Proof. The hypothesis that N is a co-multiplication R-module implies
that TrN (M) = (0 :N Ann(T )), where T = HomR(M,N). In fact, in
view of the fact that Ann(T )α(M) = (Ann(T )α)M = 0 for all α ∈ T,
we reach to this conclusion that TrN (M) is contained in (0 :N Ann(T )).
Conversely, there exists an ideal I of R such that TrN (M) = (0 :N
I). Now, if β ∈ T is an arbitrary element, then β(M) = Im(β) ⊆
TrN (M) = (0 :N I). We have, Iβ(M) = 0. Hence, (βI)M = β(IM) = 0.
Consequently, I ⊆ AnnR(T ) since β ∈ T is arbitrary. We get, (0 :N
AnnR(T )) ⊆ (0 :N I) = TrN (M). Consequently, TrN (M) = (0 :N
AnnR(T )). Now, the assertion follows if we put N = S. □

Definition 3.3. Let M be a module over a commutative ring R. More-
over, let N be a submodule of M⊗RM. We say that M is co-nil modulo
N exactly if N ⊆ ker(φ) for all φ : M ⊗R M → M.

Clearly, if M is co-nil modulo both N1 and N2, then M is co-nil
modulo N1 +N2. Therefore, we may define a dual notion for the square
submodule denoted by □dM as follows.
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Definition 3.4. Let M be a module over a commutative ring R. Then,
the dual notion of the square submodule ofM denoted by□dM is defined
as □dM =

∑
N, where N runs over submodules N of M ⊗R M such

that M is co-nil modulo N.

It is obvious that □dM is the largest submodule X of M ⊗RM such
that M is co-nil modulo X.

Definition 3.5. Let M be a module over a commutative ring R. Then,
we say that M is a co-nil module exactly if □dM = 0.

In the next two results, we express □dM in terms of some algebraic
concepts.

Proposition 3.6. Let M be an R-module over a commutative ring R.
Then, □dM = RejM⊗RM (M).

Proof. We observe that ifM is co-nil moduloN, thenN ⊆ ker(φ) for all
φ : M ⊗R M → M. Hence, N ⊆ ∩φ:M⊗RM→M ker(φ). This means that
□dM ⊆ ∩φ:M⊗RM→M ker(φ). Consequently, □dM ⊆ RejM⊗RM (M).
Conversely, we prove that M is co-nil modulo RejM⊗RM (M). This is
clear, since for all φ : M ⊗R M → M, we have RejM⊗RM (M) ⊆ ker(φ).
We conclude the result. □

Theorem 3.7. Let M be an R-module over a commutative ring R
with S = EndR(M). Then □dM = M ⊗R (0 :M TrS(M)) = (0 :M
TrS(M))⊗R M.

Proof. Let θ ∈ HomR(M,S) be arbitrary. For any x, y ∈ M, the
map f : M × M → M defined as f(x, y) = θ(x)(y), is a bilinear map
which induces the R-homomorphism, φ : M ⊗R M → M with φ(x ⊗
y) = θ(x)(y). Now, let m⊗ n be an arbitrary generator of □dM. Hence,
m ⊗ n belongs to ∩φ:M⊗RM→M ker(φ). Now, we prove that n ∈ 0 :M
TrS(M). In other words, TrS(M).n = 0. To do this, let θm : M → S
be an arbitrary element of TrS(M). Then in view of the observation at
the beginning of the proof, we have θm.n = θm(n) = φ(m ⊗ n) = 0.
Conversely, suppose that m⊗n be an arbitrary generator of M⊗R (0 :M
TrS(M)). Hence, m ∈ M and n ∈ TrS(M). We shall prove that m⊗n ∈
RejM⊗RM (M) = ∩φ:M⊗RM→M ker(φ). To do this, let φ : M⊗RM → M



6 A. KHAKSARI, A. NAJAFIZADEH AND M. ZAFARKHAH

be arbitrary. We have φ(m⊗ n) = θm(n) = θm.n = 0. We conclude the
result. □

The next result shows that □dM inherits the divisibility of M.

Proposition 3.8. Let M be a module over a commutative ring R with
S = EndR(M). If M is a divisible R-module, then so is □dM.

Proof. Let x⊗y ∈ □dM = (0 :M TrS(M))⊗RM for arbitrary x ∈ (0 :M
TrS(M)) and y ∈ M. Then, the divisibility of M implies that y = rz for
some z ∈ M and r ∈ R.Hence, we have x⊗y = x⊗rz = r(x⊗z) ∈ r□dM.
□

At this point, we discuss the conditions that make an arbitrary mod-
ule M to be either a nil or a co-nil module.

Proposition 3.9. Let M be an R-module over a commutative ring R.
Then, M is a nil module exactly if □dM = M ⊗R M.

Proof. Follows from the fact that TrN (M) = 0 exactly if RejM (N) =
M for any R-module N. □

Definition 3.10. Let M be a module over a commutative ring R. Let
N be a submodule of M ⊗R M. We define [[M : N ]]l to be the R-
submodule of M generated by the set of all m ∈ M such that y⊗m ∈ N
and φ(y ⊗m) = 0 for all y ∈ M and all φ : M ⊗R M → M. In a similar
way, we define [[M : N ]]r.

Proposition 3.11. Let M be an R-module over a commutative ring R
and N be a submodule of M ⊗R M. Then M is co-nil modulo N exactly
if either N ⊆ [[M : N ]]l ⊗R M or N ⊆ M ⊗R [[M : N ]]r.

Proof. Straightforward. □
We end this part with some examples which illustrate the square

submodule and its dual submodule in commutative domains. Recall that
a commutative semigroup S is a Clifford semigroup if every element s
of S is regular (in the sense of von Neumann), i.e., s = s2r for some
r ∈ S. Following [11], a domain R is a Clifford regular domain if the
class semigroup S(R) of R is a Clifford semigroup.

Example 3.12. Let I be an ideal of a commutative domain R with
quotient field Q and S = EndR(I). Then in view of [3, Proposition 3.4],
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□I = (S : I)I2 = (I : I2)I2. In particular, □I = 0 if and only if I = 0.
Moreover, □I = I for every ideal I of R exactly if R is a Clifford regular
domain.

Moreover, in view of Theorem 3.7 and Proposition 3.9 we get:

Example 3.13. Let I be an ideal of a commutative domain R with
quotient field Q and S = EndR(I). Then we have:

□dI = (0 :I TrS(I))⊗ I = (0 :I (S : I)I)⊗R I. = (0 :I (I : I2)I)⊗R I.

Moreover, □dI = I ⊗R I for every ideal I of R exactly if I is nil.

3.2 Prime square submodule and its dual notion

In this subsection, we investigate the situations in which either the
square submodule of a module M or its dual notion is a prime sub-
module of M or M ⊗R M, respectively. First, we give several results
about the prime submodules which may be of independent interest.

Proposition 3.14. Let M and N be co-multiplication modules over a
commutative ring R. If AnnR(M) is prime ideal of R, then any non-zero
element α of HomR(M,N) satisfies Im(α) = (0 :N AnnR(M)).

Proof. The hypothesis that M and N are co-multiplication modules,
implies that there exists two sided ideals I, J such that M.α = (0 :N I)
and kerα = (0 :M J). We have, 0 = I(0 :N I) = I(Mα). Hence,
IM ⊆ kerα = (0 :M J). This implies that JIM = 0. We have JI ⊆
AnnR(M). The hypothesis that AnnR(M) is prime ideal of R, implies
that I ⊆ AnnR(M) or J ⊆ AnnR(M). By the second inclusion and
kerα = (0 :M J) we get kerα = M. This means that α = 0, a con-
tradiction. Therefore, I ⊆ AnnR(M). Consequently, by the relation
M.α = (0 :N I) we get (0 :N AnnR(M)) ⊆ (0 :N I) = M.α. On the
other hand, AnnR(M)(Mα) = 0, hence M.α ⊆ (0 :N AnnR(M)) which
implies that (0 :N AnnR(M)) = M.α. □

Corollary 3.15. Let M be a co-multiplication module over a com-
mutative ring R with S = EndR(M). Moreover, suppose that S is
a co-multiplication R-module. If AnnR(M) is prime ideal of R, then
□RM = (0 :S AnnR(M)).
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Proof. Clearly, if M and N are co-multiplication modules over a
commutative ring R such that AnnR(M) is a prime ideal of R, then
TrN (M) = (0 :N AnnR(M)). Now we have □RM = TrS(M) = (0 :S
AnnR(M)). □

Corollary 3.16. Let M be co-multiplication module over a commutative
ring R. Let N be a non-trivial submodule of M. If AnnR(M) is prime
ideal of R, then TrN (M) = N.

Proof. Let M be a co-multiplication module over a commutative ring R
with S = EndR(M). Moreover, suppose that N is a non-trivial submod-
ule of M. If AnnR(M) is a prime ideal of R, then by a similar reasoning
as Proposition 3.14 any non-zero element of HomR(M,N) is surjective.
Now our assertion is concluded. □

Proposition 3.17. Let M be a module over a commutative ring R and
K be a submodule of M. Let α ∈ HomR(M,R) be a such that m −
α(m)m ∈ K for all m ∈ M. If K is a prime submodule of M, then any
proper submodule N of M containing K is a prime submodule of M.

Proof. Let r ∈ R and m ∈ M be such that rm ∈ N. Moreover, suppose
that m does not belong to N. We shall prove that rM ⊆ N. The hy-
pothesis implies that rm−α(rm)rm ∈ K. But, K is a prime submodule
of M, hence either m− α(rm)m ∈ K or rM ⊆ K. If m− α(rm)m ∈ K,
then m− α(rm)m ∈ N. This yields m ∈ N, a contradiction. Therefore,
rM ⊆ K ⊆ N. We conclude the result. □

Proposition 3.18. Let M be a regular module over a commutative ring
R such that {0} is a prime submodule of M. Then every proper submod-
ule of M is prime.

Proof. We observe that in view of Proposition 3.17, if M is a regular
module over a commutative ring R and K is a prime submodule of M,
then every proper submodule of M containing K is prime. Now our
assertion is clear. □

Corollary 3.19. Let M be a regular module over an integral domain R.
Then every proper submodule of M is prime.

Proof. Clearly, {0} is a prime submodule of M. Therefore, in view of
Proposition 3.18, we are done. □
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Lemma 3.20. Let M be a module over a commutative ring R with
S = EndR(M). If N is a prime S-submodule of M, then it is a prime
R-submodule of M.

Proof. Let r ∈ R and m ∈ M such that rm ∈ N. Suppose that m /∈ N.
Since R is commutative, the map θ(x) = rx for all x ∈ M, is an element
of S. We have rm = θ(m) = m.θ ∈ N. Since, N is a prime S-submodule
of M and m /∈ N, so M.θ ⊆ N. This implies that rM = M.θ ⊆ N. We
conclude the result. □

The next two results investigate the situations in which the square
submodule of a given module M is a prime submodule of M.

Theorem 3.21. Let M be a module over a commutative ring R with
S = EndR(M). If S is a regular integral domain, then MJ is a prime
submodule of M for any ideal J of S with MJ ̸= M.

Proof. The hypothesis that S is regular implies that for any arbitrary
ideal J of S, the epimorphism µJ : M⊗J → MJ defined as m⊗s 7→ ms
for all m ∈ M and s ∈ J is a monomorphism. This implies that M
is a flat S-module. Now, by Corollary 3.19, J is a prime ideal of S.
Hence, in view of [9, Corollary 2.6], MJ is a prime S-submodule of M.
Consequently, MJ is a prime R-submodule of M by Lemma 3.20. □

Corollary 3.22. Let M be a module over a commutative ring R such
that S = EndR(M) is a regular integral domain. If □M ̸= M, then □M
is a prime submodule of M.

Proof. It follows from Theorem 3.21 and the fact that□M = TrS(M).M,
where TrS(M) is the two sided ideal of S. □

The remaining results of this subsection investigate the situations in
which □dM is a prime submodule of M ⊗R M.

Proposition 3.23. Let M be a prime module over a commutative ring
R. Then 0 :M I is a prime submodule of M for any ideal of R provided
that IM ̸= 0.

Proof. The hypothesis that IM ̸= 0 implies that 0 :M I ̸= M. Suppose
that rm ∈ 0 :M I and m /∈ 0 :M I. We prove rIM = 0. Let t ∈ I be
arbitrary. Since rm ∈ 0 :M I, we get rtm = 0. Now the hypothesis
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that {0} is a prime submodule of M implies that m = 0 or rtM = 0. If
m = 0, then mI = 0, a contradiction. Therefore, rtM = 0. We conclude
the result. □

Lemma 3.24. Let M be a non-nil prime module over a commutative
ring R with S = EndR(M). Then 0 :M TrS(M) is a prime R-submodule
of M.

Proof. The hypothesis that M is non-nil implies that TrS(M).M ̸= 0.
Therefore, 0 :M TrS(M) ̸= M. Now, the assertion follows from a similar
argument as Proposition 3.23. □

Corollary 3.25. Let M be a flat and prime module over a commutative
ring R with S = EndR(M). If M is non-nil, then □dM is a prime
submodule of M ⊗R M provided that (0 :M TrS(M)) ⊗R M is a proper
submodule of M ⊗R M.

Proof. It follows from Theorems 3.7, Lemma 3.24 and [9, Theorem
2.4.]. □

3.3 Small and essential square submodule and its dual
notion

In this subsection, we investigate the situation in which the square sub-
module of an arbitrary module M and its dual notion are either an
a-small or an S-essential submodule of M or M ⊗R M, respectively.
Moreover, we have some results related to the notions of small and es-
sential submodules of a moduleM which may be of independent interest.
We recall some definitions from [4] and [5]. Let M be a module over
a commutative ring R with S = EndR(M). A submodule N of M is
called small or superfluous, denoted by N ≪ M, if for any submodule
X of M, X + N = M implies that X = M. Following Amouzegar-
Kalati and Keskin-Tütüncü [4], N is called annihilator small (a-small),
denoted by N ≪a M, if for any submodule X of M, X + N = M im-
plies that (0 :S M) = 0. Moreover, N is called essential, denoted by
N ⊆e M, provided that for each submodule L of M, N ∩ L = 0 implies
that L = 0. Following Amouzegar [5], N is called S-essential, denoted
by N ⊆s−e M, provided that for each submodule X of M, N ∩X = 0
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implies that (X :S M) = 0. An R-module M is called retractable if for
any non-zero submodule N of M there exists a non-zero α : M → N.
Moreover, M is called co-retractable if for any proper submodule N of
M, there exists a non-zero α : M → M such that α(N) = 0. Let U and
M be R-modules. Then, U is said to be M -projective in case for each
R-epimorphism g : M → N and each R-homomorphism f : U → N
there exists an R-homomorphism h : U → M such that f = gh. If U is
U -projective, then U is said to be quasi-projective. If U is M -projective
for every R-module M, then U is said to be projective. A projective
cover of a module M is an epimorphism p : P → M such that P is a
projective module and ker(p) ≪ P.

At first, we prove some results related to generalized small and es-
sential submodules of an arbitrary module M. In particular, we have
some generalization to [6, Corollary 5.15 and Proposition 5.14].

Theorem 3.26. Let M and P be modules over a commutative ring R

and P
θ→ M. Let N be a submodule of M such that θ(P )+N = M. Then,

θ−1(N) ≪ P exactly if any submodule P ′ ⊆ P satisfying θ(P ′)+N = M
implies that P ′ = P.

Proof. (=⇒) : Let θ−1(N) be a small submodule of P. Moreover, let
P ′ ⊆ P be such that θ(P ′) +N = M. We prove that P ′ = P. We claim
that P ′ + θ−1(N) = P. To do this, suppose that y ∈ P be arbitrary.
Therefore, we have θ(y) ∈ M = θ(P ′) +N. Hence, there exist elements
z ∈ P ′ and n ∈ N such that θ(y) = θ(z) + n. This implies that y − z ∈
θ−1(N). Therefore, y = z + (y − z) ∈ P ′ + θ−1(N). Consequently, P ⊆
P ′ + θ−1(N). We conclude that P ′ + θ−1(N) = P. Now the hypothesis
that θ−1(N) is a small submodule of P, yields P ′ = P.

(⇐=) : We prove that θ−1(N) is a small submodule of P. Let L be a
submodule of P such that θ−1(N)+L = P. This implies that θ(θ−1(N)+
L) = θ(P ). Hence θ(θ−1(N))+ θ(L) = θ(P ). We get θ(θ−1(N))+ θ(L)+
N = θ(P ) +N = M. The fact that θ(θ−1(N)) ⊆ N, implies that θ(L) +
N = M. Consequently, the hypothesis implies that L = P. We conclude
the result. □

Corollary 3.27. Let P
θ→ M → 0 be an exact sequence of R-modules.

Then, ker(θ) is a small submodule of P exactly if any submodule P ′ ⊆ P

satisfying θ(P ′) = M implies that P ′ = P. In particular, P
θ→ M → 0
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is a projective cover for M exactly if any submodule P ′ ⊆ P satisfying
θ(P ′) = M implies that P ′ = P.

Proof. Put N = 0 in Theorem 3.26. □

Theorem 3.28. Let M and P be modules over a commutative ring R

and P
θ→ M. Let N be a submodule of M such that θ(P ) + N = M.

Then, θ−1(N) ≪ P exactly if any module A and any R-homomorphism

A
h→ P satisfying θh(A) +N = M imply that h(A) = P.

Proof. (=⇒) : Let θ−1(N) be a small submodule of P. In view of
Theorem 3.26, we put P ′ = h(A). Then, we have h(A) = P.

(⇐=) : We prove that θ−1(N) is a small submodule of P. In view of
Theorem 3.26, let θ(P ′) + N = M for some submodule P ′ of P. This

implies that θi(P ′) + N = M, where P ′ i→ P
θ→ M. The hypothesis

implies that i(P ′) = P. Consequently, P ′ = P. □

Corollary 3.29. [6, Corollary 5.15] An epimorphism g : M → N is su-
perfluous if and only if for all homomorphisms (equivalently, monomor-
phisms) h, if gh is epic, then h is epic.

Proof. Put N = 0 in Theorem 3.28. □

Proposition 3.30. [6, Proposition 5.14] For a submodule K of M the
following statements are equivalent:

1. K ≪ M.

2. The natural map pK : M → M/K is a superfluous epimorphism.

3. For every module N and for every h ∈ Hom(N,M) the relation
Imh+K = M implies Imh = M.

Proof. Put N = 0 in Theorem 3.28 and suppose that θ = pK . Then we
have p−1

K (0) ≪ M exactly if any module A and any R-homomorphism

A
h→ M satisfying pkh(A) + 0 = M/K implies that h(A) = M. But

we have M/K = pkh(A) = (h(A) + K)/K. This implies that K ≪ M

exactly if any module A and any R-homomorphism A
h→ M satisfying

h(A) +K = M we have h(A) = M. We conclude the result. □
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The next two results investigate the situations in which the square
submodule of a given module M is either an essential or an S−essential
submodule of M.

Lemma 3.31. Let M be a module over a commutative ring R with
S = EndR(M). Let T be a submodule of M such that (T :S M) is an
essential ideal of S. Then, (T :S M)M is an S-essential submodule of
M. In particular, T is an S-essential submodule of M.

Proof. Let (T :S M)M ∩X = 0 for some submodule X of M. Clearly,
we have (T :S M) ∩ (X :S M) = 0. Now, the hypothesis that (T :S M)
is an essential ideal of S, implies that (X :S M) = 0. We conclude that
(T :S M)M is an S-essential submodule of M.

Moreover, we observe that if N is a submodule of T such that N is
an S-essential submodule of M, then T is an S-essential submodule of
M. Now, the last assertion is clear. □

Proposition 3.32. Let M be a module over a commutative ring R with
S = EndR(M). If TrS(M) is an essential (left) ideal of S, then we have
the following.

1. (□M :S M)M is an S−essential submodule of M. In particular
□M is an S−essential submodule of M.

2. If M is a retractable module, then □M is an essential submodule
of M.

Proof. First, we observe that TrS(M) ⊆ (□M :S M) ⊆ S. Infact, given
any arbitrary generator φ(m) ∈ TrS(M) for m ∈ M and φ : M → S, we
have φ(m)(n) ∈ □M for all n ∈ M. This implies that φ(m)(M) ⊆ □M,
hence we get the desired inclusion. Now the hypothesis that TrS(M) is
an essential ideal of S, implies that (□M :S M) is an essential ideal of
S. Now our assertion is clear by Lemma 3.31.

For the second assertion, we suppose that □M ∩ X = 0. We shall
prove that X = 0. By the way of contradiction, suppose that X ̸= 0.
Then, the hypothesis that M is retractable, implies that there exists
a non-zero homomorphism β : M → X. This means β ∈ (X :S M).
Consequently, (X :S M) ̸= 0, a contradiction. □

The final two results investigate the situations in which □dM is a
small submodule of M ⊗R M.
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Proposition 3.33. Let M be a module over a commutative ring R with
S = EndR(M). If TrS(M) is an essential (left) ideal of S, then we have
the following.

1. (0 :M TrS(M)) is an a−small submodule of M.

2. If M is a co-retractable module, then (0 :M TrS(M)) is a small
submodule of M.

Proof. Let (0 :M TrS(M)) + X = M for some submodule X of M.
Then, we have 0 = (0 :S M) = (0 :S [(0 :M TrS(M)) + X]) = [0 :S
(0 :M (TrS(M)))] ∩ (0 :S X). Now in view of the fact that TrS(M) ⊆
[0 :S (0 :M (TrS(M)))], we have TrS(M) ∩ (0 :S X) ⊆ [0 :S (0 :M
(TrS(M)))] ∩ (0 :S X) = 0. Therefore, TrS(M) ∩ (0 :S X) = 0. But,
TrS(M) is an essential ideal of S, hence (0 :S X) = 0 as desired.

For the second assertion, suppose that (0 :M TrS(M)) + X = M.
By the way of contradiction, suppose that X ̸= M. Since M is co-
retractable, there exists a non-zero β : M → M such that β(M) = 0.
Therefore, β ∈ (0 :S X). This means (0 :S X) ̸= 0, a contradiction. □

Corollary 3.34. Let M be a co-retractable faithful finitely generated
multiplication flat module over a commutative ring R with S = EndR(M).
If TrS(M) is an essential (left) ideal of S, then □dM is a small sub-
module of M ⊗R M.

Proof. In view of Proposition 3.33, we get that (0 :M TrS(M)) is an
small submodule of M. Now that assertion follows from Theorem 3.7
and [10, Corollary 13]. □
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