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Abstract. In this paper, we first introduce a class of finite group G f which is
covered all finite metacyclic 2-groups of negative type in Beuelre’s classifica-
tion. Next, we obtain the size of centralizers and also conjugate type vector of
the groups. Finally, the n-th commutativity degree of G f is obtained as a direct
application of the results.
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1 Introduction

The importance of conjugacy classes in the structure of finite groups was iden-
tified in the study of groups. Some results about the relation between conju-
gate type vector of a finite group G and nilpotency of the group, and also the
conjugacy class sizes and solvability of G were investigated [4, 5, 9, 10, 16].
Moreover, there are some works which have considered the influence of con-
jugacy class sizes on the prime power groups. We do not mention these re-
sults here, but the reader may refer to [1, 2, 11, 16, 18]. For instance, Ashrafi
[17] computed the number of distinct centralizers of some finite groups and
examined the structure of the groups with precisely six distinct centralizers.
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Recently, Erfanian et al. [7] using the centralizers of finite groups, computed
the commutativity degree or commuting probability of n-th power of a ran-
dom element in the group which is denoted by Pn(G) and defined as the ratio
Pn(G) = 1

|G|2 |{(a,b) ∈ G×G : [an,b] = 1}|. This notation can be presented as

Ppm(G) = 1
|G|2 ∑g∈G |CG(gpm

)|, where n = pmk such that gcd(k, p) = 1 and m is
a non-negative integer. The importance of the computation of Pn(G) follows
from this point of view that it is a generalization of commutativity degree P(G)
which was introduced by Erdös and Turan [6] in 1968, and studied by some
authors in deferent contexts [8, 14, 15]. In the recent results of [15], an explicit
formula for Pn(G), where G is a 2-generator p-group of nilpotency class two
is given.

In this paper, we first introduce a family of finite groups denoted by G f

which is covered all finite metacyclic 2-group of negative type in Beuerle’s
classification [3]. Then the size of centralizers and the set of lengths of conju-
gacy classes or conjugate type vector of G f are obtained. The n-th commuta-
tivity degree of such groups is also given as application of the results.

2 Definitions and Counting the Size of Centralizers

In this section, some basic results on the centralizers of elements in the group
G f are stated and proved. These results will be used for calculations in the
subsequent sections. Moreover, a general formula for the size of centralizers
of an arbitrary element in the group G f is provided. For an element x of G, xG

denotes the conjugacy class containing x and |xG| (which is called the index of
x in G) the length of xG. The number ep(n) denotes the largest exponent of p
in n, that is pep(n)|n but pep(n)+1 - n, and ctv(G) considers the set of lengths of
conjugacy classes.

If G is a finite metacyclic p-group , then

G = 〈a,b : apα

= 1,bpβ

= apα−ε

,ab = aλ 〉

for some positive integers α,β ,γ,ε, where λ = pα−γ ±1. The group is called
positive or negative type if λ = pα−γ +1 or λ = pα−γ −1, respectively [3].

Finite metacyclic 2-groups of negative type can be classified as follows:

G f = G(α,β ,γ,ε) = 〈a,b : a2α

= 1,b2β

= a2α−ε

,ab = a2α−γ−1〉, (1)
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where α− γ ≥ 2 and γ > 0. In this case, we have the following computations
which are needed for the future reference.
If aib j and asbt ∈ G f , then aib jasbt = ai+sλ j

b j+t , and

(aib j)k = ai(1+λ j+···+λ (k−1) j)bk j = ai 1−λk j

1−λ j bk j, (2)

for each 1≤ i,s≤ 2α and 1≤ j, t ≤ 2β . Moreover, (aib j)asbt
= aλ t(i+s−sλ j)b j.

Hence, the centralizer of aib j in G f is

CG f (a
ib j) = {asbt : 1≤ s≤ 2α ,1≤ t ≤ 2β ,s(1−λ

j)λ t 2α

≡ i(1−λ
t)}. (3)

From the considerations above we have the following results.

Lemma 2.1. Let G f = 〈a,b : a2α

= 1,b2β

= a2α−ε

,ab = a2α−γ−1〉, where α −
γ ≥ 2. Then Z(G f ) = 〈a2α−1

,b2γ 〉. If λ = 2α−γ − 1, then for each natural
number k, we have

e2(1−λ
k) =

{
α− γ + e2(k), k even,
1, k odd.

Proof. Let k = 2e2(k)k′ for each natural number k, where k
′
is odd. Then

1−λ
k = 1− (−1+2α−γ)k

= 1− (−1)k +2α−γ+e2(k)
(

k′− k′(k−1)
2

2α−γ + · · ·± k
′
(k−1)!

k!
2(α−γ) j

)
= 1− (−1)k +2α−γ+e2(k)`,

for some integer `. Now if k is even, then 1− λ k = 2α−γ+e2(k)` and e2(1−
λ k) = α−γ +e2(k). If k is odd, then 1−λ k = 2+2α−γ+e2(k)`1 = 2`2 for some
integers `1 and `2, hence e2(1−λ k) = 1. �

Lemma 2.2. Let G f = 〈a,b : a2α

= 1,b2β

= a2α−ε

,ab = a2α−γ−1〉, where α −
γ ≥ 2. If λ = 2α−γ −1, then asbt ∈CG f (a

ib j) if and only if

(i) 2e2( j)+e2(s)+α−γs′l jλ
t 2α

≡ 2e2(i)+e2(t)+α−γ i′lt if j and t are even,

(ii) 2e2( j)+e2(s)+α−γs′l jλ
t 2α

≡ 2e2(i)+1i′lt if j is even and t is odd,
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(iii) 2e2(s)+1s′l jλ
t 2α

≡ 2e2(i)+e2(t)+α−γ i′lt if j is odd and t is even,

(iv) 2e2(s)+1s′l jλ
t 2α

≡ 2e2(i)+1i′lt if j and t are odd,

where i
′
,s
′
, l j, lt ,λ t are odd positive integers and 1≤ i,s≤ 2α and 1≤ j, t ≤ 2β .

Proof. To prove (i), suppose k = 2e2(k)k′ for each natural number k. Then
1−λ k = 2e2(1−λ k)lk where lk is an odd number. In Equation 3 for each asbt ∈
CG f (a

ib j), s(1−λ j)λ t 2α

≡ i(1−λ t). Thus 2e2(s)s′2e2(1−λ j)l jλ
t 2α

≡ 2e2(i)i′2e2(1−λ t)lt ,
where s

′
, l j,λ

t , i
′
, lt are odd positive integers. Now if j and t are even, then us-

ing Lemma 2.1, 2e2( j)+e2(s)+α−γ l js′λ t 2α

≡ 2e2(i)+e2(t)+α−γ i′lt . A similar method
can be used to prove another parts and we omit it here. �

In the following two theorems we compute the size of centralizers of an
arbitrary element in the groups G f . This process also provides a count for
each conjugacy class sizes.

We treat each case of Lemma 2.2 to obtain the size of centralizers of ele-
ments of the groups G f .

Theorem 2.3. Let G f be a group of the form G f = 〈a,b : a2α

= 1,b2β

=

a2α−ε

,ab = a2α−γ−1〉 where α − γ ≥ 2. Then the size of the centralizer of a
non-central element g = aib j of G f for which 1≤ i≤ 2α and 1≤ j ≤ 2β is

(1) 2α+β−γ+e2(i), if j is even, e2( j)≥ γ and e2(i)< γ ,

(2) 2α+β−γ+e2( j), if j is even and either e2(i) ≥ α − 1 or (e2(i)− e2( j) ≥
α− γ−1 and e2(i)≥ γ),

(3) 2α+β−γ+e2( j)−1, if j is even, e2(i)≥ γ , e2(i)< α−1 and e2(i)−e2( j)<
α− γ−1,

(4) 2α+β−γ+e2( j), if j is even, e2( j)≤ e2(i)< γ and e2(i)−e2( j)≥α−γ−1,

(5) 2α+β−γ+e2( j)−1, if j is even, e2( j) ≤ e2(i) < γ and e2(i)− e2( j) < α −
γ−1,

(6) 2α+β−γ+e2(i), if j is even and e2(i)< e2( j)< γ ,

(7) 2β+1, if j is odd.
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Proof. To obtain the size of centralizers of elements of G f , we proceed in
some cases. We let asbt ∈CG f (a

ib j) such that 1≤ s≤ 2α and 1≤ t ≤ 2β .
(a) First we suppose that e2(i)≥ γ. Thus we have the following cases:

(a.1) If j, t are even, then using Lemma 2.2, γ− e2( j)≤ e2(s)≤ α and the
number of such cases is

2β−1
(

1+
α−1

∑
e2(s)=γ−e2( j)

ϕ(2α−e2(s))
)
= 2β−1

(
1+2α−γ+e2( j)−1 + · · ·+1

)
= 2α+β−γ+e2( j)−1.

(a.2) If j is even and t is odd, then we have two cases. If e2(i)≥ α−1, then
γ− e2( j)≤ e2(s)≤ α and the number of such cases is

2β−1
(

1+
α−1

∑
e2(s)=γ−e2( j)

ϕ(2α−e2(s))
)
= 2α+β−γ+e2( j)−1,

and if e2(i)< α−1, then e2(s) = e2(i)−e2( j)+1+ γ−α ≥ 0, which implies
that e2(i)− e2( j)≥ α− γ−1. The number of such cases is

2β−1 ·2α−γ+e2( j) = 2α+β−γ+e2( j)−1.

(a.3) If j is odd and t is even, then e2(s) ≥ α − 1 and the number of these
cases is

2β−1(1+1) = 2β .

(a.4) If j, t are odd, then we have two cases. If e2(i) ≥ α − 1, then e2(s) ≥
α−1 and the number of such cases is 2β−1(1+1) = 2β , and if e2(i)< α−1

and s = 2e2(s)s′, then e2(s) = e2(i). It follows that s′
2α−e2( j)−1

≡ ilt l−1
j λ−t . Thus

s′ = 2α−e2( j)−1x+ ilt l−1
j λ−t , and hence 1 ≤ x ≤ 2. Therefore the number of

these cases is 2β−1 ·2= 2β . Applying the above results, we obtain |CG(aib j)|=
2α+β−γ+e2( j), j is even and (e2(i)≥ α−1 or e2(i)− e2( j)≥ α− γ−1),
2α+β−γ+e2( j)−1, j is even and e2(i)< α−1 and e2(i)− e2( j)< α− γ−1),
2β+1, j is odd.

(b) Next, suppose that e2( j) ≥ γ and e2(i) < γ . In this case, j is even. If t is
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even, then γ− e2(i)≤ e2(t)≤ β and the number of such cases is

2α

(
1+

β−1

∑
e2(t)=γ−e2(i)

ϕ(2β−e2(t))
)
= 2α+β−γ+e2(i).

If t is odd, then e2(i)≥ α−1 > γ , which is impossible. Therefore,

|CG(aib j)|= 2α+β−γ+e2(i).

(c) Now, we assume that e2(i),e2( j) < γ and j is even. If e2(i) ≥ e2( j), then we have
the following two cases:

(c.1) If t is even, then either 1≤ e2(t)< γ−e2(i) or γ−e2(i)≤ e2(t)≤ β .
In the former,

e2( j)+ e2(s)+α− γ = e2(i)+ e2(t)+α− γ,

which implies that e2(s) = e2(i)− e2( j) + e2(t). Let s = 2e2(s)s′. Then we

have s′
2γ−e2( j)−e2(s)

≡ i′lt l−1
j λ−t , and hence s′ = 2γ−e2( j)−e2(s)x+ i′lt l−1

j λ−t . Thus
1≤ x≤ 2α−γ+e2( j) and the number of such cases is

γ−e2(i)−1

∑
e2(t)=1

ϕ(2β−e2(t)) ·2α−γ+e2( j) = 2α+β−2γ+e2(i)+e2( j)(2γ−e2(i)−1−1).

In the latter, γ− e2( j)≤ e2(s)≤ α and the number of such cases is

(
1+

β−1

∑
e2(t)=γ−e2(i)

ϕ(2β−e2(t))
)(

1+
α−1

∑
e2(s)=γ−e2( j)

ϕ(2α−e2(s))
)
= 2α+β−2γ+e2(i)+e2( j).

(c.2) If t is odd, then e2(s) = e2(i)− e2( j)+1+ γ−α ≥ 0, which implies that
e2(i)− e2( j) ≥ α − γ − 1. The number of such cases is 2β−1 · 2α−γ+e2( j) =
2α+β−γ+e2( j)−1. Utilizing the above results we have

|CG(aib j)|=

{
2α+β−γ+e2( j)−1, e2(i)− e2( j)< α− γ−1,
2α+β−γ+e2( j), e2(i)− e2( j)≥ α− γ−1.

Now consider the case that e2(i)< e2( j). We have two possibilities.
(c.3) If t is even, then either 1≤ e2(t)< γ−e2(i) or γ−e2(i)≤ e2(t)≤ β .

In the former, e2(s) = e2(i)− e2( j) + e2(t) ≥ 0, which implies that e2( j)−
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e2(i) ≤ e2(t) < γ − e2(i). Let s = 2e2(s)s′. Then s′
2γ−e2( j)−e2(s)

≡ i′lt l−1
j λ−t . This

gives s′= 2γ−e2( j)−e2(s)x+ i′lt l−1
j λ−t . Hence 1≤ x≤ 2α−γ+e2( j) and the number

of such cases is
γ−e2(i)−1

∑
e2(t)=e2( j)−e2(i)

ϕ(2β−e2(t)) ·2α−γ+e2( j) = 2α+β−2γ+e2(i)+e2( j)(2γ−e2( j)−1).

In the latter, γ− e2(i)≤ e2(s)≤ α and the number of such cases is(
1+

β−1

∑
e2(t)=γ−e2(i)

ϕ(2β−e2(t))
)(

1+
α−1

∑
e2(s)=γ−e2( j)

ϕ(2α−e2(s))
)
= 2α+β−2γ+e2(i)+e2( j).

(c.4) If t is odd, then e2(s) = e2(i)−e2( j)+1+γ−α < 0, which is impossible.
Therefore |CG(aib j)|= 2α+β−γ+e2(i).

(d) Finally, consider the case e2(i),e2( j)< γ and j is odd. Thus we deal with two
cases.

(d.1) t is even. If e2(s)≥ α−1, then γ−e2(i)≤ e2(t)≤ β and the number
of such cases is

2
(

1+
β−1

∑
e2(t)=γ−e2(i)

ϕ(2β−e2(t))
)
= 2β−γ+e2(i)+1.

Also, if e2(s) < α − 1, then e2(s) = e2(i)+ e2(t)+α − γ − 1 < α − 1, which
implies that 1 ≤ e2(t) < γ − e2(i). Let s = 2e2(s)s′. Then s′ = 2α−e2(s)−1x+
i′lt l−1

j λ−t , from which it follows that 1 ≤ x ≤ 2. Hence the number of such
cases is

2
( γ−e2(i)−1

∑
e2(t)=1

ϕ(2β−e2(t))
)
= 2β−γ+e2(i)+1(2γ−e2(i)−1−1).

(d.2) t is odd. If e2(s) ≥ α − 1, then e2(i) ≥ α − 1, which is a contradiction.
Thus e2(s) < α − 1, which implies that e2(s) = e2(i). Let s = 2e2(s)s′. Then
s′ = 2α−e2(s)−1x + i′lt l−1

j λ−t , from which it follows that 1 ≤ x ≤ 2. Hence
the number of such cases is 2 · 2β−1 = 2β . Therefore, |CG(aib j)| = 2β+1, as
claimed. �

The following corollary is a direct consequence of Theorem 2.3 to obtain
the set of lengths of conjugacy classes of G f , ctv(G f ).

Corollary 2.4. If G f is the group in the Equation (1), then

ctv(G f ) = {1,2,22, . . . ,2γ ,2α−1}.
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3 n-th Commutativity Degrees

In this section, the n-th commutativity degrees of the groups G f are computed.
If G f is a 2-group and aib j ∈ G f , then

aimb jm = (aib j)2m
= ai(1+λ j+···+λ (2m−1) j)b2m j = ai 1−λ2m j

1−λ j b2m j. (4)

Thus, e2(im) = e2

(
i 1−λ pm j

1−λ j

)
. It is easy to show that Pn(G f ) = P2m(G f ), where

n = 2m.n̄ such that gcd(2, n̄) = 1. Thus Pn(G f ) = P2e2(n)(G f ), in what follows
we assume that n = 2m is a prime power. Now, we compute the n-th commu-
tativity degree, P2m(G f ) of groups in Equation (1).

Theorem 3.1. Let G f be a group of the form G f = 〈a,b : a2α

= 1,b2β

=

a2α−ε

,ab = a2α−γ−1〉, where α − γ ≥ 2. Then the n-th commutativity degree
of G f is given by:

Pn(G f ) = P2m(G f ) =


3

2α+1 +
3

2γ+2 − 1
22γ+1 , m = 0,

5
2γ−m+2 +

1
2α−m+1 − 1

22γ−2m+1 , 1≤ m < γ,
3
4 +

1
2α−m+1 , γ ≤ m < α−1,

1, m≥ α−1.

Proof. The situation is different for m = 0, 1 ≤ m < γ , γ ≤ m < α − 1 and
m ≥ α − 1. We will deal with each case separately. In what follows, the
notation (k) stands for those elements aib j of G f , which appear in the k-th
condition in Theorem 2.3, where 1≤ k≤ 7. Also we let e∗2(k) = min{γ,e2(k)}
for each natural number k. Now we consider the three cases:

Case 1. Suppose that m = 0. Then we have

P1(G f ) =
1

22α+2β

[
∑
(1)

+∑
(2)

+∑
(3)

+∑
(4)

+∑
(5)

+∑
(6)

+∑
(7)

]
|CG(aib j)|.
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In the sequel, we compute ∑(k) |CG(aib j)|, k = 1,2, ...,7. We have

∑
(1)
|CG(aib j)|= 2α+β−γ

∑
(1)

2e2(i) = 2α+β−γ ·2β−γ
∑

0≤e2(i)<γ

2e2(i)

= 2α+2β−2γ

(
ϕ(2α)20 + · · ·+ϕ(2α−γ+1)2γ−1

)
= 2α+2β−2γ

(
2α−1 + · · ·+2α−1

)
= 22α+2β−2γ−1

γ.

Summing over (2) and (4) and adding the size of the centralizer of aib j, we
obtain

∑
(2)+(4)

|CG f (a
ib j)|= 2α+β−γ

∑
e2(i)≥α−1 or

1≤e2( j)≤e2(i)+γ+1−α

2e∗2( j)

= 2α+β−γ

[
2 ∑

e2( j)≥1
2e∗2( j)+

α−2

∑
e2(i)=α−γ

e2(i)+γ+1−α

∑
e2( j)=1

2e∗2( j)
]

= 2α+2β−γ
[
γ +1+(γ +1−α)(2γ−1−1)+2α−1−α

−2γ−1(2α−γ −α + γ−1)
]

= 2α+2β−γ ·2γ

= 2α+2β .

Now, the summation of the size of the centralizers of an arbitrary element
aib j ∈ G f over the conditions of (6) is computed as follows:

∑
(6)
|CG f (a

ib j)|= 2α+β−γ
∑

0≤e2(i)<e2( j)<γ

2e2(i)

= 2α+β−γ

γ−2

∑
s=0

2s
ϕ(2α−s)(2β−s−1−2β−γ)

= 22α+2β−2γ−1(2γ − γ−1).
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Next, for Cases (3) and (5) we have the following computations:

∑
(3)+(5)

|CG f (a
ib j)|= 2α+β−γ−1

[
∑

γ≤e2(i)<α−1
γ<e2( j)≤β

2e∗2( j)+
γ

∑
e2( j)=1

e2( j)+α−γ−2

∑
e2(i)=e2( j)

2e∗2( j)
]

= 2α+β−γ−1
[
2γ ·2β−γ−1(2α−γ −2)

+
γ

∑
s=1

2s
ϕ(2β−s)(2α−s−2γ+1−s)

]
= 22α+2β−γ−2−2α+2β−1.

Finally, for Case (7) we have the following:

∑
(7)
|CG f (a

ib j)|= 2β+1 ·2β−1 ·2α = 2α+2β .

Therefore, from the computations above the commutativity degree of G f in the
case m = 0 is

P1(G f ) =
3

2α+1 +
3

2γ+2 −
1

22γ+1 .

Case 2. If m≥ 1, then we have

e2(im) =

{
e2(i)+m, j even,
e2(i)+α− γ−1+m, j odd.

First we consider the case where m≥ γ . Then e2(im),e2( jm)≥ m≥ γ .
If m≥ α−1, then

P2m(G f ) = 1.

If γ ≤ m < α − 1, then we have two cases. Note that, as e2(im) ≥ γ only
conditions (2) and (3) can hold for aimb jm .

First suppose that (2) holds. If j is even, then e2(im) = e2(i) + m. If
e2(im)≥ α−1, then e2(i)≥ α−m−1 and the sum of the size of centralizers
of such elements is

∑
j even

e2(i)≥α−m−1

2α+β−γ+e∗2( jm) = 2α+β ·2β−1 ·2m+1 = 2α+2β+m.
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Also if e2(im)−e2( jm)≥α−γ−1, then e2(i)≥α−γ−1+e2( j)≥α−m−1,
which is already considered in the previous case.

If j is odd, then e2( j) = 0. If e2(im)− e2( jm) ≥ α − γ − 1, then e2(im) ≥
α−γ−1+e2( jm)≥ α−1. Thus e2(i)+α−γ−1+m≥ α−1 and it follows
that e2(i)≥ γ−m. Thus the sum over the sizes of centralizers of such elements
is

∑
j odd

1≤i<2α

2α+β−γ+e∗2( jm) = 2α+β ·2β−1 ·2α = 22α+2β−1.

If e2(im)≥ α−1, then e2(i)≥ γ−m and this is exactly the previous case.
Now suppose that (3) holds. If j is even, then as e2(im)< α−1, we obtain

e2(i) < α −m− 1. Also from e2(im)− e2( jm) < α − γ − 1, it follows that
e2(im) < α − γ − 1+ e2( jm). This gives e2(i) +m < α − γ − 1+ e2( j) +m
which implies e2(i)< α− γ−1+e2( j), and hence the sum over such cases is

∑
j even

0≤e2(i)<α−m−1

2α+β−γ+e∗2( jm)−1 = 2α+β−1 ·2β−1 ·
(

ϕ(2α)+ · · ·+ϕ(2m+2)
)

= 2α+2β+m−1(2α−m−1−1).

On the other hand, if j is odd, then from e2(im)< α−1 it follows that e2(i)+
α− γ−1+m < α−1. Thus e2(i)< γ−m≤ 0, which is impossible. Now, by
using the above results, we obtain

P2m(G f ) =
1

22α+2β

[
2α+2β+m +22α+2β−1 +2α+2β+m−1(2α−m−1−1)

]
=

1
22α+2β

[
2α+2β+m +22α+2β−1 +22α+2β−2−2α+2β+m−1

]
.

Therefore,

P2m(G f ) =
3
4
+

1
2α−m+1 .

Case 3. Now we consider the last case. Suppose that 1 ≤ m < γ . In what
follows, (k′) and (k′′) stand for the set of all elements aib j in condition (k) in
such a way that j is even and odd, respectively. First suppose that j is even.



12 K. MORADIPOUR

Using similar computation as before we have,

∑
(1′)
|CG f (a

imb jm)|= 2α+β−γ
∑
(1)

2e2(im) = 2α+β−γ ·2β−γ+m
∑

0≤e2(i)<γ−m
2e2(i)+m

= 2α+2β−2γ+2m
(

ϕ(2α)20 + · · ·+ϕ(2α−γ+m+1)2γ−m−1
)

= 22α+2β−2γ+2m−1(γ−m).

Next, summing the size of the centralizers of aimb jm over conditions (2
′
) and

(4
′
) yield:

∑
(2′)+(4′)

|CG f (a
imb jm)|=2α+β−γ

∑
(2′)+(4′)

2e∗2( jm)

=2α+β−γ

[
2m+1

β

∑
e2( j)=1

2e∗2( jm)+
α−2−m

∑
e2(i)=α−γ

e2(i)+γ+1−α

∑
e2( j)=1

2e∗2( jm)
]

=2α+2β−γ+m[2m(γ−m+1)+(γ +1−α)2m(2γ−m−1−1)

+2m(2α−m−1−α +m)−2γ−1(2α−γ −α + γ−1)]

=2α+2β+m.

Summing over (6
′
) we have the following identities:

∑
(6′)
|CG f (a

imb jm)|= 2α+β−γ
∑

0≤e2(im)<e2( jm)<γ

2e2(im)

= 2α+β−γ+m ·2α−1
(

2β−1
γ−m−2

∑
s=0

1
2s −2β−γ+m(γ−m−1)

)
= 22α+2β−2γ+2m−1(2γ−m− (γ−m+1)).

Next, we sum over condition (3
′
) and (5

′
) for the size of the centralizers of
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each element of the form aimb jm in G f :

∑
(3′)+(5′)

|CG f (a
imb jm)|= 2α+β−γ−1

[
∑

γ≤e2(im)<α−1
γ<e2( jm)

2e∗2( jm)

+
γ

∑
e2( jm)=1

e2( jm)+α−γ−2

∑
e2(im)=e2( jm)

2e∗2( jm)
]

= 2α+β−γ−1
[
2β+2m(2α−γ−1−1)

+
γ−m

∑
s=1

2β+m−1(2α−s−2γ+1−s)
]

= 2α+2β+m−1(2α−γ−1−1).

In the last case we obtain ∑(7′) |CG f (a
imb jm)| = 0. Finally, if j is odd then

e2( j) = 0 that is e2( jm) =m< γ . We have the following sums over (1
′′
)−(7′′) :

∑(1′′) |CG f (a
imb jm)| = 0, ∑(6′′) |CG f (a

imb jm)| = 0, ∑(3′′)+(5′′) |CG(aimb jm)| = 0
and ∑(7′′) |CG f (a

imb jm)|= 0. Similarly, summing over (2′′) and (4′′) yields:

∑
(2′′)+(4′′)

|CG f (a
imb jm)|= 2α+β−γ+m

∑
e2( jm)≥α−1 or

1≤e2( jm)≤e2(im)+γ+1−α

1

= 2α+β−γ+m
[

∑
e2( j)=0

∑
e2(im)≥α−1

1

+
α−2

∑
e2(im)=α−γ

e2(im)+γ+1−α

∑
e2( jm)=1

1
]

= 2α+β−γ+m
[
2α+β−γ+m−1 +2β−1

(
ϕ(2α)+ · · ·

+ϕ(2α−γ+m+1)
)]

= 22α+2β−γ+m−1.

Thus, the 2m-th commutativity degree of G f in the case 1≤ m < γ is

P2m(G f ) =
5

2γ−m+2 +
1

2γ−m+1 −
1

22γ−2m+1 .

Hence, concerning the above computations the result holds. �
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