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Abstract. In this paper, we first introduce a class of finite group Gy which is
covered all finite metacyclic 2-groups of negative type in Beuelre’s classifica-
tion. Next, we obtain the size of centralizers and also conjugate type vector of
the groups. Finally, the n-th commutativity degree of G is obtained as a direct
application of the results.
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1 Introduction

The importance of conjugacy classes in the structure of finite groups was iden-
tified in the study of groups. Some results about the relation between conju-
gate type vector of a finite group G and nilpotency of the group, and also the
conjugacy class sizes and solvability of G were investigated [4, 5, 9, 10, 16].
Moreover, there are some works which have considered the influence of con-
jugacy class sizes on the prime power groups. We do not mention these re-
sults here, but the reader may refer to [1, 2, 11, 16, 18]. For instance, Ashrafi
[17] computed the number of distinct centralizers of some finite groups and
examined the structure of the groups with precisely six distinct centralizers.
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Recently, Erfanian er al. [7] using the centralizers of finite groups, computed
the commutativity degree or commuting probability of n-th power of a ran-
dom element in the group which is denoted by P,(G) and defined as the ratio
P,(G) = ﬁ|{(a,b) € Gx G [a",b] = 1}|. This notation can be presented as
Py (G) = ﬁ Yecc|Co(g”")|, where n = p™k such that ged(k, p) = 1 and m is
a non-negative integer. The importance of the computation of P,(G) follows
from this point of view that it is a generalization of commutativity degree P(G)
which was introduced by Erd6s and Turan [6] in 1968, and studied by some
authors in deferent contexts [8, 14, 15]. In the recent results of [15], an explicit
formula for P,(G), where G is a 2-generator p-group of nilpotency class two
is given.

In this paper, we first introduce a family of finite groups denoted by Gy
which is covered all finite metacyclic 2-group of negative type in Beuerle’s
classification [3]. Then the size of centralizers and the set of lengths of conju-
gacy classes or conjugate type vector of G are obtained. The n-th commuta-
tivity degree of such groups is also given as application of the results.

2 Definitions and Counting the Size of Centralizers

In this section, some basic results on the centralizers of elements in the group
Gy are stated and proved. These results will be used for calculations in the
subsequent sections. Moreover, a general formula for the size of centralizers
of an arbitrary element in the group Gy is provided. For an element x of G, x¢
denotes the conjugacy class containing x and |x¢| (which is called the index of
x in G) the length of x°. The number e »(n) denotes the largest exponent of p
in n, that is p® " |n but p™+1 { n_ and ctv(G) considers the set of lengths of
conjugacy classes.
If G is a finite metacyclic p-group , then

G={ab: a’” = l,bpﬁ =a"" " :al)

for some positive integers «, 3,7, €, where A = p*~ 7+ 1. The group is called
positive or negative type if A = p®* "+ 1or A = p* ¥ — 1, respectively [3].
Finite metacyclic 2-groups of negative type can be classified as follows:

Za—s

Gf:G(a,ﬁ,y,e):<a,b:a2azl,bzﬁ:a ,ab:aza_y_1>, (D



THE LENGTH OF CENTRALIZERS AND CONJUGATE TYPE ...

where & —y > 2 and y > 0. In this case, we have the following computations
which are needed for the future reference.
If d’b’ and a’b' € Gy, then a'b/a’b’ = a4 b/* and

o . ; ERTPN 12kl
(azb])k :az(1+l/+'~~+l(" l)-’)bk] :almbkj’ )

foreach 1 <i,s <2%and 1 < j,+ < 2P. Moreover, (a'b/)*?" = g*'(its=sA)pi,
Hence, the centralizer of a’b’ in G 18
.. . 2a
Co,(db))={a'b' :1<s<2% 1<t <2P s(1-ANA =i(1-A")}. (3)
From the considerations above we have the following results.

Lemma 2.1. Let Gy = {(a,b:a* = 1,67 = ab = a1, where o —
y > 2. Then Z(Gy) = (@' b¥). If A = 2%V — 1, then for each natural
number k, we have

o—7y+ex(k), keven,
el =25 = {1 k odd

Proof. Let k = 220/ for each natural number k, where k is odd. Then
1-AF=1— (1420t

Mga—7+...i k,(k_l)!z(a—?/)j)

—1— (—l)k +2(X—Y+ez(k) (k/ _ > .

—1— (—l)k +2a—7+e2(k)£,

for some integer /. Now if k is even, then 1 — A% = 20~ 7+e(K)¢ and ey(1 —
AK) = o —y+ey(k). If kis odd, then 1 — A% = 24 20-rtelkly, =20, for some
integers /1 and /5, hence e (1 —AK) =1. [

Lemma 2.2. Let Gy = (a,b:a*" = 1,0 =" ab = a1, where o —
Y>2 If A =2%7Y—1, then a’b' € Cg,(a'b’) if and only if
(i) 202U)res)ta=yg] a1 z 202+ +a=v] if i and t are even,

(i) 2e2()Fels)ra=vg) Q0 z 22211 if jis even and t is odd,
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(iii) 2¢20)+1s']; At E pealite()rayy I, if j is odd and t is even,

(iv) 226+, A1 E e+ i'l, if j and t are odd,
wherei s, lj,l;, A" are odd positive integers and 1 <i,s <2% and 1 < j,t < 28.

Proof. To prove (i), suppose k = 220k’ for each natural number k. Then
1 — Ak = pea1-2F )lk where I is an odd number. In Equatlon 3 for each a’b’ €
Cg,(a'b?), s(1 A E 1(1 — A"). Thus 2¢2()g/2e2(1-2), At E geali) 14
where s/, 1, AL, i/, l; are odd positive integers. Now if j and ¢ are even, then us-
ing Lemma 2.1, 2¢2()+ex(s) a7y 31 £ g e +a=717], A similar method
can be used to prove another parts and we omit it here. [

In the following two theorems we compute the size of centralizers of an
arbitrary element in the groups G. This process also provides a count for
each conjugacy class sizes.

We treat each case of Lemma 2.2 to obtain the size of centralizers of ele-
ments of the groups Gy.

Theorem 2.3. Let Gy be a group of the form Gy = (a,b : " = 1,b2ﬁ =

% ab = a® 1) where oo —y > 2. Then the size of the centralizer of a

non-central element g = a'b’ of Gy for which 1 <i<2%and1< j< 2B is
(1) 20+B-r+e) i j is even, ey(j) > v and ey (i) < 7,

(2) 20+B=v+e()) if j is even and either e;(i) > o — 1 or (e (i) —ej) >
o—y—1andey(i) > y),

(3) 20+B-rtea()=1 if jis even, ey(i) > 7, ea(i) < o — 1 and ey (i) — e2(j) <
a—vy—1,

(4) 20+B-vte)) if jiseven, ey(j) < ey(i) < yand es (i) —er(j) > a—y—1,

(5) 20+B-rtea()=1 " if j is even, e5(j) < ea(i) < v and ex(i) — ez(j) < ot —
’}/_ 1)

(6) 29tB-rte() if jis even and ex(i) <exj) <7

(7) 2B+1 if jis odd.
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Proof. To obtain the size of centralizers of elements of G, we proceed in
some cases. We let b’ € Cg, (a'b/) such that 1 <5 <2%and 1 < < 2P.
(a) First we suppose that e, (i) > 7. Thus we have the following cases:

(a.1) If j,t are even, then using Lemma 2.2, y—e»(j) < ex(s) < a and the
number of such cases is

a—1
2[371(1_‘_ Z (p(za—ez(s))> :2[3—1(1+2a—y+e2(j)fl+._.+])
ex(s)=r—e2(j)
— patp-rte(j)-1

(a.2) If j is even and ¢ is odd, then we have two cases. If e;(i) > a — 1, then
Y—e2(j) < ea(s) < o and the number of such cases is

1
ex(s)=r—e2(J)

and if e2(i) < ¢ — 1, then e2(s) = ez(i) — e2(j) + 1 +y— o« > 0, which implies
that e (i) — e2(j) > a — y— 1. The number of such cases is

2B—1 po—y+er(j) — pa+p—r+er(j)—1

(a.3) If j is odd and 7 is even, then e;(s) > a — 1 and the number of these
cases is

2611 41) =2P.

(a.4) If j,t are odd, then we have two cases. If e;(i) > a — 1, then e (s) >
o — 1 and the number of such cases is 28~ 1(1+1) =28, and if 2 (i) < o — 1

a—ep(j)—

1
and s = 220)s’, then e)(s) = e5(i). It follows that s’ 2 iltlj_lk_’. Thus
s = 20—e()-1y 4 il,l]ll*t, and hence 1 < x < 2. Therefore the number of
these cases is 26~1.2 = 2B Applying the above results, we obtain |Cs(a'b/)| =

204B=rte2()) - jisevenand (ex(i) > a— 1 ores(i) —ex(j) > a—y—1),
204F=rre2()=1  jiseven and ey(i) < o — 1 and e (i) —ex(j) < @ —y—1),
2B+ j is odd.

(b) Next, suppose that e>(j) > v and e2(i) < 7. In this case, j is even. If 7 is
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even, then Y — ex(i) < ex(¢) < B and the number of such cases is
B-1

2a (1 + Z (p<2ﬁ*€2(f))> — po+B-rtex(i)
ex(t)=y=ex(i)

If ¢ is odd, then e, (i) > a — 1 > ¥, which is impossible. Therefore,
|C(;(aibj)| — potf-rteri)

(c) Now, we assume that e;(i),ex(j) < vy and j is even. If e;(i) > ex(j), then we have
the following two cases:
(c.1) Ifz is even, then either 1 < ep(t) < y—ex(i) or y—ex(i) <ex(t) < B.
In the former,

ex(j)+exs) ta—y=exi)+ext) +a—,

which implies that es(s) = e5(i) — e2(j) + e2(t). Let s = 2©20)s’. Then we

/2y782(j)762(s) 7 7—119 — / —es(j)— 7 7—119 —
have s = i'll; A~", and hence s/ = 27—2(/) eZ(S)x—i—zl,lj At Thus

1 < x < 29=71+te() and the number of such cases is
Y-ea(i)-1 . N .
Z (p(zﬁ—ez(f)) .pe=rter()) — pa+B-2y+ex(i)+e2()) (27—62(1)—1 —1).

62(1)21
In the latter, ¥ — e2(j) < e2(s) < o and the number of such cases is

B-1 a—1
(1 + Z (p(zﬁfez(t))> (1 + Z (P(zocfez(s))> — patB2ytei)te())
ex(1)=r—ea(i) er(s)=y—ea(j)

(c.2) If ¢ is odd, then ex(s) = e2(i) —ea(j) + 1+ y— o > 0, which implies that

es(i) —ex(j) > a—y— 1. The number of such cases is 281 .20~ 1+e2()) =
20+B=r+e2()=1_Utilizing the above results we have

o pa+p—rter(j)—1 N—er(i)<o—y—1

|CG(albj)’ _ o 62(1) 82(]) Y ,
p04B-rte())  es(i) —ep(j) > aa—y—1.

Now consider the case that e;(i) < ex(j). We have two possibilities.

(c.3) If ¢ is even, then either 1 < ey () < y—e2(i) or y—e2(i) <ex(r) < B.
In the former, ex(s) = ex(i) — e2(j) + ea(t) > 0, which implies that ex(j) —
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, 2vr—ex(j)—ex(s

)
ex(i) < ea(t) < y—en(i). Let s =290)s'. Then s = i’l,l;ll*t. This
gives s’ =212l —e2(s)x 4 / l,lj’lkf’ .Hence 1 < x < 29%-7+e2(j) and the number
of such cases is

r—e(i)—1
22" @28~y pa-rte()) — gatp-2rte(itel) gr-el) 1),

ex(t)=ex(j)—ea(i)
In the latter, ¥ — e2(i) < ez(s) < o and the number of such cases is

B-1 a—1

1+ Z (p(zﬁfez(t))> (1 + Z (P(zafez(s))> — patB2ytei)te())

ex(t)=y—es (i) ex(s)=ry—e2(J)
(c.4)Iftisodd, then ey (s) = ea(i) —ea(j) + 1 +y— o < 0, which is impossible.
Therefore |Cg(a'b/)| = 2% FB-1+e2(i),
(d) Finally, consider the case e(i),e2(j) < v and j is odd. Thus we deal with two
cases.
(d.1)ziseven. If ex(s) > o — 1, then y— (i) < ep(¢) < B and the number
of such cases is
B—1
2(1+ Z (p(zﬁ—ez(f))) — oB-rter(i)+1
ex(t)=y—ex(i)
Also, if ex(s) < oo — 1, then ex(s) = ex(i) +ex(t) + ¢ —y—1 < v — 1, which
implies that 1 < ey(r) < y—es(i). Let s =2%0)g. Then s’ = 2% ()~ 1x 4
i’ ltljll*t, from which it follows that 1 < x < 2. Hence the number of such
cases is

y—ex(i)—1
2( y (p(zﬁ—ez(t))) = 2B-rrel)l(grad-1 1),
ex(t)=1

(d.2) r is odd. If ex(s) > o — 1, then e (i) > a — 1, which is a contradiction.
Thus e»(s) < & — 1, which implies that e(s) = ex(i). Let s = 2©2()s’. Then
s =0—es)=1y 4 i’ltlj_ll_’, from which it follows that 1 < x < 2. Hence
the number of such cases is 2-28~! = 2P, Therefore, |Cs(a'b/)| = 2P+1, as
claimed. O

The following corollary is a direct consequence of Theorem 2.3 to obtain

the set of lengths of conjugacy classes of G, ctv(Gy).

Corollary 2.4. If Gy is the group in the Equation (1), then
ctv(Gy) = {1,2,2%,...,27 2% 1},

7
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3 n-th Commutativity Degrees

In this section, the n-th commutativity degrees of the groups G are computed.
If Gy is a 2-group and a'b’ € Gy, then

211‘1j

. . . Am . i m_qyi . s1-A .
anpin = (aib))?" = g HA H AT 2 IS 2" @)

LA /) It is easy to show that P,(Gy) = P (Gy), where

n = 2".71 such that gcd(2,71) = 1. Thus B,(Gf) = Py, (Gy), in what follows
we assume that n = 2™ is a prime power. Now, we compute the n-th commu-
tativity degree, P»n(G ) of groups in Equation (1).

mn
J

Thus, e;(iy) = €2 (i

Theorem 3.1. Let Gy be a group of the form Gy = (a,b : = 1,b2ﬁ =
% ab = a7, where a —y > 2. Then the n-th commutativity degree

of Gy is given by:

3 3 1
20+T + 272 T 221+ m= 0’
5 1 1
=7 t sammT — 57— 1<m<vy
_ _ 2y—m+2 20—m+1 22y—2m+1 = 9
Pn(Gf) _sz(Gf) —3\3 1
Z+2a—m+17 Y§m<06—1,
1, m>o—1.

Proof. The situation is different form =0, 1 <m <7y, y<m< a—1 and
m > o — 1. We will deal with each case separately. In what follows, the
notation (k) stands for those elements a'b’ of Gy, which appear in the k-th
condition in Theorem 2.3, where 1 <k <7. Also we let €5 (k) = min{y,e,(k)}
for each natural number k. Now we consider the three cases:

Case 1. Suppose that m = 0. Then we have

1 -
P(G) = S5ar3p [Z+Z+Z+Z+Z+Z+Z} |Cg(a'b)).
m @ 6 @ 6 © 0
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In the sequel, we compute ¥4 [Cg(a'b’)|, k=1,2,...,7. We have

Z|CG(aibj)‘ — 20!+I3—72262(i) — 2a+l3—y_2/3—y Z 2620)
(1 (1) 0<er () <7

= 204221 (p(29)20 4. 4 (29711 )27

:2a+2672y(2a71+”_+2a71>

— p2042B-2y-1 v.

Summing over (2) and (4) and adding the size of the centralizer of a'b/, we
obtain

Z \ch(a"bf')\:ﬁ*ﬁ*Y Z 2¢3(J)
(2)+(4) ex(i)>a—1 or
I<er(j)<er(i)+r+1-0
a—2 e()ty+l-a
:2a+BfY[2 y 204 ¥} y zez(ﬂ}
ex(f)=1 ex()=a-y e(j)=I1

=29 T [y b1+ (y 1 —a)2V - ) +2%  —a
—2r 2% Y — o+ y—1)]
—a+2B-y oy

— 20l+2ﬁ )

Now, the summation of the size of the centralizers of an arbitrary element
a'bl € G  over the conditions of (6) is computed as follows:

PN CHCLDIES D M
(6) 0<ex(i)<ez(f)<y

y—2

— 20{+ﬁ*}’ Z 2S(p(2067S)(2ﬁ7571 _ 2[37’)/)
s=0

— 22(X+2ﬁ—2y—1 (27_ ,y_ 1)
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Next, for Cases (3) and (5) we have the following computations:

Yy  e(j)ta—r-2

Y, |G, (d'b))| = pa+B—r-1 [ y 260) 4 Yy y 26;(].)]

(3)+(5) y<er(i)<a—1 ex(j)=1 es(i)=e2(})
y<ex(j)<P
_ 2a+ﬁfy71 |:27 . 2[3*?’*1 (20‘*7 _ 2)

Y

+ 2s(p(2ﬁ7S)(2(x7s _274»175)}
s=1

— 220+2B—y-2 _ Ha+2B—1

Finally, for Case (7) we have the following:

Y Ca, (a'bl)| = 2P+1 .21 . 0% — 90428,
(7)

Therefore, from the computations above the commutativity degree of G in the
case m =0 is
3 3 1

Pl(Gf) - Do+l + 272 2y+l”

Case 2. If m > 1, then we have

exlin) = ex(i) +m, j even,
2T (i)t —y—14m, jodd.

First we consider the case where m > y. Then e; (i), e2(jm) > m > Y.
If m> o —1, then

If y<m < a—1, then we have two cases. Note that, as e,(i,,) > v only
conditions (2) and (3) can hold for a’»b/n.

First suppose that (2) holds. If j is even, then e;(iy) = ex(i) + m. If
e2(im) > a— 1, then e;(i) > o« —m — 1 and the sum of the size of centralizers
of such elements is

Z 2a+ﬁ—7’+e§(jm) — 206-‘1-[3 . 2ﬁ—1 A 2m+1 — 20(—0-2[3-‘,—}11'

j even
er(i)>o—m—1
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Alsoif ey (i) —e2(jm) > —y—1,theney(i) > a—y—1+ex(j) >a—m—1,
which is already considered in the previous case.

If j is odd, then ex(j) = 0. If ex(im) — €2(jm) > 0t —y— 1, then e (i) >
o—y—1+ex(jm)>o—1. Thuser(i)+ o« —y—1+m > o — 1 and it follows
that e;(7) > y¥—m. Thus the sum over the sizes of centralizers of such elements
is

Z 20+B—r+e3(jm) — 0+ HB—1 Ha _ H2a+2B-1

j odd
1<i<2%

If e5(i,y) > ot — 1, then ep(i) > y— m and this is exactly the previous case.
Now suppose that (3) holds. If j is even, then as e;(i,,) < @ — 1, we obtain
ex(i) < a—m—1. Also from es(iyy) — e2(jm) < @ —7y— 1, it follows that
ex(im) < ¢ —y—1+4ex(jm). This gives ex(i) +m < o« —y—1+ex(j) +m
which implies e,(i) < @ —y— 1 +e2(j), and hence the sum over such cases is

Yy 2othorraln-l —gatBol gl (<p(2°‘) Foet <p(2’”+2>)
j even
0<ex(i)<a—m—1

_ 2a+2ﬁ+m71 (2tx7m71 i 1)

On the other hand, if j is odd, then from e (i,,) < a — 1 it follows that e, (i) +
oo—y—1+m< a—1.Thus e;(i) < y—m < 0, which is impossible. Now, by
using the above results, we obtain

P (Gy) = 22&126 [2a+2ﬂ+m+22a+2ﬁ—1 o2l (gam—1 _ 1)}
- 22a1+2[3 {2a+2ﬁ+m 420428 —1 | 2a+2B-2 2a+2[3+m—1} ‘
Therefore,

Case 3. Now we consider the last case. Suppose that 1 < m < 7. In what
follows, (k') and (k") stand for the set of all elements a'b/ in condition (k) in
such a way that j is even and odd, respectively. First suppose that j is even.

11



12 K. MORADIPOUR

Using similar computation as before we have,

Z ’CGf (aimbjm)| — 2(X+ﬁ*72 ye2(im) — n@+B=y Hf—y+m Z ea(i)+m
() () 0<ex(i)<y—m
— 2oc+2[372y+2m (QI)(ZO‘)ZO 4t q)(zaf}urmﬂ)z}/fmfl)

_ 22a+2[372y+2m71 (7’ _ m) )

Next, summing the size of the centralizers of a’»b/» over conditions (2') and
(4) yield:

Y [Co,(ambim| =221 Y 2eilin)
(2)+4) (2)+@#)
B o—2—m ex(i)+y+l—o
:206+ny |:2m+1 Z 262(1,,1) + Z
ex(j)= e(i)=a-y e(j)=1
:2a+2ﬁ*7+m[2m(y_m_+_ D+ (y+1-— 05)2’"(27/7’"71 ~1)
+2m2% N g m) =2V 2% — a4y — 1))
—D0+2B+m

ze;u,n)}

Summing over (6 ) we have the following identities:

Z’CG lmb]m |_206+ﬁ Y Z 2¢2(in)
Ofez(im)<62(jm)<y

2 +B—v+ 2 -1 2/371 }:
o m Ao (
s=0

_ 220!+2[3—27+2m—1 (Zy—m _ (,y_m+ 1))

Next, we sum over condition (3’) and (5') for the size of the centralizers of
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each element of the form a'»b’/» in Gy

Y [Cq,(ambim)| =20 TP y 240
(3)+(5) y<es(im)<a—1
')/<€2(jm)
v elnte-r=2
+ Z 292(]m)i|
ez(jm)zl eZ(irn):e2(jlrl)
— 2(X+ﬁ*'}/*l |:2ﬁ+2m(2067’)/71 - l)

y—m
+ Z 2ﬁ+m71 (zocfs o 27/+17s)}

s=1

— 2a+2ﬁ+m71(2a7771 _ 1)

In the last case we obtain Y7 |Cg,(a™b/")| = 0. Finally, if j is odd then
e2(j) =0 that is e;(ji,,) = m < 7. We have the following sums over (1) —(7") :
Z(l”) ‘C(;f(a’mb]m.)’ : 07 2(6//) ’CGJ.(almb]m)‘ = 07 Z(3//)+(5u) ’CG(almb]m)’ =0
and Y71y |Cg,(ab/m)| = 0. Similarly, summing over (2”) and (4") yields:

Y (Colapi =2ty
@)+ e2(jm)>0a—1 or
lgez(jm)gez(l'm)+'}’+1706

— p0+B—y+m Z Z 1
eg(j):Oez(im)zafl

a—2 ez(i,,1)+'}’+1*a
LDV VI
eZ(i»z):a*y eZ(jm):l

— 2a+ﬁ77+m [2064»[’3*’}’4’”1*1 + 2B71 <(P(20t) ..

+ (p(zafy+m+l))]
— 220(4»2[3*’)’4‘11171 )

Thus, the 2™-th commutativity degree of G in the case 1 <m < yis

5 1 1

P (Gy) = 2y—m+2 + yy—m+1  2y—2m+1"

Hence, concerning the above computations the result holds.  [J

13
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