Journal of Mathematical Extension Vol. 16, No. 12, (2022) (7)1-24 URL: https://doi.org/10.30495/JME.2022.2096 ISSN: 1735-8299 Original Research Paper

Some Types of UP-filters in UP-algebras

Z. Parvizi

Shahrekord Branch, Islamic Azad University

S. Motamed^{*}

Bandar Abbas Branch, Islamic Azad University,

F. Khaksar Haghani

Shahrekord Branch, Islamic Azad University

Abstract. In this paper, we defined the notions of normal, prime and nodal UP-filters in UP-algebras and investigated several properties of them. Also, we stated and proved some theorems in order to determine the relationships between this notions and some types of UP-filters in a UP-algebra and by some examples we show that these notions are different.

AMS Subject Classification: 03G25; 13N15 **Keywords and Phrases:** UP-algebra, nodal UP-filter, normal UP-filter, prime UP-filter

1 Introduction

Among many algebraic structures, algebras of logic form important class of algebras. Examples of these are BCK-algebras [5], BCI-algebras [6], BCH-algebras [1], KU-algebras [11], SU-algebras [10] and others. They

Received: July 2021; Accepted: July 2022

^{*}Corresponding Author

2 Z. PARVIZI, S. MOTAMED AND F. KHAKSAR HAGHANI

are strongly connected with logic. For example, BCI-algebras introduced by Iséki [6] in 1966 have connections with BCI-logic being the BCI-system in combinatory logic which has application in the language of functional programming. BCK and BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iséki [5], [6] in 1966 and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Iampan [2] now introduced a new algebraic structure, called a UP-algebra and a concept of UP-ideals, congruences and UP-homomorphisms in UP-algebras, and defined a congruence relation on a UP-algebra and a quotient UP-algebra Somjanta, et al. [12] introduced the notion of UP-filters and discussed the fuzzy set theory of UP-subalgebras, UP-ideals and UP-filters. Kaijae and et al., introduced anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras concepts of UP-algebras. They also introduced the notions of Cartesian product and dot product of fuzzy sets and they discussed the relation between antifuzzy UP-ideals and level subsets of a fuzzy set, [9]. Jun and Iampan introduced the notions of implicative UP-filters, comparative UP-filters and shift UP-filters in a UP-algebra, ([7], [8]).

The objective of this paper is to develop and define new concepts for investigating UP-algebras. This paper motivated by the previous researches on types of UP-filters in UP-algebras, extends the new notions of UP-filters to the UP-algebras. Furthermore, several new properties for implicative UP-filters and shift UP-filters in UP-algebras are obtained. Also, new types of UP-filters in UP-algebras are introduced and several characterizations for them are found. The structure of the paper is as follows: Section 2 is a recall of some definitions and results about UP-algebras that are used in the paper. In section 3, some results in UP-algebra, are obtained. In section 4, many different characterizations and many important properties of comparative UP-filters and implicative UP-filters in UP-algebras, are proved. In section 5, a new UP-filter (normal UP-filter) in UP-algebras are introduced and some basic properties for them are provided. In section 6, a new UP-filter (prime UP-filter) in UP-algebras are introduced. In section 7, a new UP-filter (nodal UP-filter) in UP-algebras are introduced and some properties for them are investigated.

2 Preliminaries

In this section, we recall some definitions, properties and results relative to UP-algebras which will be used in the following.

Definition 2.1. [2] An algebra $X = (X, \cdot, 0)$ of type (2,0) is called a UP-algebra, if it satisfies following conditions, for all $, x, y, z \in X$:

(1) (y ⋅ z) ⋅ ((x ⋅ y) ⋅ (x ⋅ z)) = 0,
(2) 0 ⋅ x = x,
(3) x ⋅ 0 = 0,
(4) if x ⋅ y = 0 = y ⋅ x then x = y.
Define a binary relation ≤ on a UP-algebra X as follows:
(5) x ≤ y if and only if x ⋅ y = 0.

Proposition 2.2. ([2],[3]) In a UP-algebra X, the following assertions are valid, for $a, x, y, z \in X$:

(1) $x \cdot x = 0$, (2) if $x \cdot y = 0$ and $y \cdot z = 0$ then $x \cdot z = 0$, (3) if $x \cdot y = 0$ then $(z \cdot x) \cdot (z \cdot y) = 0$, (4) if $x \cdot y = 0$ then $(y \cdot z) \cdot (x \cdot z) = 0$, (5) $x \cdot (y \cdot x) = 0$, (6) $(y \cdot x) \cdot x = 0$ if and only if $x = y \cdot x$, (7) $x \cdot (y \cdot y) = 0$, (8) $(x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0$, (9) $(((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0$, (10) $((x \cdot y) \cdot z) \cdot (y \cdot z) = 0$, (11) if $x \cdot y = 0$ then $x \cdot (z \cdot y) = 0$, (12) $((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0$, (13) $((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0$.

Definition 2.3. Let X be a UP-algebra.

(1) A subset F of X is called a UP-filter of X, if $0 \in F$ and if $x, x \cdot y \in F$ then $y \in F$, for all $x, y \in X$, [12].

(2) A subset B of X is called a UP-ideal of X, if it satisfies in the following properties:

(i) the constant $0 \in B$, and

(ii) for any $x, y, z \in X$; $x \cdot (y \cdot z) \in B$ and $y \in B$ imply $x \cdot z \in B$, [2].

The set of all UP-filters of a UP-algebra X is denoted by UF(X).

Definition 2.4. [2] Let $X = (X, \cdot, 0)$ be a UP-algebra. A subset S of X is called a UP-subalgebra of X, if the constant 0 of X is in S, and $(S, \cdot, 0)$ itself forms a UP-algebra.

Definition 2.5. A subset F of a UP-algebra X is called

• an implicative UP-filter of X, if $0 \in F$ and for all $x, y, z \in X$, if $x \cdot (y \cdot z) \in F$ and $x \cdot y \in F$ then $x \cdot z \in F$, [7].

• a shift UP-filter of X, if $0 \in F$ and for all $x, y, z \in X$, if $x \cdot (y \cdot z) \in F$ and $x \in F$ then $((z \cdot y) \cdot y) \cdot z \in F$, [8].

• a comparative UP-filter of X, if $x \cdot ((y \cdot z) \cdot y) \in F$ and $x \in F$ then $y \in F$, for $x, y, z \in X$, [8].

Definition 2.6. [7] Let X ba a UP-algebra.

(i) For $a \in X$, $[a) := \{x \in X : a \le x\}$.

(ii) For any subset F of X, $[F] = \bigcap_{F \subseteq G \in UF(X)} G$. Then [F] is the

smallest UP-filter of X containing F.

3 Some New Properties for UP-algebras

In this section, we investigate the structure of UP-algebras. Also, some new results of UP-algebras are obtained.

According to Definition 2.1 and Proposition 2.2:

Lemma 3.1. Let X be a UP-algebra and $a, x, y, z \in X$. Then the following conditions hold:

(1) $y \cdot z \leq (x \cdot y) \cdot (x \cdot z)$, (2) $x \leq 0$, (3) if $x \leq y$ and $y \leq x$ then x = y, (4) $x \leq x$, (5) if $x \leq y$ then $z \cdot x \leq z \cdot y$, (6) if $x \leq y$ then $y \cdot z \leq x \cdot z$, (7) if $x \leq y$ and $y \leq z$ then $x \leq z$, (8) $x \leq y \cdot x$, (9) $y \cdot x \leq x$ if and only if $x = y \cdot x$, (10) $x \leq y \cdot y$, $\begin{array}{ll} (11) \ x \cdot (y \cdot z) \leq x \cdot ((a \cdot y) \cdot (a \cdot z)), \\ (12) \ ((a \cdot x) \cdot (a \cdot y)) \cdot z \leq (x \cdot y) \cdot z, \\ (13) \ (x \cdot y) \cdot z \leq y \cdot z, \\ (14) \ if \ x \leq y \ then \ x \leq z \cdot y, \\ (15) \ (x \cdot y) \cdot z \leq x \cdot (y \cdot z), \\ (16) \ (x \cdot y) \cdot z \leq y \cdot (a \cdot z), \\ (17) \ if \ 0 \leq x \ then \ x = 0, \\ (18) \ x \leq (y \cdot x) \cdot x. \end{array}$

Lemma 3.2. Let X be a UP-algebra and for all $x, y, z \in X$,

(19) $x \cdot (y \cdot z) = y \cdot (x \cdot z).$

Then the following conditions hold:

- $(20) \ y \le (y \cdot x) \cdot x,$
- (21) $x \cdot y \leq ((y \cdot z) \cdot (x \cdot z)).$

Proof. According to condition (19) and Proposition 2.2, $y \cdot ((y \cdot x) \cdot x) = (y \cdot x) \cdot (y \cdot x) = 0$. Therefore $y \leq (y \cdot x) \cdot x$. Similarly according to condition (19) and Definition 2.1,

$$(x \cdot y) \cdot ((y \cdot z) \cdot (x \cdot z)) = (y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0.$$

Therefore $x \cdot y \leq (y \cdot z) \cdot (x \cdot z)$. \Box

The following example shows that the condition (19) in Lemma 3.2 is necessary.

Example 3.3. (1) Let $X = \{a, b, c, 0\}$ be a set with the binary operation \cdot which is given in the following table:

•	0	a	b	c
0	0	a	b	c
a	0	0	a	b
b	0	0		b
c	0	0	0	0

Then $(X, \cdot, 0)$ is a UP-algebra ([8]). Clearly, condition (19) is not hold, since $a \cdot (b \cdot c) \neq b \cdot (a \cdot c)$, and the condition (20) is not hold since $a \not\leq (a \cdot c) \cdot c = b$.

(2) Let $X = \{a, b, c, 0\}$ be a set with the binary operation \cdot which is given in the following table:

•		a	b	c
0	0	$a \\ 0$	b	c
a	0	0	b	c
b	0	0	0	c
c	0	0	a	0

Then $(X, \cdot, 0)$ is a UP-algebra ([7]). Clearly, condition (19) is not hold, since $a \cdot (c \cdot b) \neq c \cdot (a \cdot b)$ and the condition (21) is not hold since $a \cdot c \not\leq (c \cdot b) \cdot (a \cdot b)$.

Lemma 3.4. Let X be a UP-algebra which satisfies in condition (19). Then for all $x, y, z \in X$ the following statements are equivalent :

- (1) $((x \cdot y) \cdot y) \cdot x = y \cdot x$,
- (2) $(x \cdot y) \cdot y = (y \cdot x) \cdot x$,
- (3) If $x \cdot z \leq y \cdot z$ and $z \leq x$ then $y \leq x$,
- (4) If $x \cdot z \leq y \cdot z$ and $z \leq x, y$ then $y \leq x$,
- (5) If $y \le x$ then $(x \cdot y) \cdot y = x$.

Proof. $(1 \Leftrightarrow 2)$ Let $((x \cdot y) \cdot y) \cdot x = y \cdot x$, for all $x, y \in X$. Then using condition (19) and hypothesis, $((x \cdot y) \cdot y) \cdot ((y \cdot x) \cdot x) = (y \cdot x) \cdot (((x \cdot y) \cdot y) \cdot x) = (y \cdot x) \cdot (y \cdot x) = 0$, that is $(x \cdot y) \cdot y \leq (y \cdot x) \cdot x$. Similarly, $(y \cdot x) \cdot x \leq (x \cdot y) \cdot y$. Therefore $(y \cdot x) \cdot x = (x \cdot y) \cdot y$, for all $x, y \in X$. (2 \Rightarrow 3) Let $x, y, z \in X$, such that $x \cdot z \leq y \cdot z$ and $z \leq x$. Then using condition (19) and hypothesis, $0 = (x \cdot z) \cdot (y \cdot z) = y \cdot ((x \cdot z) \cdot z) = y \cdot ((z \cdot x) \cdot x) = y \cdot (0 \cdot x) = y \cdot x$. Therefore $y \leq x$. (3 \Rightarrow 4) It is trivial.

 $(4 \Rightarrow 5)$ Let $x, y \in X$ such that $y \leq x$. Using condition (20), $x \cdot y \leq ((x \cdot y) \cdot y) \cdot y$. According to part (4), $(x \cdot y) \cdot y \leq x$, therefore based on condition (20), $(x \cdot y) \cdot y = x$, for $x, y \in X$.

 $(5 \Rightarrow 2)$ As $x \leq (y \cdot x) \cdot x$, then $((y \cdot x) \cdot x) \cdot y \leq x \cdot y$. Also using condition (19), $y \leq (y \cdot x) \cdot x$. Hence according to Lemma 3.1 and Part (5), $(x \cdot y) \cdot y \leq ((y \cdot x) \cdot x) \cdot y) \cdot y = (y \cdot x) \cdot x$. Similarly, since $y \leq (x \cdot y) \cdot y$, then $((x \cdot y) \cdot y) \cdot x \leq y \cdot x$. Using $x \leq (x \cdot y) \cdot y$, Lemma 3.1 and Part (5), we get $(y \cdot x) \cdot x \leq (((x \cdot y) \cdot y) \cdot x) \cdot x = (x \cdot y) \cdot y$. Therefore $(x \cdot y) \cdot y = (y \cdot x) \cdot x$, for all $x, y \in X$. \Box

Proposition 3.5. [7] Let X ba a UP-algebra.

(i) In general, [a) is not a UP-filter of X. [a) is a UP-filter of X if and only if $\{0\}$ is an implicative UP-filter of X.

(ii) If X satisfying in the condition (19), for a nonempty subset F of X, then $[F] = \{x \in X : a_1 \cdot (a_2 \cdot (\dots (a_n \cdot x) \dots)) = 0, \text{ for some } a_1, \dots, a_n \in \mathbb{C}\}$ $F\}.$

Theorem 3.6. Let X be a UP-algebra, F, G be nonempty subsets of Xand $a, b \in X$. Then

(1) if X satisfying in the condition (19) and $a \leq b$ then $[b] \subseteq [a]$,

(2) if $[b] \subseteq [a]$ then $a \leq b$,

(3) F is a UP-filter of X if and only if [F] = F,

(4) if $F \subseteq G$ then $[F] \subseteq [G]$,

(5) if G is a UP-filter of X and $[F] \subseteq [G]$ then $F \subseteq G$.

Proof.

(1) Let $a \leq b$. Assume that $z \in [b]$, then $b \leq z$ and so $b \cdot z = 0$. Using Lemma 3.2(21), $a \cdot b \leq (b \cdot z) \cdot (a \cdot z)$ and as $a \cdot b = 0$, then $(b \cdot z) \cdot (a \cdot z) = 0$. Since $b \cdot z = 0$, thus $a \cdot z = 0$, therefore $z \in [a)$, i.e. $[b] \subseteq [a)$.

(2) Let $[b) \subseteq [a)$. As $b \in [b)$ so $b \in [a)$. Therefore $a \leq b$.

(3) It is known that [F] = \cap G. Assume that $x \in [F]$. As $F \subseteq G \in UF(X)$

F is a UP-filter, then $x \in F$. Therefore [F] = F. The converse is clear. (4) Let $x \in [F)$. It is known that [F) =Ω H, i.e. $x \in H$, $F \subseteq H \in UF(X)$

for all $H \in UF(X)$ where $F \subseteq H$. So $x \in G$. As $G \subseteq [G]$. Therefore $x \in [G)$, i.e. $[F) \subseteq [G)$.

(5) The proof is clear.

Definition 3.7. Let X be a UP-algebra and F be a UP-filter of X. For $x, y \in X$, we define the binary relation \sim_F on X, $x \sim_F y$ if and only if $x \cdot y \in F$ and $y \cdot x \in F$.

Example 3.8. [4] Consider a UP-algebra $X = \{a, b, c, d, 0\}$ with the binary operation \cdot which is given in the following table:

•	0	a	b	c	d
0	0	a	b	c	d
a	0	0	b	c	d
b	0	0	0	c	d
c	0	0	b	0	d
d	0	$egin{array}{c} a \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0	0	0

Clearly, $F = \{a, c, 0\}$ is a UP-filter of X. It is easy to verify that $a \sim_F c$, since $a \cdot c = c$ and $c \cdot a = 0$. But $a \not\sim_F b$, since $a \cdot b = b \notin F$.

Proposition 3.9. Let X be a UP-algebra satisfying in condition (19) and F be a UP-filter of X. A binary relation \sim_F is a congruence relation of X.

Proof. As $x \cdot x = 0 \in F$, then $x \sim_F x$. Hence we conclude that a binary relation \sim_F is reflexive. Now let $x \sim_F y$, for $x, y \in X$. Then $x \cdot y \in F$ and $y \cdot x \in F$, so $y \sim_F x$. It can be concluded that \sim_F is symmetric. Let $x \sim_F y$ and $y \sim_F z$, for $x, y, z \in X$. Then $x \cdot y \in F$, $y \cdot x \in F$ and $y \cdot z \in F, z \cdot y \in F$. As $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0 \in F$ and $y \cdot z \in F$ then $(x \cdot y) \cdot (x \cdot z) \in F$. Also $x \cdot y \in F$, it follows that $x \cdot z \in F$. Similarly, as $(z \cdot y) \cdot ((y \cdot x) \cdot (z \cdot x)) = 0 \in F$ and $z \cdot y \in F$ then $(y \cdot x) \cdot (z \cdot x) \in F$. Also $y \cdot x \in F$, we conclude that $z \cdot x \in F$. Thus $x \sim_F z$. Hence \sim_F is transitive. Therefore \sim_F is an equivalence relation on X. Now, assume tha $x \sim_F u$ and $y \sim_F v$, for $x, y, u, v \in X$. Then $x \cdot u \in F$, $u \cdot x \in F$ and $y \cdot v \in F, v \cdot y \in F$. As $(v \cdot y) \cdot ((x \cdot v) \cdot (x \cdot y)) = 0 \in F$, and $v \cdot y \in F$, then $(x \cdot v) \cdot (x \cdot y) \in F$. Similarly, we get $(y \cdot v) \cdot ((x \cdot y) \cdot (x \cdot v)) = 0 \in F$. As $y \cdot v \in F$, so $(x \cdot y) \cdot (x \cdot v) \in F$. Therefore $x \cdot y \sim_F x \cdot v$. On the other hand, $(u \cdot v) \cdot ((x \cdot u) \cdot (x \cdot v)) = 0 \in F$. Using condition (19), $(x \cdot u) \cdot ((u \cdot v) \cdot (x \cdot v)) = 0 \in F$. As $x \cdot u \in F$, then $(u \cdot v) \cdot (x \cdot v) \in F$. Similarly, $(x \cdot v) \cdot ((u \cdot x) \cdot (u \cdot v)) = 0 \in F$. Using condition (19), $(u \cdot x) \cdot ((x \cdot v) \cdot (u \cdot v)) = 0 \in F$. As $u \cdot x \in F$ then $(x \cdot v) \cdot (u \cdot v) \in F$. Thus $x \cdot v \sim_F u \cdot v$. According to transitivity of $\sim_F, x \cdot y \sim_F u \cdot v$. Therefore \sim_F is a congruence relation on X.

Note that, in Proposition 3.9, the condition (19) was not necessary to prove the equivalence relation \sim_F and it was necessary to prove the congruence relation \sim_F . The following example shows that the condition (19) is necessary for congruence relation. **Example 3.10.** Let $X = \{a, b, c, 0\}$ be a set with the binary operation \cdot which is given in the following table:

•	0	a	b	c
0	0	a	b	c
a	0	0	b	b
b	0	0	0	b
c	0	a 0 0 0	0	0

Then $(X, \cdot, 0)$ is a UP-algebra ([8]). Clearly, $F = \{a, 0\}$ is a UP-filter and condition (19) is not hold, since $a \cdot (b \cdot c) \neq b \cdot (a \cdot c)$. It is easy to verify that $a \sim_F 0$, $c \sim_F c$ while $a \cdot c \not\sim_F 0 \cdot c$.

Let X be a UP-algebra and ρ be a congruence relation on X. The ρ -class of $x \in X$ is the $(x)_{\rho} = \{y \in X : y \ \rho \ x\}$. The quotient set of X by ρ , is denoted by $X/\rho = \{(x)_{\rho} : x \in X\}$.

Theorem 3.11. Let X be a UP-algebra satisfying in condition (19) and ρ be a congruence relation on X. Then the following statements hold:

- (1) A ρ -class (0) $_{\rho}$ is a UP-filter and a UP-subalgebra of X,
- (2) A ρ -class $(x)_{\rho}$ is a UP-filter of X if and only if $x \rho 0$,
- (3) A ρ -class $(x)_{\rho}$ is a UP-subalgebra of X if and only if $x \rho 0$.

Proof. According to Definition 2.4, the proof is clear. \Box

Theorem 3.12. Let X be a UP-algebra satisfying in condition (19) and F be a UP-filter of X. Then the following statements hold:

(1) (0)_{~F} is a UP-filter and a UP-subalgebra of X contained in F,

(2) $(x)_{\sim_F}$ is a UP-filter of X if and only if $x \in F$,

(3) $(x)_{\sim_F}$ is a UP-subalgebra of X if and only if $x \in F$,

(4) $(X/\sim_F, *, (0)_{\sim_F})$ is a UP-algebra under a binary relation * de-

fined by $(x)_{\sim_F} * (y)_{\sim_F} = (x \cdot y)_{\sim_F}$, for all $x, y \in X$. X/\sim_F is called a quotient UP-algebra of X induced by a congruence relation \sim_F .

Proof. Based on Proposition 3.9 and Theorem 3.11, the proofs are obvious. \Box

Proposition 3.13. Let X be a UP-algebra satisfying in condition (19) and F be a UP-filter of X. Then

(1) $(x)_F = (0)_F$ if and only if $x \in F$, (2) $(x)_F \leq (y)_F$ if and only if $x \cdot y \in F$, (3) $(x)_F = (y)_F$ if and only if $x \cdot y \in F$ and $y \cdot x \in F$ if and only if $x_{\sim_F} y$.

Proof. According to Definition 2.1 and Theorem 3.12, the proof is easy. \Box

4 Comparative UP-filters and Implicative UPfilters

In this section we have established new characterizations and connections between comparative UP-filters, implicative UP-filters and maximal UP-filters in UP-algebras.

Theorem 4.1. Let X be a UP-algebra satisfying in condition (19) and F be an implicative UP-filter of X. Then F is a comparative UP-filter if and only if $(x \cdot y) \cdot y \in F$ implies $(y \cdot x) \cdot x \in F$, for $x, y \in X$.

Proof. Let F be a comparative UP-filter and $(x \cdot y) \cdot y \in F$. From $x \leq (y \cdot x) \cdot x$, and based on Lemma 3.1(7), $((y \cdot x) \cdot x) \cdot y \leq x \cdot y$. According to Lemma 3.1, $(x \cdot y) \cdot y \leq (y \cdot x) \cdot ((x \cdot y) \cdot x)$. Using condition (19), $(x \cdot y) \cdot y \leq (x \cdot y) \cdot ((y \cdot x) \cdot x)$ based on Lemma 3.1, $(x \cdot y) \cdot ((y \cdot x) \cdot x) \leq (x \cdot y) \cdot ((y \cdot x) \cdot x)$ $(((y \cdot x) \cdot x) \cdot y) \cdot ((y \cdot x) \cdot x)$. Hence $(((y \cdot x) \cdot x) \cdot y) \cdot ((y \cdot x) \cdot x) \in F$. As F is a comparative UP-filter, then $(y \cdot x) \cdot x \in F$. Conversely, let $z \cdot ((x \cdot y) \cdot x) \in F$ and $z \in F$. By Theorem 1([7]), we conclude that F is a UP-filter, so $(x \cdot y) \cdot x \in F$. By condition (20), it can be concluded that $x \leq (x \cdot y) \cdot y$. Then using Lemma 3.1, $(x \cdot y) \cdot x \leq (x \cdot y) \cdot ((x \cdot y) \cdot y)$, and we have $(x \cdot y) \cdot ((x \cdot y) \cdot y) \in F$. As F is an implicative UP-filter and $(x \cdot y) \cdot (x \cdot y) = 0 \in F$, then $(x \cdot y) \cdot y \in F$. Therefore considering to the hypothesis $(y \cdot x) \cdot x \in F$. Since $y \leq x \cdot y$, we get that $(x \cdot y) \cdot x \leq y \cdot x$. Based on Lemma 3.1, $y \cdot x \leq z \cdot (y \cdot x)$. As a result we have $(x \cdot y) \cdot x \leq z \cdot (y \cdot x)$, and so $z \cdot (y \cdot x) \in F$. As $z \in F$ and F is a UP-filter, then $y \cdot x \in F$. Hence $x \in F$. Thus the proof is completed.

Proposition 4.2. Let X be a UP-algebra which satisfies in condition (19) and F be a comparative UP-filter of X. Then F is an implicative UP-filter, but the converse is not true.

Proof. Let *F* be a comparative UP-filter and $x \cdot (y \cdot z) \in F$, $x \cdot y \in F$, for $x, y, z \in X$. We have $y \cdot (x \cdot z) \leq (x \cdot y) \cdot (x \cdot (x \cdot z))$. Using condition (19), $x \cdot (y \cdot z) \leq (x \cdot y) \cdot (x \cdot (x \cdot z))$. Hence $(x \cdot y) \cdot (x \cdot (x \cdot z)) \in F$. Since *F* is a UP-filter and $x \cdot y \in F$ then $x \cdot (x \cdot z) \in F$. In other hand we have $x \cdot (x \cdot z) \leq ((x \cdot z) \cdot z) \cdot (x \cdot z)$. So $((x \cdot z) \cdot z) \cdot (x \cdot z) \in F$. As *F* is a comparative UP-filter, then $x \cdot z \in F$. Therefore *F* is an implicative UP-filter. \Box

For the converse consider:

Example 4.3. Let $X = \{a, b, c, 0\}$ be a set with the binary operation \cdot which is given in the following table:

•	0	a	b	c
0	0	$\begin{array}{c} a \\ a \\ 0 \\ a \end{array}$	b	c
a	0 0	0	0	0
0	0	a	U	c
c	0	a	b	0

Then $(X, \cdot, 0)$ is a UP-algebra ([4]). Clearly, $F = \{b, 0\}$ is an implicative UP-filter, while it is not a comparative. Since $(c \cdot a) \cdot c = 0 \in F$, but $c \notin F$.

Theorem 4.4. Let X be a UP-algebra which satisfies in condition (19) and F be a comparative UP-filter of X. Every UP-filter G containing F is also a comparative UP-filter.

Proof. Let *F* be a comparative UP-filter and *G* be a UP-filter such that $F \subseteq G$. Then *F* is an implicative UP-filter. Using Theorem 13([7]), *G* is an implicative UP-filter. Suppose that $(y \cdot x) \cdot x \in G$, for $x, y \in X$. Denote $u = (y \cdot x) \cdot x$. Using $u \cdot ((y \cdot x) \cdot x) = 0 \in F$, *F* is an implicative UP-filter and Theorem 10([7]), $(y \cdot (u \cdot x)) \cdot (u \cdot x) = (u \cdot (y \cdot x)) \cdot (u \cdot x) \in F$. So according to Theorem 4.1, $((u \cdot x) \cdot y) \cdot y \in F \subseteq G$. Based on Lemma 3.1 consider

$$\begin{aligned} (y \cdot x) \cdot x &\leq \left(((y \cdot x) \cdot x) \cdot x \right) \cdot x = (u \cdot x) \cdot x \\ &\leq (x \cdot y) \cdot ((u \cdot x) \cdot y) \leq \left(((u \cdot x) \cdot y) \cdot y \right) \cdot ((x \cdot y) \cdot y). \end{aligned}$$

So $(((u \cdot x) \cdot y) \cdot y) \cdot ((x \cdot y) \cdot y) \in G$. Using $((u \cdot x) \cdot y) \cdot y \in G$, we get that $(x \cdot y) \cdot y \in G$ and so the proof is completed. \Box

Theorem 4.5. Let X be a UP-algebra satisfying in condition (19). The following condition are equivalent:

- (1) $\{0\}$ is a comparative UP-filter,
- (2) every UP-filter of X is a comparative UP-filter,
- (3) $[a) = \{x \in X : a \le x\}$ is a comparative UP-filter, for all $a \in X$,
- (4) $(x \cdot y) \cdot x = x$, for all $x, y \in X$.

Proof. $(1 \Leftrightarrow 2)$ According to Theorem 4.4 the proof is clear. $(2 \Rightarrow 3)$ According to hypothesis $\{0\}$ is a comparative UP-filter, and $\{0\}$ is an implicative UP-filter. As $a \leq 0$ then $0 \in [a)$. Assume that $x, x \cdot y \in [a)$, for $x, y \in X$. Then $a \cdot x = 0$ and $a \cdot (x \cdot y) = 0$. Then $a \cdot y = 0$, since $\{0\}$ is an implicative UP-filter. And so $a \leq y$. Therefore $y \in [a)$, i.e. [a) is a UP-filter. Using (2), [a) is a comparative UP-filter. $(3 \Rightarrow 4)$ We have $(x \cdot y) \cdot x \in [(x \cdot y) \cdot x)$. According to hypothesis, $[(x \cdot y) \cdot x)$ is a comparative UP-filter. Then based on Lemma $2 \cdot 6([8])$, $x \in [(x \cdot y) \cdot x)$ and so $(x \cdot y) \cdot x \leq x$. Hence $x = (x \cdot y) \cdot x$, for all $x, y \in X$. $(4 \Rightarrow 1)$ The proof is easy, based on Lemma $2 \cdot 6([8])$. \Box

Definition 4.6. A UP-filter M of a UP-algebra X is called maximal, if it is not properly contained in any other UP-filter of X.

Example 4.7. In Example 4.3, $F = \{b, 0\}$ is not a maximal UP-filter and $G = \{b, c, 0\}$ is a maximal UP-filter.

Recall that $F_y = \{x \in X : y \cdot x \in F\}, [7].$

Lemma 4.8. Let X be a UP-algebra satisfying in condition (19) and F be a UP-filter of X. Then the following conditions are equivalent:

- (1) F is a maximal and comparative UP-filter,
- (2) F is a maximal and implicative UP-filter,
- (3) if $x, y \notin F$ then $x \cdot y \in F$ and $y \cdot x \in F$, for all $x, y \in X$.

Proof. $(1 \Rightarrow 2)$ By Proposition 4.2, the proof is clear.

 $(2 \Rightarrow 3)$ Let $x, y \notin F$, for $x, y \in X$. According to Theorem 11([7]), F_y is a UP-filter. Assume that $t \in F$, we have $t \leq y \cdot t$. So $y \cdot t \in F$, i.e. $t \in F_y$. Hence $F \subseteq F_y \subseteq X$. According to hypothesis, F is a maximal UP-filter, so $F = F_y$ or $F_y = X$. As $y \cdot y = 0 \in F$, then $y \in F_y$ and $y \notin F$, so $F_y = X$. Then $x \in F_y$ and so $y \cdot x \in F$. Similarly $x \cdot y \in F$. $(3 \Rightarrow 1)$ Assume that F is not a comparative UP-filter. Then by Lemma $2 \cdot 6([8])$, there exist $x, y \in X$, $(x \cdot y) \cdot x \in F$ such that $x \notin F$. The following cases are considered:

(Case 1) If $y \in F$ then $x \cdot y \in F$, since $y \leq x \cdot y$. Hence $x \in F$. Since $(x \cdot y) \cdot x \in F$, which is a contradiction.

(Case 2) If $y \notin F$, then according to part (3), $x \cdot y \in F$. Since $(x \cdot y) \cdot x \in F$, then $x \in F$, that is a contradiction.

Hence F is a comparative UP-filter. Now let G be a UP-filter of X such that $F \subsetneq G \subseteq X$ and $t \in G - F$. We need to show that G = X. Now let $a \notin F$. As $a \cdot a = 0 \in F$, then $a \in F_a$. Assume that $b \in F$. As $b \leq a \cdot b$, so $b \in F_a$. Then $F \subseteq F_a$. Therefore $F \cup \{a\} \subseteq F_a$. Now let H be a UP-filter of X such that $F \cup \{a\} \subseteq H$ and assume that $x \in F_a$. Then $a \cdot x \in F$ and since $F \subseteq H$, $a \cdot x \in H$. Hence $x \in H$. Therefore F_a is the least UP-filter containing F and a. Take $u \in X$. The following cases are considered:

(Case 1) If $u \in F$, then $u \in F_a$. So $X \subseteq F_a$, i.e. $X = F_a$.

(Case 2) If $u \notin F$, then based on part (3) and $a \notin F$, $a \cdot u \in F$. So $u \in F_a$. Therefore $X \subseteq F_a$, i.e. $X = F_a$.

As F_t is the least UP-filter containing F and t, so $F \subseteq F_t \subseteq G \subseteq X$. As $t \notin F$, then $F_t = X$ and so G = X. Therefore F is a maximal UP-filter. \Box

Theorem 4.9. Let X be a UP-algebra satisfying in condition (19) and F be a UP-filter of X. F is a comparative UP-filter of X if and only if every UP-filter of a quotient algebra X/F is a comparative UP-filter.

Proof. Let F be a comparative UP-filter of X and $x, y \in X$ such that $((x)_F * (y)_F)) * (x)_F = (0)_F$. Then $((x \cdot y) \cdot x)_F = (0)_F$ so $(x \cdot y) \cdot x \in F$. Using Lemma $2 \cdot 6([8]), x \in F$. So $(x)_F = (0)_F$ which proves $\{(0)_F\}$ is a comparative UP-filter. By Theorem 4.5, every UP-filter of X/F, is a comparative UP-filter. Conversely, let $(x \cdot y) \cdot x \in F$, for $x, y \in X$. Then $((x)_F * (y)_F)) * (x)_F = ((x \cdot y) \cdot x)_F = (0)_F$. Since $\{(0)_F\}$ is a comparative of X/F, then $(x)_F = (0)_F$, i.e. $x \in F$. Hence F is a comparative UP-filter of X.

5 Normal UP-filter

In this section we introduce a class of new UP-filters that called normal UP-filters and we give some related results.

Definition 5.1. UP-filter F of X is called a normal UP-filter if for $x, y, z \in X, z \cdot ((y \cdot x) \cdot x) \in F$ and $z \in F$ then $(x \cdot y) \cdot y \in F$.

Example 5.2. Let $X = \{a, b, c, 0\}$ be a set with the binary operation \cdot which is given in the following table:

Then $(X, \cdot, 0)$ is a UP-algebra ([8]). Clearly, $F = \{b, 0\}$ is a normal UP-filter and $G = \{c, 0\}$ is not a normal, since $c \cdot ((b \cdot a) \cdot a) \in G$ and $c \in G$, but $(a \cdot b) \cdot b = b \notin G$.

According to Definition 5.1:

Theorem 5.3. Let F be a UP-filter of a UP-algebra X. F is a normal UP-filter if and only if $(y \cdot x) \cdot x \in F$ implies $(x \cdot y) \cdot y \in F$, for all $x, y \in X$.

Proof. Let F be a normal UP-filter of X and $(y \cdot x) \cdot x \in F$, for any $x, y \in X$. Since $0 \cdot ((y \cdot x) \cdot x) \in F$ and $0 \in F$, then by using hypothesis we get that $(x \cdot y) \cdot y \in F$. Conversely, let $z \cdot ((y \cdot x) \cdot x) \in F$ and $z \in F$, for any $x, y, z \in X$. As F is a UP-filter of X, $(y \cdot x) \cdot x \in F$. According to hypothesis, we conclude that $(x \cdot y) \cdot y \in F$. Therefore, F is a normal UP-filter of X.

Proposition 5.4. Let X be a UP-algebra which satisfies in condition (19) and F be an implicative UP-filter of X. Then the following conditions are equivalent:

(1) F is a normal UP-filter of X,

- (2) F is a comparative UP-filter of X,
- (3) $(x \cdot y) \cdot x \in F$ implies $x \in F$, for all $x, y \in X$.

Proof. According to Theorem 4.1, Theorem 5.3 and Lemma $2 \cdot 6([8])$, the proof is clear. \Box

Proposition 5.5. Let X be a UP-algebra which satisfies in condition (19) and F be a comparative UP-filter of X. Then F is a normal UP-filter, but the converse is not true.

Proof. Based on Theorem 4.1, the proof is easy. \Box

Example 5.6. Consider Example 5.2. It is clear that $F = \{0\}$ is a normal UP-filter, while it is not a comparative UP-filter. Since $(b \cdot a) \cdot b = 0 \in F$ but $b \notin F$.

The following example shows that every implicative UP-filter is not a normal UP-filter.

Example 5.7. In Example 4.3, $F = \{b, 0\}$ is an implicative UP-filter, while it is not a normal UP-filter, since $(c \cdot a) \cdot a = 0 \in F$ but $(a \cdot c) \cdot c = c \notin F$.

The following example shows that a normal UP-filter is not an implicative UP-filter.

Example 5.8. Consider Example 3.3(1). It is easy to check that $F = \{0\}$ is a normal UP-filter, while it is not an implicative UP-filter. Since $b \cdot (a \cdot c) = 0 \in F$ and $b \cdot a = 0 \in F$ and $b \cdot c = b \notin F$.

The following example shows that the conditions in Proposition 5.4 are necessary.

Example 5.9. In Example 3.3(1), $F = \{0\}$ is not an implicative UP-filter and F is a normal UP-filter, while F is not a comparative UP-filter, since $(a \cdot b) \cdot a = 0 \in F$ and $a \notin F$.

Lemma 5.10. Let X be a UP-algebra which satisfies in condition (19). The following conditions are equivalent:

- (1) $\{0\}$ is a shift UP-filter of X,
- (2) Every UP-filter of X is a shift UP-filter,
- (3) $((x \cdot y) \cdot y) \cdot x = y \cdot x$, for all $x, y \in X$.

Proof. $(1 \Leftrightarrow 2)$ Based on Corollary $4 \cdot 15([8])$, the proof is trivial. $(1 \Rightarrow 3)$ Assume that $\{0\}$ is a shift UP-filter and $a = (y \cdot x) \cdot x$, for $x, y \in X$. Then $y \cdot a = y \cdot ((y \cdot x) \cdot x) = (y \cdot x) \cdot (y \cdot x) = 0 \in \{0\}$. Hence according to definition of a shift UP-filter, $((a \cdot y) \cdot y) \cdot a = 0$, i.e., $(a \cdot y) \cdot y = a$. As $x \leq (y \cdot x) \cdot x = a$, then $a \cdot y \leq x \cdot y$ and $(x \cdot y) \cdot y \leq (a \cdot y) \cdot y$. And also $0 = ((a \cdot y) \cdot y) \cdot a \leq ((x \cdot y) \cdot y) \cdot a$. Then $0 = ((x \cdot y) \cdot y) \cdot a = ((x \cdot y) \cdot y) \cdot ((y \cdot x) \cdot x)$, thus $(x \cdot y) \cdot y \leq (y \cdot x) \cdot x$ and similarly, $(y \cdot x) \cdot x \leq (x \cdot y) \cdot y$. Therefore $(x \cdot y) \cdot y = (y \cdot x) \cdot x$, for all $x, y \in X$. Using Lemma 3.4, $((x \cdot y) \cdot y) \cdot x = y \cdot x$, for all $x, y \in X$. $(3 \Rightarrow 1)$ The proof is easy. \Box

Theorem 5.11. Let X be a UP-algebra which satisfies in condition (19) and F be a UP-filter of X. Then F is a shift UP-filter if and only if every UP-filter of the quotient UP-algebra X/F is a shift UP-filter.

Proof. Let *F* be a shift UP-filter of *X* and $x, y \in X$ such that $(x)_F * (y)_F = (0)_F$. Then $x \cdot y \in F$, and so $((y \cdot x) \cdot x) \cdot y \in F$. Hence $(((y)_F * (x)_F) * (x)_F) * (y)_F = (((y \cdot x) \cdot x) \cdot y)_F = (0)_F$, which proves that $\{(0)_F\}$ is a shift UP-filter of *X/F*. Based on Lemma 5.10, every UP-filter of *X/F* is a shift UP-filter. Conversely, suppose that every UP-filter of *X/F* is a shift UP-filter and $y \cdot x \in F$, for $x, y \in X$. Then $(y)_F * (x)_F = (y \cdot x)_F = (0)_F$. Since $\{(0)_F\}$ is a shift UP-filter of *X/F*, then $(((x \cdot y) \cdot y) \cdot x)_F = (((x)_F * (y)_F) * (y)_F) * (x)_F = (0)_F$, i.e., $((x \cdot y) \cdot y) \cdot x \in F$. Hence according to Theorem $4 \cdot 8([8])$, *F* is a shift UP-filter of *X*. \Box

6 Prime UP-filter

In this section, we introduce the notion of prime UP-filter in a UPalgebra. Also, we investigate some characterizations of this UP-filter and we prove that the quotient algebra induced by a prime UP-filter in a UP-algebra is a linearly ordered UP-algebra.

Definition 6.1. A UP-filter F of a UP-algebra X is called a prime UP-filter of X, if for any $x, y \in X$, $x \cdot y \in F$ or $y \cdot x \in F$.

Example 6.2. Consider the Example 3.8. Clearly, $F = \{a, 0\}$ is not a prime UP-filter, since $b \cdot c = c \notin F$ and $c \cdot b = b \notin F$. It is clear $G = \{a, b, 0\}$ is a prime UP-filter of X.

Theorem 6.3. Let X be a UP-algebra satisfying in condition (19). Then F is a prime UP-filter if and only if X/F is a linearly ordered UP-algebra.

Proof. Let F be a prime UP-filter and $(x)_F$, $(y)_F \in X/F$. Then $x \cdot y \in F$ or $y \cdot x \in F$. Thus $(x)_F \leq (y)_F$ or $(y)_F \leq (x)_F$, so X/F is a chain. Conversely, let X/F be a chain. Then for all $x, y \in X$, either $(x)_F \leq (y)_F$ or $(y)_F \leq (x)_F$. Whence either $x \cdot y \in F$ or $y \cdot x \in F$, for all $x, y \in X$. Thus F is a prime UP-filter of X. \Box

According to Definition 6.1:

Corollary 6.4. Let X be a UP-algebra and F be a prime UP-filter of X. Then every UP-filter G containing F is also a prime UP-filter.

Theorem 6.5. Let X be a UP-algebra. The following conditions are equivalent:

- (1) X is a linear UP-algebra,
- (2) $\{0\}$ is a prime UP-filter of X,
- (3) Every UP-filter of X is a prime.

Proof. $(1 \Rightarrow 2)$ Let X be a linear UP-algebra and $x, y \in X$. Hence $x \leq y$ or $y \leq x$. Then $x \cdot y = 0$ or $y \cdot x = 0$, for all $x, y \in X$. Therefore $\{0\}$ is a prime UP-filter.

 $(2 \Rightarrow 1)$ Let $\{0\}$ be a prime UP-filter. Then $x \cdot y = 0$ or $y \cdot x = 0$, for all $x, y \in X$. So $x \leq y$ or $y \leq x$, for all $x, y \in X$. Therefore X is a linear UP-algebra.

 $(2 \Leftrightarrow 3)$ According to Corollary 6.4, the proof is clear.

Corollary 6.6. Let X be a UP-algebra satisfying in condition (19) and F be a UP-filter of X. Then the following conditions are equivalent:

- (1) X/F is a linearly ordered UP-algebra,
- (2) F is a prime UP-filter of X,
- (3) Any UP-filter of X/F is a prime UP-filter.

Proof. $(1 \Leftrightarrow 3)$ According to Theorem 6.5, the proof is clear.

 $(2 \Rightarrow 3)$ Let F be a prime UP-filter of X. We need to show that $\{(0)_F\}$ is a prime UP-filter of X/F. Assume that $(x)_F, (y)_F \in X/F$. As F is a prime UP-filter, $x \cdot y \in F$ or $y \cdot x \in F$. And so $(x \cdot y)_F = (0)_F$ or $(y \cdot x)_F = (0)_F$, hence $(x)_F \cdot (y)_F = (0)_F$ or $(y)_F \cdot (x)_F = (0)_F$. Therefore,

 $\{(0)_F\}$ is a prime UP-filter of X/F.

 $(3 \Rightarrow 2)$ Let any UP-filter of X/F be a prime. Then $\{(0)_F\}$ is a prime UP-filter of X/F. So $(x)_F \cdot (y)_F = (0)_F$ or $(y)_F \cdot (x)_F = (0)_F$, for all $(x)_F, (y)_F \in X/F$. Hence $x \cdot y \in F$ or $y \cdot x \in F$, for all $x, y \in X$. Therefore F is a prime UP-filter of X. \Box

Remark 6.7. Let X be a UP-algebra satisfying condition (19) and F, G be two UP-filters of X, such that $F \subseteq G$. Then G is a prime UP-filter of X if and only if G/F is a prime UP-filter of a UP-algebra X/F.

Lemma 6.8. Let F be a normal and prime UP-filter of a UP-algebra X. Then $(x \cdot y) \cdot y \in F$ implies $x \in F$ or $y \in F$, for $x, y \in X$.

Proof. Let $x, y \in X$ and $(x \cdot y) \cdot y \in F$. Then $(y \cdot x) \cdot x \in F$, since F is a normal UP-filter. As F is a prime UP-filter, so $x \cdot y \in F$ or $y \cdot x \in F$. The following cases are considered:

(Case 1) If $x \cdot y \in F$, then $y \in F$.

(Case 2) If $y \cdot x \in F$. Then using $(y \cdot x) \cdot x \in F$, $x \in F$. Therefore, the proof is completed. \Box

Lemma 6.9. The set of UP-filters including a given prime UP-filter F of X, linearly ordered with respect to the set theoretical inclusion.

Proof. Let F be a prime UP-filter and G, H be UP-filters containing F such that $G \nsubseteq H$ and $H \nsubseteq G$. Then there exists $a \in X$ such that $a \in G - H$ and there exists $b \in X$ such that $b \in H - G$. As F is a prime UP-filter and $a, b \in X$, then $a \cdot b \in F$ or $b \cdot a \in F$. If $a \cdot b \in F$, then $a \cdot b \in G$. So $b \in G$, which is a contradiction. If $b \cdot a \in F$, then $b \cdot a \in H$. So $a \in H$, which is a contradiction. Therefore, the proof is completed. \Box

Theorem 6.10. Let F be a prime UP-filter of a UP-algebra X and G be a UP-filter of X such that $G \subseteq F$. Then the set of all prime UP-filter F' of X such that $G \subseteq F' \subseteq F$, contains a minimal element.

Proof. Take $\sum = \{F' : F' \text{ is a prime UP} - \text{filter of } X \text{ such that } G \subseteq F' \subseteq F\}$. Clearly, $F \in \sum$, so \sum is not void. The relation \leq on \sum is defined $F' \leq G'$ if and only if $G' \subseteq F'$, for all $F', G' \in \sum$. Clearly, the relation \leq is a partially ordered on \sum . Now let T be a chain on

 \sum . Take $d = \bigcap_{F' \in T} F'$. It is clear d is a UP-filter and for all $F' \in T$, $d \subseteq F'$. Then $F' \leq d$, for all $F' \in T$. We need to prove that d is a prime UP-filter. Now let for $x, y \in X$, $x \cdot y \notin d$ and $y \cdot x \notin d$. So there exist $F', G' \in T$ such that $x \cdot y \notin F'$ and $y \cdot x \notin G'$. Since T is a chain, so $G' \subseteq F'$ or $F' \subseteq G'$. If $F' \subseteq G'$, then $y \cdot x \notin F'$. So $x \cdot y \in F'$, since F' is a prime UP-filter. That is a contradiction. Therefore d is a prime UP-filter. Also, if $G' \subseteq F'$, the process is similarly. So d is an upper bound for T. Then by Zorn's Lemma, \sum contains a maximal element, i.e. it contains a minimal element. \Box

Proposition 6.11. Let X be a linear UP-algebra and F be a UP-filter of X. Then for all $x, y \in X - F$, there exists $z \in X - F$ such that $x \leq z$ and $y \leq z$.

Proof. Let F be a UP-filter of the linear UP-algebra X. According to Theorem 6.5, F is a prime UP-filter of X. Also, assume that there exist $x, y \in X - F$ such that for all $z \in X - F$, z < x or z < y. As $x \leq (y \cdot x) \cdot x$ and $y \leq (x \cdot y) \cdot y$, so $(y \cdot x) \cdot x \in F$ and $(x \cdot y) \cdot y \in F$. Since F is a prime UP-filter, $x \cdot y \in F$ or $y \cdot x \in F$, for all $x, y \in X$. The following are cases considered:

(Case 1) If $x \cdot y \in F$, then $y \in F$, which is a contradiction.

(Case 2) If $y \cdot x \in F$, then $x \in F$, which is a contradiction.

Therefore, the proof is completed. $\hfill \Box$

Proposition 6.12. Let X be a linear UP-algebra satisfying in condition (19) and F be a UP-filter of X. Then for all $x, y \in X/F$, such that $x, y \neq (0)_F$, there exists $w \in X/F$ such that $w \neq (0)_F$, $x \leq w$ and $y \leq w$.

Proof. Let F be a UP-filter of the linear UP-algebra X. According to Theorem 6.5, F is a prime UP-filter of X. Also, assume that $x, y \in X/F$ such that $x, y \neq (0)_F$. Hence $x = (a)_F$ and $y = (b)_F$, for some $a, b \in X$, such that $(a)_F \neq (0)_F$ and $(b)_F \neq (0)_F$, i.e. $a, b \notin F$. So according to Proposition 6.11, there exists $z \in X - F$, such that $a \leq z$ and $b \leq z$. Hence $a \cdot z = 0$ and $b \cdot z = 0$, so $(a)_F \leq (z)_F$ and $(b)_F \leq (z)_F$. Therefore $x \leq w$ and $y \leq w$. \Box

Proposition 6.13. Let X be a linear UP-algebra and F be a UP-filter of X. Then $[x) \cap [y] \subseteq F$ implies $x \in F$ or $y \in F$, for all $x, y \in X$.

Proof. Let $[x) \cap [y] \subseteq F$, for $x, y \in X$, and also $x \notin F$ and $y \notin F$. According to Proposition 6.11, there exists $z \in X - F$ such that $x \leq z$ and $y \leq z$. Hence $z \in [x)$ and $z \in [y)$, i.e. $z \in [x) \cap [y] \subseteq F$, which is a contradiction. Therefore the proof is completed. \Box

7 Nodal UP-filter

In this section, we introduce the notion of nodal UP-filters of UPalgebras and investigate some properties of them.

Definition 7.1. A node of a UP-algebra X is an element which is comparable with every element of X. It is clear that 0 is a node in any UP-algebra.

Note. An element $x \in X$ is a node if and only if for every $y \in X$, either $x \cdot y = 0$ or $y \cdot x = 0$.

We denote , the set of all node elements of a UP-algebra X, by nod(X).

Example 7.2. Consider Example 4.3. Clearly, $nod(X) = \{a, 0\}$.

Definition 7.3. A UP-filter F of a UP-algebra X, will be called a nodal UP-filter of X, if F is a node of UF(X).

Example 7.4. In the Example 4.3, $\{0\}$ and $\{b, c, 0\}$ are all of nodal UP-filters of X and $\{b, 0\}$ and $\{c, 0\}$ are not nodal UP-filters.

We denote by nod(UF(X)) the set of all nodal UP-filters of a UPalgebra X.

Theorem 7.5. Let F be a UP-filter of a UP-algebra X. If for all $x \in X$ and for all $y \notin F$, the relation y < x is satisfied, then F is a nodal UP-filter of X.

Proof. Let us suppose that there exists a UP-filter G incomparable with F. Then there are elements $x, y \in X$ such that $x \in F - G$, $y \in G - F$ and $y \not< x$. Thus it is contrary, so every UP-filter G of X is comparable with F, i.e. F is a nodal UP-filter of X. \Box

Recall that, according to Proposition 3.5, in general, [a) is not a UP-filter of X. [a) is a UP-filter of X if and only if $\{0\}$ is an implicative UP-filter of X.

Theorem 7.6. Let F be a nodal UP-filter of X and $\{0\}$ be an implicative UP-filter of X. If $x \in F$ and $y \notin F$ then y < x, for every $x, y \in X$.

Proof. Let F be a nodal UP-filter of X. Hence according to Theorem 4([7]), for all $x, y \in X$, $[x) \subseteq F$ and $F \subseteq [y)$. Thus $[x) \subseteq F \subseteq [y)$, so $x \in [y)$ i.e. y < x. \Box

Corollary 7.7. Let X be a UP-algebra and $\{0\}$ be an implicative UPfilter of X. nod(UF(X)) = UF(X) if and only if X is a chain.

Proof. Let $\operatorname{nod}(\operatorname{UF}(X)) = \operatorname{UF}(X)$. According to Theorem $4([7]), [x) \subseteq [y)$ or $[y) \subseteq [x)$, for all $x, y \in X$. Therefore $x \in [y)$ or $y \in [x)$. So y < x or x < y. Conversely, Let X be a chain and F be a UP-filter of X. Also assume that $x \in F$ and $y \notin F$. So x < y or y < x. If x < y then $y \in F$, which is a contradiction. Hence y < x. So based on Theorem 7.5, F is a nodal UP-filter of X. \Box

Proposition 7.8. Let X be a UP-algebra and $\{0\}$ be an implicative UP-filter of X. Then $x \in \text{nod}(X)$ if and only if [x) is a nodal UP-filter of X.

Proof. Let $x \in \text{nod}(X)$ and F be a UP-filter of X. If $x \in F$ then $[x) \subseteq F$. Now let $x \notin F$. If $F \nsubseteq [x)$, then there exists $y \in F$ such that $y \notin [x)$. So $x \notin y$ and since x is a node, then y < x. So $x \in F$, it is contrary. Hence if $x \notin F$ then $F \subseteq [x)$ i.e. [x) is a nodal UP-filter. Conversely, let [x) be a nodal UP-filter of X and $y \in X$. Then $[x) \subseteq [y)$ or $[y) \subseteq [x)$. If $[x) \subseteq [y)$ then $x \in [y)$. Therefore y < x. If $[y) \subseteq [x)$ then x < y. Therefore x is a node of X. \Box

Theorem 7.9. Let X be a UP-algebra satisfying in condition (19) and F is an implicative and nodal UP-filter of X and x is a node of X. Then $[F \cup \{x\})$ is a nodal UP-filter of X.

Proof. Let $a \in [F \cup \{x\})$. Then based on Theorem 6([7]), $x \cdot a \in F$. If $x \in F$ then $a \in F$. Therefore $[F \cup \{x\}) = F$, i.e. then $[F \cup \{x\})$ is a nodal UP-filter of X. Let $x \notin F$. According to Proposition 7.8, [x) is a nodal UP-filter of X. Using Theorem $3 \cdot 6(2)$, as $F \cup \{x\} \subseteq F \cup [x)$, so $[F \cup \{x\}) \subseteq [F \cup [x])$. Now let $a \in [F \cup [x])$. So for $g \in [x)$, $g \cdot a \in F$. Since $x \leq g$ so $g \cdot a \leq x \cdot a$ and so $x \cdot a \in F$. Hence $a \in [F \cup \{x\})$, thus

 $[F \cup \{x\}) = [F \cup [x]) = F \cup [x]$. It is known that union of two nodal UP-filters, is a nodal UP-filter, thus $[F \cup \{x\})$ is a nodal UP-filter of X. \Box

Proposition 7.10. Let X be a UP-algebra. If X has n node elements and $\{0\}$ be an implicative UP-filter of X, then it has at least n nodal UP-filters.

Proof. Let x be a node of X, then [x) is a nodal UP-filter. Now assume that x and y be two node elements of X. If [x) = [y) then $x \in [y)$ and $y \in [x)$. So $x \ge y$ and $y \ge x$. Thus x = y. Therefore, if X has n node elements, then it has at least n nodal UP-filters. \Box

8 Conclusion

In this paper, we investigated the properties of UP-algebras. In addition, due to the great importance of filters in logical algebras, we introduced other types of UP-filters in these algebras and studied their properties. We defined normal, prime and nodal UP-filters in UP-algebra and examined their properties. We have also proved or disproved the relationships between the types of UP-filters in these algebras with theorems or examples.

In the continuation of this article, we can define and study other types of UP-filters and study UP-algebra in more detail. In our future work, we are going to consider the notion of the radical of UP-filters and try to define other types of UP-filters in UP-algebras. We hope this work would serve as a foundation for further studies on the structure of UP-algebras and develop corresponding many-valued logical systems.

Acknowledgements

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

Q. P. Hu and X. Li, On BCH-algebras, *Math. Semin. Notes, Kobe Univ*, 11 (1983), 313-320.

- [2] A. Iampan, A new branch of the logical algebra: UP-algebras, *Journal of Algebra and Related Topics*, 5(1) (2017), 35-54.
- [3] A. Iampan, Introducing fully UP-semigroups, Discussiones Mathematicae-General Algebra and Applications, 38(2) (2018), 297-306.
- [4] A. Iampan, The UP-isomorphism theorems for UP-algebras, Discussiones Mathematicae General Algebra and Applications, 39 (2019), 113-123.
- [5] Y. Imai and K. Iséki, On axiom system of propositional calculi, XIV, Proc. Japan. Acad, 42(1) (1966), 19-22.
- [6] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad, 42(1) (1966), 26-29.
- [7] Y. Jun and A. Iampan, Implicative UP-filters, Afrika Matematika, 30 (2019), 1093-1101.
- [8] Y. Jun and A. Iampan, Shift UP-filters and decompositions of UPfilters in UP-algebras, *Missouri Journal of Mathematical Sciences*, 31(1) (2019), 36-45.
- [9] W. Kaijae, P. Poungsumpao, S. Arayarangsi and A. Iampan, UPalgebras charactrized by their anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras, *Italian Journal of Pure and Applied Mathematics*, 36 (2016), 667692.
- [10] S. Keawrahun and U. Leerawat, On isomorphisms of SU-algebras, Sci. Magna, 7(2) (2011), 39-44.
- [11] C. Prabpayak and U. Leerawat, On ideals and congruences in KUalgebra, *Scientia Magna*, 5(1) (2009), 54-57.
- [12] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan, Fuzzy sets in UP-algebra, Annals of Fuzzy Mathematics and Informatics, 12 (2016), 739-756.

24 Z. PARVIZI, S. MOTAMED AND F. KHAKSAR HAGHANI

Zahra Parvizi

Department of Mathematics PhD student Shahrekord Branch, Islamic Azad University Shahrekord, Iran. E-mail: zparvizi73@yahoo.com

Somayeh Motamed

Department of Mathematics Assistant Professor of Mathematics Bandar Abbas Branch, Islamic Azad University Bandar Abbas, Iran. E-mail: s.motamed63@yahoo.com

Farhad Khaksar Haghani

Department of Mathematics Associate Professor of Mathematics Shahrekord Branch, Islamic Azad University Shahrekord, Iran. E-mail: haghani1351@yahoo.com