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1 Introduction

Among many algebraic structures, algebras of logic form important class
of algebras. Examples of these are BCK-algebras [5], BCI-algebras [6],
BCH-algebras [1], KU-algebras [11], SU-algebras [10] and others. They
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are strongly connected with logic. For example, BCI-algebras intro-
duced by Iséki [6] in 1966 have connections with BCI-logic being the
BCI-system in combinatory logic which has application in the language
of functional programming. BCK and BCI-algebras are two classes of
logical algebras. They were introduced by Imai and Iséki [5], [6] in
1966 and have been extensively investigated by many researchers. It
is known that the class of BCK-algebras is a proper subclass of the
class of BCI-algebras. Iampan [2] now introduced a new algebraic struc-
ture, called a UP-algebra and a concept of UP-ideals, congruences and
UP-homomorphisms in UP-algebras, and defined a congruence relation
on a UP-algebra and a quotient UP-algebra Somjanta, et al. [12] in-
troduced the notion of UP-filters and discussed the fuzzy set theory
of UP-subalgebras, UP-ideals and UP-filters. Kaijae and et al., intro-
duced anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras concepts of
UP-algebras. They also introduced the notions of Cartesian product and
dot product of fuzzy sets and they discussed the relation between anti-
fuzzy UP-ideals and level subsets of a fuzzy set, [9]. Jun and Iampan
introduced the notions of implicative UP-filters, comparative UP-filters
and shift UP-filters in a UP-algebra, ([7],[8]).

The objective of this paper is to develop and define new concepts
for investigating UP-algebras. This paper motivated by the previous re-
searches on types of UP-filters in UP-algebras, extends the new notions
of UP-filters to the UP-algebras. Furthermore, several new properties
for implicative UP-filters and shift UP-filters in UP-algebras are ob-
tained. Also, new types of UP-filters in UP-algebras are introduced and
several characterizations for them are found. The structure of the pa-
per is as follows: Section 2 is a recall of some definitions and results
about UP-algebras that are used in the paper. In section 3, some results
in UP-algebra, are obtained. In section 4, many different characteri-
zations and many important properties of comparative UP-filters and
implicative UP-filters in UP-algebras, are proved. In section 5, a new
UP-filter (normal UP-filter) in UP-algebras are introduced and some ba-
sic properties for them are provided. In section 6, a new UP-filter (prime
UP-filter) in UP-algebras are introduced. In section 7, a new UP-filter
(nodal UP-filter) in UP-algebras are introduced and some properties for
them are investigated.
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2 Preliminaries

In this section, we recall some definitions, properties and results relative
to UP-algebras which will be used in the following.

Definition 2.1. [2] An algebra X = (X, ·, 0) of type (2, 0) is called a
UP-algebra, if it satisfies following conditions, for all , x, y, z ∈ X:

(1) (y · z) · ((x · y) · (x · z)) = 0,

(2) 0 · x = x,

(3) x · 0 = 0,

(4) if x · y = 0 = y · x then x = y.
Define a binary relation ≤ on a UP-algebra X as follows:

(5) x ≤ y if and only if x · y = 0.

Proposition 2.2. ([2],[3]) In a UP-algebra X, the following assertions
are valid, for a, x, y, z ∈ X:

(1) x · x = 0,

(2) if x · y = 0 and y · z = 0 then x · z = 0,

(3) if x · y = 0 then (z · x) · (z · y) = 0,

(4) if x · y = 0 then (y · z) · (x · z) = 0,

(5) x · (y · x) = 0,

(6) (y · x) · x = 0 if and only if x = y · x,
(7) x · (y · y) = 0,

(8) (x · (y · z)) · (x · ((a · y) · (a · z))) = 0,

(9) (((a · x) · (a · y)) · z) · ((x · y) · z) = 0,

(10) ((x · y) · z) · (y · z) = 0,

(11) if x · y = 0 then x · (z · y) = 0,

(12) ((x · y) · z) · (x · (y · z)) = 0,

(13) ((x · y) · z) · (y · (a · z)) = 0.

Definition 2.3. Let X be a UP-algebra.

(1) A subset F of X is called a UP-filter of X, if 0 ∈ F and if
x, x · y ∈ F then y ∈ F , for all x, y ∈ X, [12].

(2) A subset B of X is called a UP-ideal of X, if it satisfies in the
following properties:

(i) the constant 0 ∈ B, and

(ii) for any x, y, z ∈ X; x · (y · z) ∈ B and y ∈ B imply x · z ∈ B, [2].
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The set of all UP-filters of a UP-algebra X is denoted by UF(X).

Definition 2.4. [2] Let X = (X, ·, 0) be a UP-algebra. A subset S of
X is called a UP-subalgebra of X, if the constant 0 of X is in S, and
(S, ·, 0) itself forms a UP-algebra.

Definition 2.5. A subset F of a UP-algebra X is called
• an implicative UP-filter of X, if 0 ∈ F and for all x, y, z ∈ X, if

x · (y · z) ∈ F and x · y ∈ F then x · z ∈ F , [7].
• a shift UP-filter of X, if 0 ∈ F and for all x, y, z ∈ X, if x·(y ·z) ∈ F

and x ∈ F then ((z · y) · y) · z ∈ F , [8].
• a comparative UP-filter of X, if x · ((y · z) · y) ∈ F and x ∈ F then

y ∈ F , for , x, y, z ∈ X, [8].

Definition 2.6. [7] Let X ba a UP-algebra.
(i) For a ∈ X, [a) := {x ∈ X : a ≤ x}.
(ii) For any subset F of X, [F ) =

⋂
F⊆G∈UF(X)

G. Then [F ) is the

smallest UP-filter of X containing F .

3 Some New Properties for UP-algebras

In this section, we investigate the structure of UP-algebras. Also, some
new results of UP-algebras are obtained.

According to Definition 2.1 and Proposition 2.2:

Lemma 3.1. Let X be a UP-algebra and a, x, y, z ∈ X. Then the fol-
lowing conditions hold:

(1) y · z ≤ (x · y) · (x · z),
(2) x ≤ 0,
(3) if x ≤ y and y ≤ x then x = y,
(4) x ≤ x,
(5) if x ≤ y then z · x ≤ z · y,
(6) if x ≤ y then y · z ≤ x · z,
(7) if x ≤ y and y ≤ z then x ≤ z,
(8) x ≤ y · x,
(9) y · x ≤ x if and only if x = y · x,
(10) x ≤ y · y,
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(11) x · (y · z) ≤ x · ((a · y) · (a · z)),
(12) ((a · x) · (a · y)) · z ≤ (x · y) · z,
(13) (x · y) · z ≤ y · z,
(14) if x ≤ y then x ≤ z · y,
(15) (x · y) · z ≤ x · (y · z),
(16) (x · y) · z ≤ y · (a · z),
(17) if 0 ≤ x then x = 0,
(18) x ≤ (y · x) · x.

Lemma 3.2. Let X be a UP-algebra and for all x, y, z ∈ X,
(19) x · (y · z) = y · (x · z).

Then the following conditions hold:
(20) y ≤ (y · x) · x,
(21) x · y ≤ ((y · z) · (x · z).

Proof. According to condition (19) and Proposition 2.2, y ·((y ·x) ·x) =
(y · x) · (y · x) = 0. Therefore y ≤ (y · x) · x. Simillary according to
condition (19) and Definition 2.1,

(x · y) · ((y · z) · (x · z)) = (y · z) · ((x · y) · (x · z)) = 0.

Therefore x · y ≤ (y · z) · (x · z). □
The following example shows that the condition (19) in Lemma 3.2

is necessary.

Example 3.3. (1) LetX = {a, b, c, 0} be a set with the binary operetion
· which is given in the following table:

· 0 a b c

0 0 a b c

a 0 0 a b

b 0 0 0 b

c 0 0 0 0

Then (X, ·, 0) is a UP-algebra ([8]). Clearly, condition (19) is not hold,
since a · (b · c) ̸= b · (a · c), and the condition (20) is not hold since
a ≰ (a · c) · c = b.
(2) Let X = {a, b, c, 0} be a set with the binary operation · which is
given in the following table:
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· 0 a b c

0 0 a b c

a 0 0 b c

b 0 0 0 c

c 0 0 a 0

Then (X, ·, 0) is a UP-algebra ([7]). Clearly, condition (19) is not hold,
since a · (c · b) ̸= c · (a · b) and the condition (21) is not hold since
a · c ≰ (c · b) · (a · b).

Lemma 3.4. Let X be a UP-algebra which satisfies in condition (19).
Then for all x, y, z ∈ X the following statements are equivalent :

(1) ((x · y) · y) · x = y · x,
(2) (x · y) · y = (y · x) · x,
(3) If x · z ≤ y · z and z ≤ x then y ≤ x,

(4) If x · z ≤ y · z and z ≤ x, y then y ≤ x,

(5) If y ≤ x then (x · y) · y = x.

Proof. (1 ⇔ 2) Let ((x · y) · y) · x = y · x, for all x, y ∈ X. Then using
condition (19) and hypothesis, ((x · y) · y) · ((y · x) · x) = (y · x) · (((x ·
y) · y) · x) = (y · x) · (y · x) = 0, that is (x · y) · y ≤ (y · x) · x. Similarly,
(y · x) · x ≤ (x · y) · y. Therefore (y · x) · x = (x · y) · y, for all x, y ∈ X.
(2 ⇒ 3) Let x, y, z ∈ X, such that x · z ≤ y · z and z ≤ x. Then using
condition (19) and hypothesis, 0 = (x · z) · (y · z) = y · ((x · z) · z) =
y · ((z · x) · x) = y · (0 · x) = y · x. Therefore y ≤ x.
(3 ⇒ 4) It is trivial.
(4 ⇒ 5) Let x, y ∈ X such that y ≤ x. Using condition (20), x · y ≤
((x · y) · y) · y. According to part (4), (x · y) · y ≤ x, therefore based on
condition (20), (x · y) · y = x, for x, y ∈ X.
(5 ⇒ 2) As x ≤ (y · x) · x, then ((y · x) · x) · y ≤ x · y. Also using
condition (19), y ≤ (y · x) · x. Hence according to Lemma 3.1 and Part
(5), (x ·y) ·y ≤ ((y ·x) ·x) ·y) ·y = (y ·x) ·x. Similarly, since y ≤ (x ·y) ·y,
then ((x · y) · y) · x ≤ y · x. Using x ≤ (x · y) · y, Lemma 3.1 and Part
(5), we get (y · x) · x ≤ (((x · y) · y) · x) · x = (x · y) · y. Therefore
(x · y) · y = (y · x) · x, for all x, y ∈ X. □

Proposition 3.5. [7] Let X ba a UP-algebra.
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(i) In general, [a) is not a UP-filter of X. [a) is a UP-filter of X if
and only if {0} is an implicative UP-filter of X.

(ii) If X satisfying in the condition (19), for a nonempty subset F of
X, then [F ) = {x ∈ X : a1·(a2·(. . . (an·x) . . .)) = 0, for some a1, . . . , an ∈
F}.

Theorem 3.6. Let X be a UP-algebra, F , G be nonempty subsets of X
and a, b ∈ X. Then

(1) if X satisfying in the condition (19) and a ≤ b then [b) ⊆ [a),

(2) if [b) ⊆ [a) then a ≤ b,

(3) F is a UP-filter of X if and only if [F ) = F ,

(4) if F ⊆ G then [F ) ⊆ [G),

(5) if G is a UP-filter of X and [F ) ⊆ [G) then F ⊆ G.

Proof.

(1) Let a ≤ b. Assume that z ∈ [b), then b ≤ z and so b ·z = 0. Using
Lemma 3.2(21), a ·b ≤ (b ·z) ·(a ·z) and as a ·b = 0, then (b ·z) ·(a ·z) = 0.
Since b · z = 0, thus a · z = 0, therefore z ∈ [a), i.e. [b) ⊆ [a).

(2) Let [b) ⊆ [a). As b ∈ [b) so b ∈ [a). Therefore a ≤ b.

(3) It is known that [F ) =
⋂

F⊆G∈UF(X)

G. Assume that x ∈ [F ). As

F is a UP-filter, then x ∈ F . Therefore [F ) = F . The converse is clear.

(4) Let x ∈ [F ). It is known that [F ) =
⋂

F⊆H∈UF(X)

H, i.e. x ∈ H,

for all H ∈ UF(X) where F ⊆ H. So x ∈ G. As G ⊆ [G). Therefore
x ∈ [G), i.e. [F ) ⊆ [G).

(5) The proof is clear.

□

Definition 3.7. Let X be a UP-algebra and F be a UP-filter of X. For
x, y ∈ X, we define the binary relation ∼F on X, x ∼F y if and only
if x · y ∈ F and y · x ∈ F .

Example 3.8. [4] Consider a UP-algebra X = {a, b, c, d, 0} with the
binary operation · which is given in the following table:
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· 0 a b c d

0 0 a b c d

a 0 0 b c d

b 0 0 0 c d

c 0 0 b 0 d

d 0 0 0 0 0

Clearly, F = {a, c, 0} is a UP-filter of X. It is easy to verify that a ∼F c,
since a · c = c and c · a = 0. But a ̸∼F b, since a · b = b /∈ F .

Proposition 3.9. Let X be a UP-algebra satisfying in condition (19)
and F be a UP-filter of X. A binary relation ∼F is a congruence relation
of X.

Proof. As x ·x = 0 ∈ F , then x ∼F x. Hence we conclude that a binary
relation ∼F is reflexive. Now let x ∼F y, for x, y ∈ X. Then x · y ∈ F
and y · x ∈ F , so y ∼F x. It can be concluded that ∼F is symmetric.
Let x ∼F y and y ∼F z, for x, y, z ∈ X. Then x · y ∈ F , y · x ∈ F and
y · z ∈ F , z · y ∈ F . As (y · z) · ((x · y) · (x · z)) = 0 ∈ F and y · z ∈ F then
(x · y) · (x · z) ∈ F . Also x · y ∈ F , it follows that x · z ∈ F . Similarly, as
(z · y) · ((y · x) · (z · x)) = 0 ∈ F and z · y ∈ F then (y · x) · (z · x) ∈ F .
Also y · x ∈ F , we conclude that z · x ∈ F . Thus x ∼F z. Hence ∼F is
transitive. Therefore ∼F is an equivalence relation on X. Now, assume
tha x ∼F u and y ∼F v, for x, y, u, v ∈ X. Then x ·u ∈ F , u ·x ∈ F and
y · v ∈ F , v · y ∈ F . As (v · y) · ((x · v) · (x · y)) = 0 ∈ F , and v · y ∈ F ,
then (x ·v) · (x ·y) ∈ F . Similarly, we get (y ·v) · ((x ·y) · (x ·v)) = 0 ∈ F .
As y · v ∈ F , so (x · y) · (x · v) ∈ F . Therefore x · y ∼F x · v. On the
other hand, (u · v) · ((x · u) · (x · v)) = 0 ∈ F . Using condition (19),
(x · u) · ((u · v) · (x · v)) = 0 ∈ F . As x · u ∈ F , then (u · v) · (x · v) ∈ F .
Similarly, (x · v) · ((u · x) · (u · v)) = 0 ∈ F . Using condition (19),
(u · x) · ((x · v) · (u · v)) = 0 ∈ F . As u · x ∈ F then (x · v) · (u · v) ∈ F .
Thus x · v ∼F u · v. According to transitivity of ∼F , x · y ∼F u · v.
Therefore ∼F is a congruence relation on X. □

Note that, in Proposition 3.9, the condition (19) was not necessary
to prove the equivalence relation ∼F and it was necessary to prove the
congruence relation ∼F . The following example shows that the condition
(19) is necessary for congruence relation.
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Example 3.10. Let X = {a, b, c, 0} be a set with the binary operetion
· which is given in the following table:

· 0 a b c

0 0 a b c

a 0 0 b b

b 0 0 0 b

c 0 0 0 0

Then (X, ·, 0) is a UP-algebra ([8]). Clearly, F = {a, 0} is a UP-filter
and condition (19) is not hold, since a · (b · c) ̸= b · (a · c). It is easy to
verify that a ∼F 0, c ∼F c while a · c ̸∼F 0 · c.

Let X be a UP-algebra and ρ be a congruence relation on X. The
ρ-class of x ∈ X is the (x)ρ = {y ∈ X : y ρ x}. The quotient set of X
by ρ, is denoted by X/ρ = {(x)ρ : x ∈ X}.

Theorem 3.11. Let X be a UP-algebra satisfying in condition (19) and
ρ be a congruence relation on X. Then the following statements hold:

(1) A ρ-class (0)ρ is a UP-filter and a UP-subalgebra of X,
(2) A ρ-class (x)ρ is a UP-filter of X if and only if x ρ 0,
(3) A ρ-class (x)ρ is a UP-subalgebra of X if and only if x ρ 0.

Proof. According to Definition 2.4, the proof is clear. □

Theorem 3.12. Let X be a UP-algebra satisfying in condition (19) and
F be a UP-filter of X. Then the following statements hold:

(1) (0)∼F is a UP-filter and a UP-subalgebra of X contained in F ,
(2) (x)∼F is a UP-filter of X if and only if x ∈ F ,
(3) (x)∼F is a UP-subalgebra of X if and only if x ∈ F ,
(4) (X/ ∼F , ∗, (0)∼F ) is a UP-algebra under a binary relation ∗ de-

fined by (x)∼F ∗ (y)∼F = (x · y)∼F , for all x, y ∈ X. X/ ∼F is called a
quotient UP-algebra of X induced by a congruence relation ∼F .

Proof. Based on Proposition 3.9 and Theorem 3.11, the proofs are
obvious. □

Proposition 3.13. Let X be a UP-algebra satisfying in condition (19)
and F be a UP-filter of X. Then
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(1) (x)F = (0)F if and only if x ∈ F ,
(2) (x)F ≤ (y)F if and only if x · y ∈ F ,
(3) (x)F = (y)F if and only if x · y ∈ F and y · x ∈ F if and only if

x∼F y.

Proof. According to Definition 2.1 and Theorem 3.12, the proof is easy.
□

4 Comparative UP-filters and Implicative UP-
filters

In this section we have established new characterizations and connec-
tions between comparative UP-filters, implicative UP-filters and maxi-
mal UP-filters in UP-algebras.

Theorem 4.1. Let X be a UP-algebra satisfying in condition (19) and
F be an implicative UP-filter of X. Then F is a comparative UP-filter
if and only if (x · y) · y ∈ F implies (y · x) · x ∈ F , for x, y ∈ X.

Proof. Let F be a comparative UP-filter and (x · y) · y ∈ F . From
x ≤ (y · x) · x, and based on Lemma 3.1(7), ((y · x) · x) · y ≤ x · y.
According to Lemma 3.1, (x · y) · y ≤ (y ·x) · ((x · y) ·x). Using condition
(19), (x·y)·y ≤ (x·y)·((y ·x)·x) based on Lemma 3.1, (x·y)·((y ·x)·x) ≤
(((y · x) · x) · y) · ((y · x) · x). Hence (((y · x) · x) · y) · ((y · x) · x) ∈ F .
As F is a comparative UP-filter, then (y · x) · x ∈ F . Conversely, let
z · ((x · y) · x) ∈ F and z ∈ F . By Theorem 1([7]), we conclude that F
is a UP-filter, so (x · y) · x ∈ F . By condition (20), it can be concluded
that x ≤ (x ·y) ·y. Then using Lemma 3.1, (x ·y) ·x ≤ (x ·y) · ((x ·y) ·y),
and we have (x ·y) · ((x ·y) ·y) ∈ F . As F is an implicative UP-filter and
(x · y) · (x · y) = 0 ∈ F , then (x · y) · y ∈ F . Therefore considering to the
hypothesis (y·x)·x ∈ F . Since y ≤ x·y, we get that (x·y)·x ≤ y·x. Based
on Lemma 3.1, y ·x ≤ z · (y ·x). As a result we have (x ·y) ·x ≤ z · (y ·x),
and so z · (y · x) ∈ F . As z ∈ F and F is a UP-filter, then y · x ∈ F .
Hence x ∈ F . Thus the proof is completed.

□

Proposition 4.2. Let X be a UP-algebra which satisfies in condition
(19) and F be a comparative UP-filter of X. Then F is an implicative
UP-filter, but the converse is not true.
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Proof. Let F be a comparative UP-filter and x · (y · z) ∈ F , x · y ∈ F ,
for x, y, z ∈ X. We have y · (x · z) ≤ (x · y) · (x · (x · z)). Using condition
(19), x · (y · z) ≤ (x · y) · (x · (x · z)). Hence (x · y) · (x · (x · z)) ∈ F . Since
F is a UP-filter and x · y ∈ F then x · (x · z) ∈ F . In other hand we
have x · (x · z) ≤ ((x · z) · z) · (x · z). So ((x · z) · z) · (x · z) ∈ F . As F is
a comparative UP-filter, then x · z ∈ F . Therefore F is an implicative
UP-filter. □

For the converse consider:

Example 4.3. Let X = {a, b, c, 0} be a set with the binary operation ·
which is given in the following table:

· 0 a b c

0 0 a b c

a 0 0 0 0

b 0 a 0 c

c 0 a b 0

Then (X, ·, 0) is a UP-algebra ([4]). Clearly, F = {b, 0} is an implicative
UP-filter, while it is not a comparative. Since (c · a) · c = 0 ∈ F , but
c /∈ F .

Theorem 4.4. Let X be a UP-algebra which satisfies in condition (19)
and F be a comparative UP-filter of X. Every UP-filter G containing F
is also a comparative UP-filter.

Proof. Let F be a comparative UP-filter and G be a UP-filter such that
F ⊆ G. Then F is an implicative UP-filter. Using Theorem 13([7]), G
is an implicative UP-filter. Suppose that (y · x) · x ∈ G, for x, y ∈ X.
Denote u = (y · x) · x. Using u · ((y · x) · x) = 0 ∈ F , F is an implicative
UP-filter and Theorem 10([7]), (y ·(u ·x)) ·(u ·x) = (u ·(y ·x)) ·(u ·x) ∈ F .
So according to Theorem 4.1, ((u · x) · y) · y ∈ F ⊆ G. Based on Lemma
3.1 consider

(y · x) · x ≤ (((y · x) · x) · x) · x = (u · x) · x
≤ (x · y) · ((u · x) · y) ≤ (((u · x) · y) · y) · ((x · y) · y).

So (((u · x) · y) · y) · ((x · y) · y) ∈ G. Using ((u · x) · y) · y ∈ G, we get
that (x · y) · y ∈ G and so the proof is completed. □
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Theorem 4.5. Let X be a UP-algebra satisfying in condition (19). The
following condition are equivalent:

(1) {0} is a comparative UP-filter,
(2) every UP-filter of X is a comparative UP-filter,
(3) [a) = {x ∈ X : a ≤ x} is a comparative UP-filter, for all a ∈ X,
(4) (x · y) · x = x, for all x, y ∈ X.

Proof. (1 ⇔ 2) According to Theorem 4.4 the proof is clear.
(2 ⇒ 3) According to hypothesis {0} is a comparative UP-filter, and
{0} is an implicative UP-filter. As a ≤ 0 then 0 ∈ [a). Assume that
x, x · y ∈ [a), for x, y ∈ X. Then a · x = 0 and a · (x · y) = 0. Then
a · y = 0, since {0} is an implicative UP-filter. And so a ≤ y. Therefore
y ∈ [a), i.e. [a) is a UP-filter. Using (2), [a) is a comparative UP-filter.
(3 ⇒ 4) We have (x · y) · x ∈ [(x · y) · x). According to hypothesis,
[(x · y) · x) is a comparative UP-filter. Then based on Lemma 2 · 6([8]),
x ∈ [(x ·y) ·x) and so (x ·y) ·x ≤ x. Hence x = (x ·y) ·x, for all x, y ∈ X.
(4 ⇒ 1) The proof is easy, based on Lemma 2 · 6([8]). □

Definition 4.6. A UP-filter M of a UP-algebra X is called maximal, if
it is not properly contained in any other UP-filter of X.

Example 4.7. In Example 4.3, F = {b, 0} is not a maximal UP-filter
and G = {b, c, 0} is a maximal UP-filter.

Recall that Fy = {x ∈ X : y · x ∈ F}, [7].

Lemma 4.8. Let X be a UP-algebra satisfying in condition (19) and F
be a UP-filter of X. Then the following conditions are equivalent:

(1) F is a maximal and comparative UP-filter,
(2) F is a maximal and implicative UP-filter,
(3) if x, y /∈ F then x · y ∈ F and y · x ∈ F , for all x, y ∈ X.

Proof. (1 ⇒ 2) By Proposition 4.2, the proof is clear.
(2 ⇒ 3) Let x, y /∈ F , for x, y ∈ X. According to Theorem 11([7]), Fy

is a UP-filter. Assume that t ∈ F , we have t ≤ y · t. So y · t ∈ F , i.e.
t ∈ Fy. Hence F ⊆ Fy ⊆ X. According to hypothesis, F is a maximal
UP-filter, so F = Fy or Fy = X. As y · y = 0 ∈ F , then y ∈ Fy and
y /∈ F , so Fy = X. Then x ∈ Fy and so y · x ∈ F . Similarly x · y ∈ F .
(3 ⇒ 1) Assume that F is not a comparative UP-filter. Then by Lemma
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2 · 6([8]), there exist x, y ∈ X, (x · y) · x ∈ F such that x /∈ F . The
following cases are considered:

(Case 1) If y ∈ F then x · y ∈ F , since y ≤ x · y. Hence x ∈ F . Since
(x · y) · x ∈ F , which is a contradiction.

(Case 2) If y /∈ F , then according to part (3), x · y ∈ F . Since
(x · y) · x ∈ F , then x ∈ F , that is a contradiction.
Hence F is a comparative UP-filter. Now let G be a UP-filter of X such
that F ⫋ G ⊆ X and t ∈ G − F . We need to show that G = X. Now
let a /∈ F . As a · a = 0 ∈ F , then a ∈ Fa. Assume that b ∈ F . As
b ≤ a · b, so b ∈ Fa. Then F ⊆ Fa. Therefore F ∪ {a} ⊆ Fa. Now let
H be a UP-filter of X such that F ∪ {a} ⊆ H and assume that x ∈ Fa.
Then a · x ∈ F and since F ⊆ H, a · x ∈ H. Hence x ∈ H. Therefore Fa

is the least UP-filter containing F and a. Take u ∈ X. The following
cases are considered:

(Case 1) If u ∈ F , then u ∈ Fa. So X ⊆ Fa, i.e. X = Fa.

(Case 2) If u /∈ F , then based on part (3) and a /∈ F , a · u ∈ F . So
u ∈ Fa. Therefore X ⊆ Fa, i.e. X = Fa.
As Ft is the least UP-filter containing F and t, so F ⊆ Ft ⊆ G ⊆ X. As
t /∈ F , then Ft = X and so G = X. Therefore F is a maximal UP-filter.
□

Theorem 4.9. Let X be a UP-algebra satisfying in condition (19) and
F be a UP-filter of X. F is a comparative UP-filter of X if and only if
every UP-filter of a quotient algebra X/F is a comparative UP-filter.

Proof. Let F be a comparative UP-filter of X and x, y ∈ X such that
((x)F ∗ (y)F )) ∗ (x)F = (0)F . Then ((x · y) ·x)F = (0)F so (x · y) ·x ∈ F .
Using Lemma 2 · 6([8]), x ∈ F . So (x)F = (0)F which proves {(0)F }
is a comparative UP-filter. By Theorem 4.5, every UP-filter of X/F , is
a comparative UP-filter. Conversely, let (x · y) · x ∈ F , for x, y ∈ X.
Then ((x)F ∗ (y)F )) ∗ (x)F = ((x · y) · x)F = (0)F . Since {(0)F } is
a comparative of X/F , then (x)F = (0)F , i.e. x ∈ F . Hence F is a
comparative UP-filter of X.

□
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5 Normal UP-filter

In this section we introduce a class of new UP-filters that called normal
UP-filters and we give some related results.

Definition 5.1. UP-filter F of X is called a normal UP-filter if for
x, y, z ∈ X, z · ((y · x) · x) ∈ F and z ∈ F then (x · y) · y ∈ F .

Example 5.2. Let X = {a, b, c, 0} be a set with the binary operation ·
which is given in the following table:

· 0 a b c

0 0 a b c

a 0 0 0 c

b 0 a 0 c

c 0 a b 0

Then (X, ·, 0) is a UP-algebra ([8]). Clearly, F = {b, 0} is a normal
UP-filter and G = {c, 0} is not a normal, since c · ((b · a) · a) ∈ G and
c ∈ G , but (a · b) · b = b /∈ G.

According to Definition 5.1:

Theorem 5.3. Let F be a UP-filter of a UP-algebra X. F is a normal
UP-filter if and only if (y · x) · x ∈ F implies (x · y) · y ∈ F , for all
x, y ∈ X.

Proof. Let F be a normal UP-filter of X and (y · x) · x ∈ F , for any
x, y ∈ X. Since 0 · ((y · x) · x) ∈ F and 0 ∈ F , then by using hypothesis
we get that (x · y) · y ∈ F . Conversely, let z · ((y · x) · x) ∈ F and z ∈ F ,
for any x, y, z ∈ X. As F is a UP-filter of X, (y · x) · x ∈ F . According
to hypothesis, we conclude that (x · y) · y ∈ F . Therefore, F is a normal
UP-filter of X.

□

Proposition 5.4. Let X be a UP-algebra which satisfies in condition
(19) and F be an implicative UP-filter of X. Then the following condi-
tions are equivalent:

(1) F is a normal UP-filter of X,
(2) F is a comparative UP-filter of X,
(3) (x · y) · x ∈ F implies x ∈ F , for all x, y ∈ X.
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Proof. According to Theorem 4.1, Theorem 5.3 and Lemma 2 · 6([8]),
the proof is clear. □

Proposition 5.5. Let X be a UP-algebra which satisfies in condition
(19) and F be a comparative UP-filter of X. Then F is a normal UP-
filter, but the converse is not true.

Proof. Based on Theorem 4.1, the proof is easy. □

Example 5.6. Consider Example 5.2. It is clear that F = {0} is a
normal UP-filter, while it is not a comparative UP-filter. Since (b·a)·b =
0 ∈ F but b /∈ F .

The following example shows that every implicative UP-filter is not
a normal UP-filter.

Example 5.7. In Example 4.3, F = {b, 0} is an implicative UP-filter,
while it is not a normal UP-filter, since (c · a) · a = 0 ∈ F but (a · c) · c =
c /∈ F .

The following example shows that a normal UP-filter is not an im-
plicative UP-filter.

Example 5.8. Consider Example 3.3(1). It is easy to check that F =
{0} is a normal UP-filter, while it is not an implicative UP-filter. Since
b · (a · c) = 0 ∈ F and b · a = 0 ∈ F and b · c = b /∈ F .

The follwoing example shows that the conditions in Proposition 5.4
are necessary.

Example 5.9. In Example 3.3(1), F = {0} is not an implicative UP-
filter and F is a normal UP-filter, while F is not a comparative UP-filter,
since (a · b) · a = 0 ∈ F and a /∈ F .

Lemma 5.10. Let X be a UP-algebra which satisfies in condition (19).
The following conditions are equivalent:

(1) {0} is a shift UP-filter of X,

(2) Every UP-filter of X is a shift UP-filter,

(3) ((x · y) · y) · x = y · x, for all x, y ∈ X.
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Proof. (1 ⇔ 2) Based on Corollary 4 · 15([8]), the proof is trivial.
(1 ⇒ 3) Assume that {0} is a shift UP-filter and a = (y · x) · x, for
x, y ∈ X. Then y · a = y · ((y · x) · x) = (y · x) · (y · x) = 0 ∈ {0}.
Hence according to definition of a shift UP-filter, ((a · y) · y) · a = 0,
i.e., (a · y) · y = a. As x ≤ (y · x) · x = a, then a · y ≤ x · y and
(x · y) · y ≤ (a · y) · y. And also 0 = ((a · y) · y) · a ≤ ((x · y) · y) · a. Then
0 = ((x · y) · y) · a = ((x · y) · y) · ((y · x) · x), thus (x · y) · y ≤ (y · x) · x
and similarly, (y · x) · x ≤ (x · y) · y. Therefore (x · y) · y = (y · x) · x, for
all x, y ∈ X. Using Lemma 3.4, ((x · y) · y) · x = y · x, for all x, y ∈ X.
(3 ⇒ 1) The proof is easy. □

Theorem 5.11. Let X be a UP-algebra which satisfies in condition (19)
and F be a UP-filter of X. Then F is a shift UP-filter if and only if
every UP-filter of the quotient UP-algebra X/F is a shift UP-filter.

Proof. Let F be a shift UP-filter of X and x, y ∈ X such that (x)F ∗
(y)F = (0)F . Then x · y ∈ F , and so ((y · x) · x) · y ∈ F . Hence
(((y)F ∗ (x)F ) ∗ (x)F ) ∗ (y)F = (((y · x) · x) · y)F = (0)F , which proves
that {(0)F } is a shift UP-filter of X/F . Based on Lemma 5.10, every
UP-filter of X/F is a shift UP-filter. Conversely, suppose that every
UP-filter of X/F is a shift UP-filter and y · x ∈ F , for x, y ∈ X. Then
(y)F ∗ (x)F = (y · x)F = (0)F . Since {(0)F } is a shift UP-filter of X/F ,
then (((x · y) · y) · x)F = (((x)F ∗ (y)F ) ∗ (y)F ) ∗ (x)F = (0)F , i.e.,
((x · y) · y) · x ∈ F . Hence according to Theorem 4 · 8([8]), F is a shift
UP-filter of X. □

6 Prime UP-filter

In this section, we introduce the notion of prime UP-filter in a UP-
algebra. Also, we investigate some characterizations of this UP-filter
and we prove that the quotient algebra induced by a prime UP-filter in
a UP-algebra is a linearly ordered UP-algebra.

Definition 6.1. A UP-filter F of a UP-algebra X is called a prime
UP-filter of X, if for any x, y ∈ X, x · y ∈ F or y · x ∈ F .

Example 6.2. Consider the Example 3.8. Clearly, F = {a, 0} is not
a prime UP-filter, since b · c = c /∈ F and c · b = b /∈ F . It is clear
G = {a, b, 0} is a prime UP-filter of X.
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Theorem 6.3. Let X be a UP-algebra satisfying in condition (19). Then
F is a prime UP-filter if and only if X/F is a linearly ordered UP-
algebra.

Proof. Let F be a prime UP-filter and (x)F , (y)F ∈ X/F . Then
x · y ∈ F or y · x ∈ F . Thus (x)F ≤ (y)F or (y)F ≤ (x)F , so X/F is
a chain. Conversely, let X/F be a chain. Then for all x, y ∈ X, either
(x)F ≤ (y)F or (y)F ≤ (x)F . Whence either x · y ∈ F or y · x ∈ F , for
all x, y ∈ X . Thus F is a prime UP-filter of X. □

According to Definition 6.1:

Corollary 6.4. Let X be a UP-algebra and F be a prime UP-filter of
X. Then every UP-filter G containing F is also a prime UP-filter.

Theorem 6.5. Let X be a UP-algebra. The following conditions are
equivalent:

(1) X is a linear UP-algebra,
(2) {0} is a prime UP-filter of X,
(3) Every UP-filter of X is a prime.

Proof. (1 ⇒ 2) Let X be a linear UP-algebra and x, y ∈ X. Hence
x ≤ y or y ≤ x. Then x · y = 0 or y · x = 0, for all x, y ∈ X. Therefore
{0} is a prime UP-filter.
(2 ⇒ 1) Let {0} be a prime UP-filter. Then x · y = 0 or y · x = 0, for all
x, y ∈ X. So x ≤ y or y ≤ x, for all x, y ∈ X. Therefore X is a linear
UP-algebra.
(2 ⇔ 3) According to Corollary 6.4, the proof is clear. □

Corollary 6.6. Let X be a UP-algebra satisfying in condition (19) and
F be a UP-filter of X. Then the following conditions are equivalent:

(1) X/F is a linearly ordered UP-algebra,
(2) F is a prime UP-filter of X,
(3) Any UP-filter of X/F is a prime UP-filter.

Proof. (1 ⇔ 3) According to Theorem 6.5, the proof is clear.
(2 ⇒ 3) Let F be a prime UP-filter of X. We need to show that {(0)F }
is a prime UP-filter of X/F . Assume that (x)F , (y)F ∈ X/F . As F is
a prime UP-filter, x · y ∈ F or y · x ∈ F . And so (x · y)F = (0)F or
(y ·x)F = (0)F , hence (x)F ·(y)F = (0)F or (y)F ·(x)F = (0)F . Therefore,
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{(0)F } is a prime UP-filter of X/F .
(3 ⇒ 2) Let any UP-filter of X/F be a prime. Then {(0)F } is a prime
UP-filter of X/F . So (x)F · (y)F = (0)F or (y)F · (x)F = (0)F , for all
(x)F , (y)F ∈ X/F . Hence x · y ∈ F or y · x ∈ F , for all x, y ∈ X.
Therefore F is a prime UP-filter of X. □

Remark 6.7. Let X be a UP-algebra satisfying condition (19) and F ,
G be two UP-filters of X, such that F ⊆ G. Then G is a prime UP-filter
of X if and only if G/F is a prime UP-filter of a UP-algebra X/F .

Lemma 6.8. Let F be a normal and prime UP-filter of a UP-algebra
X. Then (x · y) · y ∈ F implies x ∈ F or y ∈ F , for x, y ∈ X.

Proof. Let x, y ∈ X and (x · y) · y ∈ F . Then (y · x) · x ∈ F , since F is
a normal UP-filter. As F is a prime UP-filter, so x · y ∈ F or y · x ∈ F .
The following cases are considered:

(Case 1) If x · y ∈ F , then y ∈ F .
(Case 2) If y · x ∈ F . Then using (y · x) · x ∈ F , x ∈ F .

Therefore, the proof is completed. □

Lemma 6.9. The set of UP-filters including a given prime UP-filter F
of X, linearly ordered with respect to the set theoretical inclusion.

Proof. Let F be a prime UP-filter and G, H be UP-filters containing
F such that G ⊈ H and H ⊈ G. Then there exists a ∈ X such that
a ∈ G−H and there exists b ∈ X such that b ∈ H −G. As F is a prime
UP-filter and a, b ∈ X, then a · b ∈ F or b · a ∈ F . If a · b ∈ F , then
a · b ∈ G. So b ∈ G, which is a contradiction. If b · a ∈ F , then b · a ∈ H.
So a ∈ H, which is a contradiction. Therefore, the proof is completed.
□

Theorem 6.10. Let F be a prime UP-filter of a UP-algebra X and G
be a UP-filter of X such that G ⊆ F . Then the set of all prime UP-filter
F ′ of X such that G ⊆ F ′ ⊆ F , contains a minimal element.

Proof. Take
∑

= {F ′ : F ′ is a prime UP−filter of X such that G ⊆
F ′ ⊆ F}. Clearly, F ∈

∑
, so

∑
is not void. The relation ≤ on

∑
is defined F ′ ≤ G′ if and only if G′ ⊆ F ′, for all F ′, G′ ∈

∑
. Clearly,

the relation ≤ is a partially ordered on
∑

. Now let T be a chain on
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∑
. Take d =

⋂
F ′∈T

F ′. It is clear d is a UP-filter and for all F ′ ∈ T ,

d ⊆ F ′. Then F ′ ≤ d, for all F ′ ∈ T . We need to prove that d is a prime
UP-filter. Now let for x, y ∈ X, x · y /∈ d and y · x /∈ d. So there exist
F ′, G′ ∈ T such that x · y /∈ F ′ and y · x /∈ G′. Since T is a chain, so
G′ ⊆ F ′ or F ′ ⊆ G′. If F ′ ⊆ G′, then y · x /∈ F ′. So x · y ∈ F ′, since
F ′ is a prime UP-filter. That is a contradiction. Therefore d is a prime
UP-filter. Also, if G′ ⊆ F ′, the process is similarly. So d is an upper
bound for T . Then by Zorn’s Lemma,

∑
contains a maximal element,

i.e. it contains a minimal element. □

Proposition 6.11. Let X be a linear UP-algebra and F be a UP-filter
of X. Then for all x, y ∈ X−F , there exists z ∈ X−F such that x ≤ z
and y ≤ z.

Proof. Let F be a UP-filter of the linear UP-algebra X. According
to Theorem 6.5, F is a prime UP-filter of X. Also, assume that there
exist x, y ∈ X − F such that for all z ∈ X − F , z < x or z < y. As
x ≤ (y · x) · x and y ≤ (x · y) · y, so (y · x) · x ∈ F and (x · y) · y ∈ F .
Since F is a prime UP-filter, x · y ∈ F or y ·x ∈ F , for all x, y ∈ X. The
following are cases considered:

(Case 1) If x · y ∈ F , then y ∈ F , which is a contradiction.
(Case 2) If y · x ∈ F , then x ∈ F , which is a contradiction.

Therefore, the proof is completed. □

Proposition 6.12. Let X be a linear UP-algebra satisfying in condition
(19) and F be a UP-filter of X. Then for all x, y ∈ X/F , such that
x, y ̸= (0)F , there exists w ∈ X/F such that w ̸= (0)F , x ≤ w and
y ≤ w.

Proof. Let F be a UP-filter of the linear UP-algebra X. According to
Theorem 6.5, F is a prime UP-filter of X. Also, assume that x, y ∈ X/F
such that x, y ̸= (0)F . Hence x = (a)F and y = (b)F , for some a, b ∈ X,
such that (a)F ̸= (0)F and (b)F ̸= (0)F , i.e. a, b /∈ F . So according to
Proposition 6.11, there exists z ∈ X − F , such that a ≤ z and b ≤ z.
Hence a · z = 0 and b · z = 0, so (a)F ≤ (z)F and (b)F ≤ (z)F . Therefore
x ≤ w and y ≤ w. □

Proposition 6.13. Let X be a linear UP-algebra and F be a UP-filter
of X. Then [x) ∩ [y) ⊆ F implies x ∈ F or y ∈ F , for all x, y ∈ X.
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Proof. Let [x) ∩ [y) ⊆ F , for x, y ∈ X, and also x /∈ F and y /∈ F .
According to Proposition 6.11, there exists z ∈ X − F such that x ≤ z
and y ≤ z. Hence z ∈ [x) and z ∈ [y), i.e. z ∈ [x) ∩ [y) ⊆ F , which is a
contradiction. Therefore the proof is completed. □

7 Nodal UP-filter

In this section, we introduce the notion of nodal UP-filters of UP-
algebras and investigate some properties of them.

Definition 7.1. A node of a UP-algebra X is an element which is com-
parable with every element of X. It is clear that 0 is a node in any
UP-algebra.

Note. An element x ∈ X is a node if and only if for every y ∈ X,
either x · y = 0 or y · x = 0.

We denote , the set of all node elements of a UP-algebra X, by
nod(X).

Example 7.2. Consider Example 4.3. Clearly, nod(X) = {a, 0}.

Definition 7.3. A UP-filter F of a UP-algebra X, will be called a nodal
UP-filter of X, if F is a node of UF(X).

Example 7.4. In the Example 4.3, {0} and {b, c, 0} are all of nodal
UP-filters of X and {b, 0} and {c, 0} are not nodal UP-filters.

We denote by nod(UF(X)) the set of all nodal UP-filters of a UP-
algebra X.

Theorem 7.5. Let F be a UP-filter of a UP-algebra X. If for all x ∈ X
and for all y /∈ F , the relation y < x is satisfied, then F is a nodal UP-
filter of X.

Proof. Let us suppose that there exists a UP-filter G incomparable with
F . Then there are elements x, y ∈ X such that x ∈ F − G, y ∈ G − F
and y ≮ x. Thus it is contrary, so every UP-filter G of X is comparable
with F , i.e. F is a nodal UP-filter of X. □

Recall that, according to Proposition 3.5, in general, [a) is not a
UP-filter of X. [a) is a UP-filter of X if and only if {0} is an implicative
UP-filter of X.
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Theorem 7.6. Let F be a nodal UP-filter of X and {0} be an implicative
UP-filter of X. If x ∈ F and y /∈ F then y < x, for every x, y ∈ X.

Proof. Let F be a nodal UP-filter of X. Hence according to Theorem
4([7]), for all x, y ∈ X, [x) ⊆ F and F ⊆ [y). Thus [x) ⊆ F ⊆ [y), so
x ∈ [y) i.e. y < x. □

Corollary 7.7. Let X be a UP-algebra and {0} be an implicative UP-
filter of X. nod(UF(X)) = UF(X) if and only if X is a chain.

Proof. Let nod(UF(X)) = UF(X). According to Theorem 4([7]), [x) ⊆
[y) or [y) ⊆ [x), for all x, y ∈ X. Therefore x ∈ [y) or y ∈ [x). So y < x
or x < y. Conversely, Let X be a chain and F be a UP-filter of X. Also
assume that x ∈ F and y /∈ F . So x < y or y < x. If x < y then y ∈ F ,
which is a contradiction. Hence y < x. So based on Theorem 7.5, F is
a nodal UP-filter of X. □

Proposition 7.8. Let X be a UP-algebra and {0} be an implicative
UP-filter of X. Then x ∈ nod(X) if and only if [x) is a nodal UP-filter
of X.

Proof. Let x ∈ nod(X) and F be a UP-filter of X. If x ∈ F then
[x) ⊆ F . Now let x /∈ F . If F ⊈ [x), then there exists y ∈ F such that
y /∈ [x). So x ≮ y and since x is a node, then y < x. So x ∈ F , it
is contrary. Hence if x /∈ F then F ⊆ [x) i.e. [x) is a nodal UP-filter.
Conversely, let [x) be a nodal UP-filter of X and y ∈ X. Then [x) ⊆ [y)
or [y) ⊆ [x). If [x) ⊆ [y) then x ∈ [y). Therefore y < x. If [y) ⊆ [x)
then x < y. Therefore x is a node of X. □

Theorem 7.9. Let X be a UP-algebra satisfying in condition (19) and
F is an implicative and nodal UP-filter of X and x is a node of X. Then
[F ∪ {x}) is a nodal UP-filter of X.

Proof. Let a ∈ [F ∪ {x}). Then based on Theorem 6([7]), x · a ∈ F . If
x ∈ F then a ∈ F . Therefore [F ∪ {x}) = F , i.e. then [F ∪ {x}) is a
nodal UP-filter of X. Let x /∈ F . According to Proposition 7.8, [x) is a
nodal UP-filter of X. Using Theorem 3 · 6(2), as F ∪ {x} ⊆ F ∪ [x), so
[F ∪ {x}) ⊆ [F ∪ [x)). Now let a ∈ [F ∪ [x)). So for g ∈ [x), g · a ∈ F .
Since x ≤ g so g · a ≤ x · a and so x · a ∈ F . Hence a ∈ [F ∪ {x}), thus
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[F ∪ {x}) = [F ∪ [x)) = F ∪ [x). It is known that union of two nodal
UP-filters, is a nodal UP-filter, thus [F ∪{x}) is a nodal UP-filter of X.
□

Proposition 7.10. Let X be a UP-algebra. If X has n node elements
and {0} be an implicative UP-filter of X, then it has at least n nodal
UP-filters.

Proof. Let x be a node of X, then [x) is a nodal UP-filter. Now assume
that x and y be two node elements of X. If [x) = [y) then x ∈ [y) and
y ∈ [x). So x ≥ y and y ≥ x. Thus x = y. Therefore, if X has n node
elements, then it has at least n nodal UP-filters. □

8 Conclusion

In this paper, we investigated the properties of UP-algebras. In addition,
due to the great importance of filters in logical algebras, we introduced
other types of UP-filters in these algebras and studied their properties.
We defined normal, prime and nodal UP-filters in UP-algebra and exam-
ined their properties. We have also proved or disproved the relationships
between the types of UP-filters in these algebras with theorems or ex-
amples.

In the continuation of this article, we can define and study other
types of UP-filters and study UP-algebra in more detail. In our future
work, we are going to consider the notion of the radical of UP-filters
and try to define other types of UP-filters in UP-algebras. We hope this
work would serve as a foundation for further studies on the structure of
UP-algebras and develop corresponding many-valued logical systems.
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