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1 Introduction

In 1951, H. Fast and H. Steinhaus extended the method of usual con-
vergence to statistical convergence independently (see [9, 24]) by in-
volving the concept of natural density. The natural density [19] of a
set A C N is a real number d(A) lying in the interval [0, 1] defined as
d(A) = lilgnw, (if the limit exists) where k¥ € N and the ver-

tical bar denotes the number of elements in the set {a € A : a < k}.
A sequence x = (xj) is said to be statistically convergent to a num-
ber [ if for every € > 0, the natural density of the set of all k’s for
which the corresponding sequential term x; lies outside the interval
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(I —e,l +¢) is zero [10]. In other words if the condition d(A(e)) = 0
where A(e) = {k € N: |z — [| > €} holds for each € > 0.

50 years later, in 2001 the idea of statistical convergence was further
extended to two types of convergence namely, Z and Z*—convergence
by Kostyrko et al. [141]. Z—convergence was not only the generalization
of statistical convergence but also so many known convergence methods
become the particular cases of Z—convergence. Several works in this
direction can be found in [7, 8, 11, 16, 17, 18, 21, 23].

On the other hand, in 2011 the Z* —convergence method was further
extended to Z" —convergence by M. Macaj and M. Sleziak in [15], where
the convergence along a set from the associated filter F(Z) was consid-
ered with respect to another ideal K instead of ordinary convergence. In
other words, a sequence = (z) is said to be ZX —convergent to a real
number [, if for every € > 0, there exists M = {m; < ma < ... < my, <
..} € F(Z) such that {k € M : |z, — | > ¢} € K. In particular when
K = Iy, where Z; is the ideal consisting of all finite subsets of N, then we
get 7" —convergence. So this generalization makes sense and is found to
be interesting to many mathematicians. Further investigations, findings
and extensions related to ZX —convergence can be found in [1,2,3,4,5].

An Orlicz function [20] is a function ¢ : R — R such that it is even,
non-decreasing on R™, continuous on R, and satisfying

d(x) =0<= 2 =0 and ¢(z) — o0 as x — o0,

where R, R*, and ¢ stands for the set of all real numbers, set of all
positive real numbers, and Orlicz function respectively.

An Orlicz function ¢ : R — R is said to satisfy the Ay condition, if
there exists a K > 0 such that ¢(2z) < K - ¢(x), for every x € RT.

Example 1.1. [22] (i) The function ¢ : R — R defined by ¢(x) =| = |
is an Orlicz function.

(ii) The function ¢ : R — R defined by ¢(z) = 27 is not an Orlicz
function.

(iii) The function ¢ : R — R defined by ¢(x) = 2% is an Orlicz
function satisfying the Ay condition.

(iv) The function ¢ : R — R defined by ¢(z) = el*l— | 2 | —1 is an
Orlicz function not satisfying the Ao condition.
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In [20], Rao and Ren described the important roles and applications
of Orlicz function in various fields like economics, stochastic problems,
etc.

In 2019, Khusnussaadah and Supama [!12] introduced the concept of
¢—convergence using the Orlicz function ¢. Later on, in this direction,
Savas and Debnath introduced lacunary statistically ¢—convergence [22]
and Debnath and Choudhury introduced Z—statistically ¢—convergence
6].

In this paper, by using Z* —convergence and ¢—convergence we in-
troduce a new idea called I(’f—convergence mainly as a generalization of

TIF —convergence.

2 Definitions and Preliminaries

Definition 2.1. [15] A family T C 2% of subsets of a nonempty set X
is said to be an ideal in X if and only if (i) A, B € T implies AUB € T
(Additive) and (ii) A € Z,B C A implies B € T (Hereditary).

If Vo € X, {«} € Z, then Z is said to be admissible. Also, Z is said
to be non-trivial if X ¢ Z and Z # {0}.

Some standard examples of ideal are given below:
(i) The set Ty = {A C N : |A| < oo} is an admissible ideal in N where
|A| represents the cardinal number of set A.
(ii) The set Z; = {A C N : d(A) = 0} is an admissible ideal in N where
d(A) is the natural density of A.
(iii) The set Z, = {A CN:Y ,cqa ! <oo}is an admissible ideal in N.

(iv) Suppose N = U D,, be a decomposition of N such that D; N D; = ()

satisfies for i # j. Then theset Z={ACN:[{p: AN D, # 0}| < oo}
forms an ideal in N.
More important examples can be found in [11] and [13].

Definition 2.2. [19] A family F C 2% of subsets of a nonempty set X
is said to be a filter in X if and only if (i) 0 ¢ F (ii) M,N € F implies
MNN € F and (ii) M € F,N D M implies N € F.

If 7 is a proper non-trivial ideal in X, then F(Z) ={M C X : 3A €



S. DEBNATH AND C. CHOUDHURY

ZstM =X\ A}is afilter in X. It is called the filter associated with
the ideal 7.

Definition 2.3. [1/] A sequence x = (x,) is said to be I—convergent to
L if for every e > 0, the set {k € N: |z — 1| > €} belongs to I. In this
case, the real number | is called the T—Ilimit of the sequence x = (xy).
Symbolically, T — kh—{goxk =1.

Definition 2.4. [15] Let T and K be two ideals in N. A sequence v =

(z1) is said to be T —convergent to 1 if there exists M € F(I) such that
xp, keM
b is KC—convergent

the sequence y = defined b =
q y = (yx) defi Y Yk L ke M

to l.

Definition 2.5. [12] Let ¢ : R — R be an Orlicz function. A sequence
x = (x) is said to be ¢p—convergent to | if 1ikm ¢z, — 1) = 0. In this

case, 1 is called the ¢p—limit of (x)) and it is denoted by ¢ — lim x = [.

Definition 2.6. [0/ Let ¢ : R — R be an Orlicz function. A real se-
quence x = (xy) is said to be Ly,—convergent to a real number l if for
every € > 0, the set A(e) = {k € N : ¢(xx — 1) > €} belongs to I.
Symbolically we write Ly — klg](r)loa:k =1.

Remark 2.7. [1] If T and K are two ideals in N then the set TV K =
{AUB:AeZ BecK} forms an ideal in N. Further, if TV K is non-
trivial then the dual filter of TV K is denoted and defined by F(Z V K) =
{(MNN:MeFI),NeFK)}

Throughout the paper, unless stated, the symbols Z, K, Z V K, Z1, I,
K1, and Ky stands for non-trivial admissible ideal in N, and the sequences
that we have considered are real sequences.

3 Main Results

Definition 3.1. Let Z and K be two ideals in N. A sequence v = (xy,)
is said to be Iq’f—convergent to  if there exists M € F(ZI) such that the
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rp, keM
I, k¢M

l. Symbolically we write I(’; — klim xp =1.
— 00

sequence y = (yi) defined by y, = { is Ky—convergent to

If we consider ¢(x) = |z|, then we get ZX —convergence. So, Iq’f—

convergence is a generalization of Z —convergence.

Example 3.2. Let ¢ : R — R be an Orlicz function defined as ¢(x) =

|z|. Consider the decomposition of N given by N = |J D,, where D, =
p=1

{27=1(2s — 1) : s = 1,2,3,..}. Let Z be the ideal consisting of all

subsets of N which intersects a finite number of D,’s. Consider the

sequence x = (zy) defined by zj = % if k € D,. Then the sequence is

I% —convergent to 0.

Justification: Let M = N\ D;. Then M € F(Z) and it is easy to
. Tk, ke M X
verify that the sequence y = defined b = is
y q y = (k) Y Yk {07 kM
Zs—convergent to 0. Thus I(% — lim a2, = 0.
k—o0

Theorem 3.3. Let ¢ : R — R be a convex Orlicz function with /g
condition. Suppose x = (1) be a sequence such that Ig — klim T = I.
— 00

Then [ is unique.

Proof. Since ¢ satisfies Ay condition, so there exists K > 0 such that
¢(2x) < K - ¢(x). If possible suppose there exists l1,lo € R, 1 # l2 such
that
5 — i =1 and T — li =l
§ = Jimaw = and If = lim o =

So, there exists M, N € F(Z) such that the sequences y = (yx) and
z = (zp) defined as follows

xp, keM xp, k€N

Yk = and z =

l17 k ¢ M l2, k ¢ N
l1 and Iy respectively. Thus for every ¢ > 0, the sets A(e), B(e) € K,
where A(e) ={k € N: ¢(yp—11) > &} and B(e) = {k € N: ¢(2z1, —l2) >
= Now, we claim that the following inclusion is true

(N\A(e)) N(N\ B(e)) S{k € N: ¢((yx — 2) — (L — I2)) <e}. (1)

are Ky—convergent to
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For any p € (N\ A(e)) N (N\ B(¢)), we have ¢(y, — l1) < & and
¢(zp — l2) < #. Therefore, the following inequality holds because of ¢
is even, convex and ¢ has A,—condition

By — 20) — (1~ 12)) = 6(5 (2 — 20) + 5 (~22 + 21))
B2y — 1)) + 56(2(z — )

+
K
d(yp — 1) + 5‘75(317 — o)
€ K ¢

K2 K~

<

N | =

IA
v X o] X

< €.

Consequently, the inclusion (1) holds, and eventually we can say that
the sequence y — z = (yr — 21) defined as

0, ke MNN
xp —la, k€ M\N
Lhi—xp, ke N\M
lh =1y, ke M°NN°

Yk — 2k =

is Kp—convergent to Iy — lo. In other words,
Ve >0, {k € N:g((yr — 2) — (L —I2)) > e} € K. (2)

Choose ¢ := qb(%) Then, from Equation (2) we get

lh =1
2

{keN:o((ye — 2) — (Ih — 12)) = &( )} e K.

Now as the inclusion
MNON C{keN:o((yr — 2x) — (1 — o)) > p(152)}

holds, so by hereditary of K, M NN € K which implies N\ (M N N) €
F(K). Again as M, N € F(Z),so MNN € F(Z). Now N\ (M NN) €
F(K) and M NN € F(Z) implies (N\ (M NN))N(MNN) e F(ZVK)
ie ) € F(ZVK), a contradiction. [
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Theorem 3.4. Let ¢ : R — R be a convex Orlicz function with /g
condition. Let L, IC, and TV K be non-trivial ideal in N such that Z(f —

lim z;, =1 and Z(’; — lim yx = ls. Then,
k—o0 k—o0

(i) Z{’; — lim (2 + yx) = L1 + l2 and (i) Z(’; — lim (zxyr) = Lilo.
k—oo k—oo

Proof. (i) Suppose I(’; — klim xr = l1 and I(’; — limy, = ls. Then by
—00

definition there exists M, N € F(Z) such that the sequences u = (ug)
defined by

rp, keM
U —
li, k¢ M
and v = (v) defined by
Yr, kEN
Vi =
lo, k¢ N

are respectively Ky—convergent to I; and [p. Then, it is quite easy to
prove that the sequence u + v = (uy, + vy) defined by

rp+yg, kEMNN

Tk +1lo, ke M\ N
Up + vV =

yr+l, keN\M

Iy + g, ke M°NN¢

is Kp—convergent to l1 4 l2. In other words
Ve >0, {kEN:gb((uk—i-’Uk)—(ll—i-lg))Z&}E/C. (3)

Now by definition of u + v we have,

{k e N:o((ug +v) — (I1 +12)) > €}
={ke MNN:¢((zr +yr) — (1 +12)) > ¢}
U{ke M\ N : ¢z — 1) > ¢}
U{k e N\ M : dp(yp —l2) > e} (4)
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Clearly M NN € F(Z). Now consider the sequence w = (wy,) defined as
Trk+yk, kEMNN

wy = . Then from Equation (3), (4) and b
R quation (3), (4) and by

definition of w,

{k e N:gp(wg — (lh +12)) > ¢}
:{kEMﬂN:gb(wk—(h-i-lz))ZE}
U{k e N\ (M NON): dp(wy — (I +12)) > e}
={k € MON: ¢((xx +yr) — (1 +12)) > &}
C{keN:¢(up+vr)—(l1+1) >t ek. (5)

From Equation (5), it is clear that w is Cp—convergent to 1 +l2. Hence
(xr +yr) is I(’f—convergent to Iy + ls.

(ii) We omitted the proof as it can be obtained by applying the similar
technique. O

Theorem 3.5. Let ¢ : R — R be an Orlicz function. Then, K¢y —

lim x, = [ implies I(’; — lim z = 1.
k—o0 k—o0

Proof. Since Ky — klirn xp =1, so for every ¢ > 0,
— 00

{keN:¢p(xp—1)>ec}ek. (6)

Choose M = N from F(Z). Consider the sequence y = (yj) defined
by yr = xp for k € M. Then, using (6), we get for every ¢ > 0,
{keN:g(yp—1) > e} € Kiey= (yx) is Ky—convergent to [. Hence
Ik — lima, =1. O

k—o0

Remark 3.6. The converse of Theorem 3.5 is not necessarily true.
Example 3.7. Let ¢ : R — R be defined as ¢(z) = |z|. Consider the

ideals Z, = {ACN: >, a ! < oo} and Zy = {4 C N: d(A) = 0}.
Let = (xj) be the sequence defined as

1, kis prime
T = . . :
0, kis not prime
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Then, there exists M = set of all non-prime numbers € F(Zy) such that

ke M
The K€M e null sequence
0, k¢ M

and therefore Z, ,—convergent to 0. Hence = (zy,) is Igjﬁ—convergent
to 0.

But we claim that z = (x) is not Z. 4—convergent to 0. For if 7.4 —
lim 2 = 0, then for ¢ = 1, the set {k € N : ¢(z — 0) > 3} =

k—o00
set of all prime numbers € Z., a contradiction.

the sequence y = (yi) defined as y = {

Theorem 3.8. Let ¢ : R — R be an Orlicz function and suppose I and
K be two ideals in N satisfying T C K. Let x = (xy) be a real sequence
such that Zg — lim zy, = 1. Then Ky — lim x}, = [.

k—o0 k—o0
Proof. Let Z C K holds and the sequence x = (zy) is Ig—convergent
to I. So by definition, there exists M € F(Z) such that the sequence

T, ke M X X
= defined as = is KCp—convergent to [, which
y = (yk) Yk L ke SR g
immediately implies
Ve>0,{keM:¢(xr—1)>c}ek. (7)

Thus {k e N:gp(ap, —1) > e} C{ke M : ¢(x,— 1) >t UN\ M) € K,
by (7) and since as per our assumption Z C K.
Hence, Ky — k]im xp = 1. O

— 00

Remark 3.9. If a sequence is Ig—convergent then it may not be
14— convergent.

Example 3.10. Let us consider ¢(z) = |z|. Let Z denote the ideal
which considered in Example 3.2 and suppose Z. is the ideal given
by I, = {A C N: >, cqa ! < o} Let M = {k € N: k =
2P for some non-negative integer p}. Consider the sequence = = (xg)

defined as

1, keM
T = .
0, k¢M
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Then, it is easy to verify that x is I(%C—convergent to 0 but x is not
1s—convergent to 0.

Remark 3.11. If a sequence is Ly—convergent then it may not be I(’f—
convergent. Let us consider ¢p(x) = |x|. Consider the ideal T and the
sequence x = (xy) defined in Example 3.2. Then by virtue of Example

2.1 of [13] one can show that Igf— lim xj, # 0 although Ty — lim 3, = 0.
k—o0 k—ro00

Theorem 3.12. Let ¢ : R — R be a convex Orlicz function and suppose
L,L:,Z9, K, Ky, and ICop be ideals on N satisfying Z; C Zo and K; C Ko.
Let x = (x) be a real sequence. Then,

(i) Z* — lim oy = U implies Z}* — lim ), = I;

.. 1C . _ . . 1C . _
(i) I7y — kILF&QUk = 1 implies T3, — klggloxk =1
Proof. The proof follows from Definition 3.1 and so is omitted. O
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