Journal of Mathematical Extension Vol. 8, No. 3, (2014), 1-15

Some Inequalities Involving Laplace Transformation

A. R. Moazzen^{*}

Velayat University

R. Lashkaripour

University of Sistan and Baluchestan

Abstract. In this paper, we prove some integral inequalities, where the right hand side of some inequalities involve the Laplace transformation.

AMS Subject Classification: 26D15 **Keywords and Phrases:** Integral inequality, Hardy's inequality, Hardy-Hilbert's inequality, Laplace transformation

1. Introduction

Through this section we introduce some known statements. In fact, G.H. Hardy proved the following known Theorems:

Theorem 1.1. ([1]). Let f be nonnegative integrable function. Define

$$F(x) = \int_0^x f(t) \, dt,$$

then

$$\int_0^\infty \left(\frac{F(x)}{x}\right)^p dx < \left(\frac{p}{p-1}\right)^p \int_0^\infty f^p(x) dx, \qquad (p>1)$$

Received: February 2014; Accepted: July 2014 $^{*}\mathrm{Corresponding}$ author

Theorem 1.2. ([1]). If p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $f \ge 0$, $g \ge 0$, $0 < \int_0^\infty f^p(x) dx < \infty$, $0 < \int_0^\infty g^q(x) dx < \infty$, then

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{x+y} dx dy < \frac{\pi}{\sin(\frac{\pi}{p})} (\int_{0}^{\infty} f^{p}(x) dx)^{\frac{1}{p}} (\int_{0}^{\infty} g^{q}(x) dx)^{\frac{1}{q}},$$

where the constant factor is the best possible. Its equivalent form is

$$\int_0^\infty \left(\int_0^\infty \frac{f(x)}{x+y} dx\right)^p dy < \left[\frac{\pi}{\sin(\frac{\pi}{p})}\right]^p \int_0^\infty f^p(x) dx.$$

Inequality in above mentioned theorem is called Hardy-Hilbert's integral inequality, which is important in analysis and its applications (cf. Mitrinovic et al.[5]). Recently, various extensions on above mentioned inequality have appeared ([2,3,4,6,7]).

Theorem 1.3. ([1]). If p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, k(x) > 0 and

$$\int k(x)x^{s-1}dx = \phi(s),$$

then

$$\begin{split} \int \int k(xy)f(x)g(y)dxdy &< \phi\Big(\frac{1}{p}\Big)\Big(\int x^{p-2}f^p(x)dx\Big)^{\frac{1}{p}}\Big(\int g^q(y)dy\Big)^{\frac{1}{q}},\\ \int \Big(\int k(xy)f(y)dy\Big)^p dx &< \phi^p\Big(\frac{1}{p}\Big)\Big(\int x^{p-2}f^p(x)dx\Big),\\ \int x^{p-2}\Big(\int k(xy)f(y)dy\Big)^p dx &< \phi^p\Big(\frac{1}{q}\Big)\Big(\int f^p(x)dx\Big). \end{split}$$

In this study, by the following theorem known as generalized Minkowski's inequality we obtain some integral inequalities.

Theorem 1.4. ([1]). If k > 1, then

$$\left[\int \left\{\int f(x,y)\,dy\right\}^k dx\right]^{\frac{1}{k}} < \int \left\{\int f^k(x,y)\,dx\right\}^{\frac{1}{k}} dy,$$

unless

$$f(x,y) \equiv \phi(x)\psi(y).$$

In this work, by applying the generalized Minkowski's inequality we prove some inequalities involving Laplace transformation.

2. Main Results

At first, note that $\chi[x,\infty)(t) = \chi[0,t](x)$ when ever t and x are nonnegative variables and x is the characteristic function.

Theorem 2.1. Let f be a nonnegative integrable function which its Laplace transformation exists and p > 1. Define

$$F(x) = \int_0^x f(t) \, dt.$$

Then

$$\int_0^\infty \left(\frac{F(x)}{x}\right)^p dx < \frac{1}{p-1} \left(\int_0^\infty L_f(s) \, ds\right)^{p-1} \left(\int_0^\infty f(t) \, dt\right),$$

where L_f is the Laplace transformation of f.

Proof.

$$\int_{0}^{\infty} \left(\frac{F(x)}{x}\right)^{p} dx = \int_{0}^{\infty} \left(\int_{0}^{\infty} \frac{1}{x} \chi_{[0,x]}(t) f(t) dt\right)^{p} dx$$

$$< \left(\int_{0}^{\infty} \left[\int_{0}^{\infty} \frac{1}{x^{p}} \chi_{[0,x]}^{p}(t) f^{p}(t) dx\right]^{\frac{1}{p}} dt\right)^{p}$$

$$= \left(\int_{0}^{\infty} \left[\int_{0}^{\infty} \chi_{[t,+\infty)}(x) x^{-p} dx\right]^{\frac{1}{p}} f(t) dt\right)^{p}$$

$$= \left(\int_{0}^{\infty} \left[\int_{t}^{\infty} x^{-p} dx\right]^{\frac{1}{p}} f(t) dt\right)^{p}$$

$$= \frac{1}{p-1} \left(\int_{0}^{\infty} t^{-\frac{1}{q}} f(t) dt\right)^{p}.$$

Applying the Holder's inequality, one may obtain

$$\int_0^\infty \left(\frac{F(x)}{x}\right)^p dx < \frac{1}{p-1} \left(\int_0^\infty \frac{f(t)}{t} dt\right)^{p-1} \left(\int_0^\infty f(t) dt\right).$$

Now, since

$$\int_0^\infty \frac{f(t)}{t} \, dt = \int_0^\infty L_f(s) \, ds,$$

the assertion is proved. $\hfill\square$

Theorem 2.2. Let f be a nonnegative integrable function and p>1. Define

$$F(x) = \int_x^\infty f(t) \, dt.$$

Then

$$\int_0^\infty F^p(x)\,dx < \Big(\int_0^\infty tf(t)\,dt\Big)\Big(\int_0^\infty f(t)\,dt\Big)^{p-1}.$$

Proof.

$$\begin{split} \int_0^\infty F^p(x) \, dx &= \int_0^\infty \Big(\int_0^\infty \chi_{[x,+\infty)}(t) f(t) \, dt \Big)^p \, dx \\ &< \Big(\int_0^\infty \Big[\int_0^\infty \chi_{[x,+\infty)}(t) f^p(t) \, dx \Big]^{\frac{1}{p}} \, dt \Big)^p \\ &= \Big(\int_0^\infty \Big[\int_0^\infty \chi_{[0,t]}(x) f^p(t) \, dx \Big]^{\frac{1}{p}} \, dt \Big)^p \\ &= \Big(\int_0^\infty t^{\frac{1}{p}} f(t) \, dt \Big)^p \\ &= \Big(\int_0^\infty (tf(t))^{\frac{1}{p}} (f(t))^{\frac{1}{q}} \, dt \Big)^p \\ &\leqslant \Big(\int_0^\infty tf(t) \, dt \Big) \Big(\int_0^\infty f(t) \, dt \Big)^{p-1}. \quad \Box \end{split}$$

Lemma 2.3. Suppose that p > 1, $r > \frac{p-1}{p}$ and t > 0. Then

$$\int_{t}^{\infty} \frac{(x-t)^{rp-p}}{x^{rp}} \, dx = t^{1-p} \beta(p-1, rp-p+1).$$

Proof. By putting x - t = u, one may obtain

$$\int_{t}^{\infty} \frac{(x-t)^{rp-p}}{x^{rp}} \, dx = \int_{0}^{\infty} \frac{u^{-p}}{(1+\frac{t}{u})^{rp}} \, du.$$

Finally, suppose that $\frac{t}{u} = v$. Then

$$\int_0^\infty \frac{u^{-p}}{(1+\frac{t}{u})^{rp}} \, du = t^{1-p} \int_0^\infty v^{p-2} (1+v)^{-rp} \, dv$$
$$= t^{1-p} \beta(p-1, rp-p+1). \quad \Box$$

Theorem 2.4. Suppose p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $r > \frac{p-1}{p}$ and

$$f_r(x) = \frac{1}{\Gamma(r)} \int_0^x (x-t)^{r-1} f(t) \, dt.$$

Then

$$\int_0^\infty \left(\frac{f_r(x)}{x^r}\right)^p dx < \frac{1}{(\Gamma(r))^p} \beta(rp-p+1,p-1) \left(\int_0^\infty L_f(s) \, ds\right)^{p-1} \left(\int_0^\infty f(t) \, dt\right).$$

Proof. First of all we have

$$\int_0^\infty \left(\frac{f_r(x)}{x^r}\right)^p dx = \frac{1}{(\Gamma(r))^p} \int_0^\infty \left(\int_0^\infty \chi_{[0,x]}(t) \frac{(x-t)^{r-1}}{x^r} f(t) dt\right)^p dx.$$

Now, applying Theorem 1.4, one obtains

$$\begin{split} \int_0^\infty \left(\frac{f_r(x)}{x^r}\right)^p dx &< \frac{1}{(\Gamma(r))^p} \left(\int_0^\infty \left[\int_0^\infty \chi_{[t,\infty)}(x) \frac{(x-t)^{rp-p}}{x^{rp}} dx\right]^{\frac{1}{p}} f(t) dt\right)^p \\ &= \frac{1}{(\Gamma(r))^p} \left(\int_0^\infty \left[\int_t^\infty \frac{(x-t)^{rp-p}}{x^{rp}} dx\right]^{\frac{1}{p}} f(t) dt\right)^p \\ &= \frac{1}{(\Gamma(r))^p} \beta(rp-p+1,p-1) \left(\int_0^\infty t^{\frac{1}{p}-1} f(t) dt\right)^p \\ &= \frac{1}{(\Gamma(r))^p} \beta(rp-p+1,p-1) \left(\int_0^\infty (\frac{f(t)}{t})^{\frac{1}{q}} (f(t))^{\frac{1}{p}} dt\right)^p \end{split}$$

$$\leq \frac{1}{(\Gamma(r))^p} \beta(rp-p+1,p-1) \Big(\int_0^\infty L_f(s) \, ds \Big)^{p-1} \Big(\int_0^\infty f(t) \, dt \Big). \quad \Box$$

Theorem 2.5. Suppose p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $r > \frac{p-1}{p}$ and

$$f^{r}(x) = \frac{1}{\Gamma(r)} \int_{x}^{\infty} (t-x)^{r-1} f(t) dt.$$

Then

$$\int_0^\infty (f^r(x))^p \, dx < \frac{1}{\Gamma(r)(rp-p+1)} \Big(\int_0^\infty (tf(t))^{rp-p+1} \, dt \Big) \Big(\int_0^\infty (f(t))^{q-rq+1} \, dt \Big)^{p-1}.$$

Proof. By using assumption and Holder's inequality we have

$$\begin{split} \int_{o}^{\infty} (f^{r}(x))^{p} dx &= \frac{1}{\Gamma(r)} \int_{0}^{\infty} \left(\int_{0}^{\infty} \chi_{[x,+\infty)}(t)(t-x)^{r-1} f(t) dt \right)^{p} dx \\ &< \frac{1}{\Gamma(r)} \left(\int_{0}^{\infty} \left[\int_{0}^{\infty} \chi_{[0,t]}(x)(t-x)^{rp-p} dx \right]^{\frac{1}{p}} f(t) dt \right)^{p} \\ &= \frac{1}{\Gamma(r)(rp-p+1)} \left(\int_{0}^{\infty} t^{r-1+\frac{1}{p}} f(t) dt \right)^{p} \\ &= \frac{1}{\Gamma(r)(rp-p+1)} \left(\int_{0}^{\infty} (tf(t))^{r-1+\frac{1}{p}} (f(t))^{1-r+\frac{1}{q}} dt \right)^{p} \\ &= \frac{1}{\Gamma(r)(rp-p+1)} \left(\int_{0}^{\infty} (tf(t))^{rp-p+1} dt \right) \left(\int_{0}^{\infty} (f(t))^{q-rq+1} dt \right)^{p-1}. \ \Box$$

Remark 2.6. By putting r = 1 in Theorems 2.4 and 2.5 respectively, we obtain Theorems 2.1 and 2.2.

Theorem 2.7. Suppose that p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, and f is nonnegative integrable function which its Laplace transformation exists. Define

$$F(x) = \int_0^x f(t) \, dt.$$

6

Then

$$\int_0^\infty \left(\frac{F(x)}{x}\right)^p dx < \frac{1}{p^p} \left(\int_0^\infty L_F(s) \, ds\right)^{\frac{1}{p}} \left(\int_0^\infty L_f(s) \, ds\right)^{\frac{1}{q}},$$

where L_f is the Laplace transformation of f.

Proof. Note that

$$\frac{1}{x} = \int_0^\infty e^{-xt} \, dt,$$

so

$$\begin{split} \int_0^\infty \left(\frac{F(x)}{x}\right)^p dx &= \int_0^\infty \left[\left(\int_0^\infty e^{-xt} dt \right) \left(\int_0^\infty \chi_{[0,x]} f(s) ds \right) \right]^p dx \\ &= \int_0^\infty \left(\int \int e^{-xt} \chi_{[0,x]}(s) f(s) dv \right)^p dx \\ &< \int \int \left[\int_0^\infty e^{-pxt} \chi_{[s,+\infty)}(x) f^p(s) dx \right]^{\frac{1}{p}} dv \\ &= \frac{1}{p^p} \left(\int_0^\infty \int_0^\infty \frac{e^{-st}}{t^{\frac{1}{p}}} f(s) ds dt \right) \\ &\leqslant \frac{1}{p^p} \left(\int_0^\infty \int_0^\infty \frac{e^{-st}}{t} f(s) ds dt \right)^{\frac{1}{p}} \left(\int_0^\infty \int_0^\infty e^{-st} f(s) ds dt \right)^{\frac{1}{q}} \\ &= \frac{1}{p^p} \left(\int_0^\infty L_F(s) ds \right)^{\frac{1}{p}} \left(\int_0^\infty L_f(s) ds \right)^{\frac{1}{q}}. \end{split}$$

Theorem 2.8. Suppose that p > 1, k(x, y) is nonnegative and homogeneous of degree -1 and

$$C = \left\{ \int_0^\infty k^p(1,t)dt \right\}^{\frac{1}{p}}.$$

Also assume that all of the following integrals converge. Then

$$\begin{aligned} a) \ &\int_{0}^{\infty} \int_{0}^{\infty} k(x,y) f(x) g(y) dx dy < C \Big(\int_{0}^{\infty} \frac{f(x)}{x} dx \Big)^{\frac{1}{q}} \Big(\int_{0}^{\infty} f(x) dx \Big)^{\frac{1}{p}} \|g\|_{q}, \\ a') \ &\int_{0}^{\infty} \Big(\int_{0}^{\infty} k(x,y) f(x) dx \Big)^{p} dy < C^{p} \Big(\int_{0}^{\infty} \frac{f(x)}{x} dx \Big)^{p-1} \Big(\int_{0}^{\infty} f(x) dx \Big), \\ b) \ &\int_{0}^{\infty} \int_{0}^{\infty} k(x,y) f(x) g(y) dx dy < C \Big(\int_{0}^{\infty} \frac{g(y)}{y} dy \Big)^{\frac{1}{p}} \Big(\int_{0}^{\infty} g(y) dy \Big)^{\frac{1}{q}} \|f\|_{p}. \end{aligned}$$

Moreover, If f and g have Laplace transformation, then

$$i) \int_{0}^{\infty} \int_{0}^{\infty} k(x,y) f(x)g(y) dx dy < C \Big(\int_{0}^{\infty} L_{f}(s) ds \Big)^{\frac{1}{q}} \Big(\int_{0}^{\infty} f(x) dx \Big)^{\frac{1}{p}} \|g\|_{q},$$

$$i') \int_{0}^{\infty} \Big(\int_{0}^{\infty} k(x,y) f(x) dx \Big)^{p} dy < C^{p} \Big(\int_{0}^{\infty} L_{f}(s) ds \Big)^{p-1} \Big(\int_{0}^{\infty} f(x) dx \Big),$$

$$ii) \int_{0}^{\infty} \int_{0}^{\infty} k(x,y) f(x)g(y) dx dy < C \Big(\int_{0}^{\infty} L_{g}(s) ds \Big)^{\frac{1}{p}} \Big(\int_{0}^{\infty} g(y) dy \Big)^{\frac{1}{q}} \|f\|_{p}.$$

(c) Inequalities (a) and (i) are equivalent to (a') and (i'), respectively.

Proof. (a).

$$\begin{split} \int_0^\infty &\int_0^\infty k(x,y) f(x) g(y) dx dy \leqslant \Big(\int_0^\infty \Big\{ \int_0^\infty k(x,y) f(x) dx \Big\}^p dy \Big)^{\frac{1}{p}} \Big(\int_0^\infty g^q(y) dy \Big)^{\frac{1}{q}} \\ &< \Big(\int_0^\infty \Big\{ \int_0^\infty k^p(x,y) f^p(x) dy \Big\}^{\frac{1}{p}} dx \Big) \|g\|_q. \end{split}$$

By taking y = tx, one may obtain

$$\begin{split} \int_0^\infty \Big\{ \int_0^\infty k^p(x,y) f^p(x) dy \Big\}^{\frac{1}{p}} dx &= \Big(\int_0^\infty k^p(1,t) dt \Big)^{\frac{1}{p}} \Big(\int_0^\infty x^{\frac{1-p}{p}} f(x) dx \Big) \\ &= C \Big(\int_0^\infty (f(x))^{\frac{1}{p}} (\frac{f(x)}{x})^{\frac{1}{q}} dx \Big) \end{split}$$

$$\leq C \Big(\int_0^\infty \frac{f(x)}{x} dx \Big)^{\frac{1}{q}} \Big(\int_0^\infty f(x) dx \Big)^{\frac{1}{p}}.$$

(a').

$$\begin{split} \int_0^\infty \Bigl(\int_0^\infty k(x,y)f(x)dx\Bigr)^p dy &< \Bigl(\int_0^\infty \Bigl\{\int_0^\infty f^p(x)k^p(x,y)dy\Bigr\}^{\frac{1}{p}}dx\Bigr)^p \\ &= \Bigl(\int_0^\infty \Bigl\{\int_0^\infty f^p(x)k^p(x,tx)xdt\Bigr\}^{\frac{1}{p}}dx\Bigr)^p \\ &= C^p\Bigl(\int_0^\infty (f(x))^{\frac{1}{p}}(\frac{f(x)}{x})^{\frac{1}{q}}dx\Bigr)^p \\ &\leqslant C^p\Bigl(\int_0^\infty \frac{f(x)}{x}dx\Bigr)^{p-1}\Bigl(\int_0^\infty f(x)dx\Bigr). \end{split}$$

By the identity

$$\int_0^\infty \frac{f(x)}{x} dx = \int_0^\infty L_f(s) ds,$$

if f and g have Laplace transformation, then inequalities (i), $\left(i'\right)$ and (ii) are obtained.

(c).

$$\begin{split} \int_0^\infty \Big(\int_0^\infty k(x,y)f(x)dx\Big)^p dy &= \int_0^\infty \Big(\int_0^\infty k(x,y)f(x)dx\Big)^{p-1} \Big(\int_0^\infty k(x,y)f(x)dx\Big)dy \\ &= \int_0^\infty g(y)\Big(\int_0^\infty k(x,y)f(x)dx\Big)dy \\ &= \int_0^\infty \int_0^\infty k(x,y)f(x)g(y)dxdy \\ &< C\Big(\int_0^\infty \frac{f(x)}{x}dx\Big)^{\frac{1}{q}}\Big(\int_0^\infty f(x)dx\Big)^{\frac{1}{p}} \|g\|_q, \end{split}$$

where

$$g(y) = \left(\int_0^\infty k(x, y) f(x) dx\right)^{p-1}.$$

Note that

$$\|g\|_q = \left(\int_0^\infty \left(\int_0^\infty k(x,y)f(x)dx\right)^p dy\right)^{\frac{1}{q}}.$$

On the other hand

$$\begin{split} \int_0^\infty & \int_0^\infty k(x,y) f(x) g(y) dx dy = \int_0^\infty \Big(\int_0^\infty k(x,y) f(x) \Big) g(y) dx dy \\ & \leq \Big(\int_0^\infty \Big(\int_0^\infty k(x,y) f(x) dx \Big)^p dy \Big)^{\frac{1}{p}} \|g\|_q \\ & < \Big(C^p \Big(\int_0^\infty \frac{f(x)}{x} dx \Big)^{p-1} \Big(\int_0^\infty f(x) dx \Big) \Big)^{\frac{1}{p}} \|g\|_q \\ & = C \Big(\int_0^\infty \frac{f(x)}{x} dx \Big)^{\frac{1}{q}} \Big(\int_0^\infty f(x) dx \Big)^{\frac{1}{p}} \|g\|_q. \quad \Box \end{split}$$

Corollary 2.9. Suppose that p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, and f, g are nonnegative integrable functions which have Laplace transformation. Then

(i)
$$\int_0^\infty \left(\int_0^\infty \frac{f(x)}{x+y} dx\right)^p dy < \frac{1}{p-1} \left(\int_0^\infty L_f(s) ds\right)^{p-1} \left(\int_0^\infty f(t) dt\right),$$

(ii) $\int_0^\infty \left(\int_0^\infty \frac{f(x)}{\max\{x,y\}} dx\right)^p dy < q^p \left(\int_0^\infty L_f(s) ds\right)^{p-1} \left(\int_0^\infty f(t) dt\right).$

One may generalize Theorem 2.8 as follows:

Theorem 2.10. Suppose that p > 1, $\lambda > 0$, k(x, y) is nonnegative and homogeneous of degree $-\lambda$ and

$$C(p,\lambda) = \left\{ \int_0^\infty t^{(p-1)(\lambda-1)} k^p(1,t) dt \right\}^{\frac{1}{p}}.$$

Also assume that all the following integrals converge. Then

$$\int_0^\infty y^{(p-1)(\lambda-1)} \Big(\int_0^\infty k(x,y) f(x) dx\Big)^p dy < C^p(p,\lambda) \Big(\int_0^\infty \frac{f(x)}{x} dx\Big)^{p-1} \Big(\int_0^\infty x^{1-\lambda} f(x) dx\Big).$$

10

Proof.

$$\begin{split} \int_0^\infty y^{(p-1)(\lambda-1)} \Big(\int_0^\infty k(x,y) f(x) dx \Big)^p dy &< \Big(\int_0^\infty \Big\{ \int_0^\infty y^{(p-1)(\lambda-1)} k^p(x,y) f^p(x) dy \Big\}^{\frac{1}{p}} dx \Big)^p \\ &= \Big(\int_0^\infty f(x) \Big\{ \int_0^\infty (tx)^{(p-1)(\lambda-1)} k^p(x,tx) x dt \Big\}^{\frac{1}{p}} dx \Big)^p \\ &= C^p(p,\lambda) \Big(\int_0^\infty x^{\frac{2-\lambda-p}{p}} f(x) dx \Big)^p \\ &= C^p(p,\lambda) \Big(\int_0^\infty \Big(\frac{f(x)}{x} \Big)^{\frac{1}{q}} \times \Big(\frac{f(x)}{x^{\lambda-1}} \Big)^{\frac{1}{p}} dx \Big)^p \\ &\leqslant C^p(p,\lambda) \Big(\int_0^\infty \frac{f(x)}{x} dx \Big)^{p-1} \Big(\int_0^\infty x^{1-\lambda} f(x) dx \Big). \ \Box \end{split}$$

Remark 2.11. By taking $\lambda = 1$ and

$$k(x,y) = \begin{cases} y^{-1} & 0 \leq x \leq y \\ 0 & x > y \end{cases}$$

in the above mentioned theorem one may obtain Theorem 2.1.

Theorem 2.12. Suppose that p > 1, $\lambda > 0$, k(x, y) is nonnegative and homogeneous of degree $-\lambda$ and

$$C = \left\{ \int_0^\infty k^p(1,t)dt \right\}^{\frac{1}{p}}.$$

Then

$$\int_{0}^{\infty} \int_{0}^{\infty} k(x,y) f(x) g(y) dx dy < C \Big(\int_{0}^{\infty} \frac{f(x)}{x} dx \Big)^{\frac{1}{q}} \Big(\int_{0}^{\infty} x^{p(1-\lambda)} f(x) dx \Big)^{\frac{1}{p}} \|g\|_{q}.$$

Proof.

$$\begin{split} \int_0^\infty &\int_0^\infty k(x,y) f(x) g(y) dx dy \leqslant \Big(\int_0^\infty \Big\{ \int_0^\infty k(x,y) f(x) dx \Big\}^p dy \Big)^{\frac{1}{p}} \Big(\int_0^\infty g^q(y) dy \Big)^{\frac{1}{q}} \\ &< \Big(\int_0^\infty \Big\{ \int_0^\infty k^p(x,y) f^p(x) dy \Big\}^{\frac{1}{p}} dx \Big) \|g\|_q. \end{split}$$

By taking y = tx, one may obtain

$$\begin{split} \int_0^\infty \left\{ \int_0^\infty k^p(x,y) f^p(x) dy \right\}^{\frac{1}{p}} dx &= \left(\int_0^\infty k^p(1,t) dt \right)^{\frac{1}{p}} \left(\int_0^\infty x^{\frac{1-p\lambda}{p}} f(x) dx \right) \\ &= C \left(\int_0^\infty \left(x^{1-\lambda} f^{\frac{1}{p}}(x) \right) \left(\frac{f(x)}{x} \right)^{\frac{1}{q}} dx \right) \\ &\leqslant C \left(\int_0^\infty \frac{f(x)}{x} dx \right)^{\frac{1}{q}} \left(\int_0^\infty x^{p(1-\lambda)} f(x) dx \right)^{\frac{1}{p}}. \ \Box \end{split}$$

Theorem 2.13. Suppose p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, k(x) > 0, and

$$C = \left(\int_0^\infty k^p(x)dx\right)^{\frac{1}{p}}.$$

Also assume that all of the following integrals converge. Then

a)
$$\int_{0}^{\infty} \int_{0}^{\infty} k(xy) f(x) g(y) dx dy < C \Big(\int_{0}^{\infty} \frac{f(x)}{x} dx \Big)^{\frac{1}{p}} \Big(\int_{0}^{\infty} f(x) dx \Big)^{\frac{1}{q}} \|g\|_{q}.$$

a')
$$\int_{0}^{\infty} \Big(\int_{0}^{\infty} k(xy) f(x) dx \Big)^{p} dy < C^{p} \Big(\int_{0}^{\infty} \frac{f(x)}{x} dx \Big) \Big(\int_{0}^{\infty} f(x) dx \Big)^{p-1}.$$

Moreover, If f and g have Laplace transformation, then

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f(x) dx \Big)^{\frac{1}{q}} \|g\|_{q}.$$

$$i) \int_0^\infty \int_0^\infty k(xy) f(x) g(y) dx dy < C \Big(\int_0^\infty L_f(s) ds \Big)^{\frac{1}{p}} \Big(\int_0^\infty f(x) dx \Big)^{\frac{1}{q}} \|g\|_q.$$

$$i') \int_0^\infty \Big(\int_0^\infty k(xy) f(x) dx \Big)^p dy < C^p \Big(\int_0^\infty L_f(s) ds \Big) \Big(\int_0^\infty f(x) dx \Big)^{p-1}.$$

$$(b) Inequalities (a) and (i) are equivalent to (a') and (i') respectively.$$

(b) Inequalities (a) and (i) are equivalent to (a') and (i'), respectively.

Proof. (a).

$$\begin{split} \int_0^\infty &\int_0^\infty k(xy)f(x)g(y)dxdy \leqslant \Big(\int_0^\infty \Big\{\int_0^\infty k(xy)f(x)dx\Big\}^p dy\Big)^{\frac{1}{p}} \Big(\int_0^\infty g^q(y)dy\Big)^{\frac{1}{q}} \\ &< \Big(\int_0^\infty \Big\{\int_0^\infty k^p(xy)f^p(x)dy\Big\}^{\frac{1}{p}}dx\Big) \|g\|_q. \end{split}$$

By taking $y = \frac{t}{x}$, one may obtain

$$\begin{split} \int_0^\infty \left\{ \int_0^\infty k^p(xy) f^p(x) dy \right\}^{\frac{1}{p}} dx &= \left(\int_0^\infty k^p(t) dt \right)^{\frac{1}{p}} \left(\int_0^\infty x^{-\frac{1}{p}} f(x) dx \right) \\ &= C \left(\int_0^\infty (f(x))^{\frac{1}{q}} (\frac{f(x)}{x})^{\frac{1}{p}} dx \right) \\ &\leqslant C \left(\int_0^\infty \frac{f(x)}{x} dx \right)^{\frac{1}{p}} \left(\int_0^\infty f(x) dx \right)^{\frac{1}{q}}. \end{split}$$

$$(a').$$

$$\begin{split} \int_0^\infty \Big(\int_0^\infty k(xy)f(x)dx\Big)^p dy &< \Big(\int_0^\infty \Big\{\int_0^\infty f^p(x)k^p(xy)dy\Big\}^{\frac{1}{p}}dx\Big)^p \\ &= \Big(\int_0^\infty \Big\{\int_0^\infty f^p(x)k^p(t)\frac{1}{x}dt\Big\}^{\frac{1}{p}}dx\Big)^p \\ &= C^p\Big(\int_0^\infty (f(x))^{\frac{1}{q}}(\frac{f(x)}{x})^{\frac{1}{p}}dx\Big)^p \\ &\leqslant C^p\Big(\int_0^\infty \frac{f(x)}{x}dx\Big)\Big(\int_0^\infty f(x)dx\Big)^{p-1}. \end{split}$$

By the identity

$$\int_0^\infty \frac{f(x)}{x} dx = \int_0^\infty L_f(s) ds,$$

if f and g have Laplace transformation, then inequalities (i) and (i') are obtained.

(b).

$$\int_0^\infty \left(\int_0^\infty k(xy)f(x)dx\right)^p dy = \int_0^\infty \left(\int_0^\infty k(xy)f(x)dx\right)^{p-1} \left(\int_0^\infty k(xy)f(x)dx\right) dy$$

$$= \int_0^\infty g(y) \left(\int_0^\infty k(xy)f(x)dx\right) dy$$

$$= \int_0^\infty \int_0^\infty k(xy)f(x)g(y)dxdy$$

$$< C \left(\int_0^\infty \frac{f(x)}{x}dx\right)^{\frac{1}{p}} \left(\int_0^\infty f(x)dx\right)^{\frac{1}{q}} \|g\|_q,$$

where

$$g(y) = \left(\int_0^\infty k(xy)f(x)dx\right)^{p-1}.$$

Note that

$$||g||_q = \left(\int_0^\infty \left(\int_0^\infty k(xy)f(x)dx\right)^p dy\right)^{\frac{1}{q}}.$$

On the other hand

$$\begin{split} \int_0^\infty & \int_0^\infty k(xy) f(x) g(y) dx dy = \int_0^\infty \Big(\int_0^\infty k(xy) f(x) \Big) g(y) dx dy \\ & \leq \Big(\int_0^\infty \Big(\int_0^\infty k(xy) f(x) dx \Big)^p dy \Big)^{\frac{1}{p}} \|g\|_q \\ & < \Big(C^p \Big(\int_0^\infty \frac{f(x)}{x} dx \Big) \Big(\int_0^\infty f(x) dx \Big)^{p-1} \Big)^{\frac{1}{p}} \|g\|_q \\ & = C \Big(\int_0^\infty \frac{f(x)}{x} dx \Big)^{\frac{1}{p}} \Big(\int_0^\infty f(x) dx \Big)^{\frac{1}{q}} \|g\|_q. \quad \Box \end{split}$$

Remark. 2.14. In special case, by taking $k(x) = e^{-x}$, in the above mentioned theorem, one may obtain the following inequalities:

a)
$$\int_0^\infty L_f(y)g(y)dy < \frac{1}{\sqrt[p]{p}} \Big(\int_0^\infty \frac{f(x)}{x} dx \Big)^{\frac{1}{p}} \Big(\int_0^\infty f(x)dx \Big)^{\frac{1}{q}} \|g\|_q.$$

a') $\int_0^\infty L_f^p(y)dy < \frac{1}{p} \Big(\int_0^\infty \frac{f(x)}{x} dx \Big) \Big(\int_0^\infty f(x)dx \Big)^{p-1}.$

Moreover, if f and g have Laplace transformation, then

$$i) \quad \int_0^\infty L_f(y)g(y)dy < \frac{1}{\sqrt[p]{p}} \Big(\int_0^\infty L_f(s)ds \Big)^{\frac{1}{p}} \Big(\int_0^\infty f(x)dx \Big)^{\frac{1}{q}} \|g\|_q.$$
$$i') \quad \int_0^\infty L_f^p(y)dy < \frac{1}{p} \Big(\int_0^\infty L_f(s)ds \Big) \Big(\int_0^\infty f(x)dx \Big)^{p-1}.$$

References

- G. H. Hardy, J. E. Littlewood, and G. Polya, *Inequalities*, Cambridge University Press, Cambridge, 1952.
- [2] L. He, W. Jia, and M. Gao, A Hardy-Hilbert's type inequality with gamma function and its applications, *Integral Transforms and Special Functions*, 17 (5) (2006), 355-363.
- [3] Y. Li and B. He, Some extensions of Hilbert's type inequality and its applications, J. Inequal. in Pure and Appl. Math., 7 (2) (2006), 1-7.
- [4] Y. Li, Z. Wang, and B. He, Hilbert's type linear operator and some extensions of Hilbert's inequality, *Journal of Inequalities and Applications*, (2007), 1-10.
- [5] D. S. Mitrinovič, J. E. Pečarić, and A. M. Fink, *Inequalities Involving Functions and their Integrals and Derivatives*, Kluwer Academic Publishers, Boston, 1991.
- [6] D. Xin, Best generalization of Hardy-Hilbert's inequality with multiparameters, J. Inequal. in Pure and Appl. Math., 7 (4) (2006), 1-8.
- [7] B. Yang, A relation to Hardy-Hilbert's integral inequality and Mulholand's inequality, J. Inequal. in Pure and Appl. Math., 6 (4) (2005), 1-11.

Alireza Moazzen

Department of Mathematics Assistant Professor of Mathematics Velayat University Iranshahr, Iran E-mail: ar.moazzen@yahoo.com

Rahmatollah Lashkaripour

Department of Mathematics Professor of Mathematics University of Sistan and Baluchestan Zahedan, Iran E-mail: lashkari@hamoon.usb.ac.ir